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The Maxwell equations have a fairly simple form. However, finding solutions to Maxwell’s
equations is an extremely difficult task. Therefore, various simplifying approaches are often
used in optics. One such simplifying approach is to use the approximation of geometric
optics. The approximation of geometric optics is constructed with the assumption that the
wavelengths are small (short-wavelength approximation). The basis of geometric optics is the
eikonal equation. The eikonal equation can be obtained from the wave equation (Helmholtz
equation). Thus, the eikonal equation relates the wave and geometric optics. In fact, the
eikonal equation is a quasi-classical approximation (the Wentzel–Kramers–Brillouin method)
of wave optics. This paper shows the application of geometric methods of electrodynamics
to the calculation of optical devices, such as lenses Maxwell and Luneburg. The eikonal
equation, which was transformed to the ODE system by the method of characteristics, is
considered. The resulting system is written for the case of Maxwell and Luneburg lenses and
solved by standard numerical methods. Describes the implementation details and images of
the trajectories of rays and fronts of the waves.
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1. Introduction

In this article, we consider the approach to transform the eikonal equations to the
ODE system. In the first part we briefly formulate the problem and describe Luneburg
and Maxwell lens. The second part describes a software implementation that allows to
visualize the trajectory of rays and wave fronts.

2. Application of the characteristic method to the eikonal equation

2.1. The eikonal equation

The eikonal equation can be obtained from Maxwell’s equations written for the
regions free of currents and charges and under the condition of a time-changing harmonic
electromagnetic field in a nonconducting isotropic medium [1–4]. In general, the eikonal
equation is written as a partial differential equation of the first order:{︃

|∇𝑢(r)|2 = 𝑛2(r), r ∈ R3,

𝑢(r) = 𝜙(r), x ∈ Γ ⊂ R3.

where r = (𝑥, 𝑦, 𝑧)𝑇 is radius-vector, 𝜙(r) is boundary condition, 𝑛(r) is refractive index
of the medium. The function 𝑢(r) is real scalar function with a physical meaning of
time. It is also often called as the eikonal function [5, 6].

For visualization of lens modeling results, we will consider their projection on the
𝑂𝑥𝑦 plane. In this case, the eikonal equation is reduced to a two-dimensional form:⎧⎪⎨⎪⎩

(︂
𝜕𝑢(𝑥, 𝑦)

𝜕𝑥

)︂2

+

(︂
𝜕𝑢(𝑥, 𝑦)

𝜕𝑦

)︂2

= 𝑛2(𝑥, 𝑦), (𝑥, 𝑦) ∈ R2,

𝑢(𝑥, 𝑦) = 𝜙(𝑥, 𝑦), (𝑥, 𝑦) ∈ Γ ⊂ R2.

Using the characteristic method, the eikonal equation can be transformed into an
ODE system that can be solved by standard numerical methods.

2.2. Transformations of the eikonal equation to the ODE system

By using the method of characteristics [7–12], we may convert the eikonal equation
for the plane case to the form of the differential equation system with functions: 𝑥(𝑡),
𝑦(𝑡), 𝑝1(𝑡), 𝑝2(𝑡): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d𝑥

d𝑡
=

𝑝1

𝑛2
,

d𝑦

d𝑡
=

𝑝2

𝑛2
,

d𝑝1

d𝑡
=

1

𝑛

𝜕𝑛

𝜕𝑥
,

d𝑝2

d𝑡
=

1

𝑛

𝜕𝑛

𝜕𝑦
.

Initial conditions

𝑥(𝑡)|𝑡=0 = 𝑥0,

𝑦(𝑡)|𝑡=0 = 𝑦0,

𝑝1(𝑡)|𝑡=0 = 𝑐1𝑛(𝑥0, 𝑦0),

𝑝2(𝑡)|𝑡=0 = 𝑐2𝑛(𝑥0, 𝑦0),

where
𝑝1 =

𝜕𝑢

𝜕𝑥
, 𝑝2 =

𝜕𝑢

𝜕𝑦
.

The following relation 𝑐21 + 𝑐22 = 1 is imposed on constants 𝑐1 and 𝑐2. Thus we may
take: 𝑐1 = cos(𝛼) and 𝑐2 = sin(𝛼). Initial conditions give a mathematical description of
the source of the rays. For example, to model a point source, we need to fix the initial
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coordinates 𝑥0, 𝑦0 and change the angle 𝛼, which will set the angle of the beam exit
from the source-point. To simulate the radiating surface, on the contrary, it is necessary
to fix the angle 𝛼 and change the coordinates 𝑥0 and 𝑦0.

The parameter 𝑡 has a physical meaning of the signal passing time from the point
(𝑥0, 𝑦0) to the point (𝑥, 𝑦).

In polar coordinates, the eikonal equation has the following form:(︂
𝜕𝑢(𝑟, 𝜙)

𝜕𝑟

)︂2

+
1

𝑟2

(︂
𝜕𝑢(𝑟, 𝜙)

𝜕𝜙

)︂2

= 𝑛2(𝑟),

and corresponding system of ODEs will have the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d𝑟

d𝑡
= 𝑝𝑟,

d𝜙

d𝑡
=

𝑝𝜙

𝑟
,

d𝑝𝑟

d𝑡
= 𝑛

𝜕𝑛

𝜕𝑟
+

𝑝2𝜙

𝑟
,

d𝑝𝜙

d𝑡
= −

𝑝𝜙𝑝𝑟

𝑟
.

Initial conditions

𝑟(𝑡)|𝑡=0 = 𝑟0,

𝜙(𝑡)|𝑡=0 = 𝜙0,

𝑝𝑟(𝑡)|𝑡=0 = 𝑐1𝑛(𝑟0),

𝑝𝜙(𝑡)|𝑡=0 = 𝑐2𝑛(𝑟0).

Let’s consider the examples of lenses [13,14].

2.3. Luneburg lens

The Luneburg lens [15–18] is a spherical lens of radius 𝑅 with center at point (𝑋0, 𝑌0)
(consider the projection on the plane Oxy) with a refractive index of the following form

𝑛(𝑥, 𝑦) =

⎧⎨⎩𝑛0

√︂
2 −

(︁ 𝑟

𝑅

)︁2
, 𝑟 6 𝑅,

𝑛0, 𝑟 > 𝑅,

where 𝑟(𝑥, 𝑦) =
√︀

(𝑥−𝑋0)2 + (𝑦 − 𝑌0)2 is the distance from the center of the lens
to an arbitrary point in the (𝑥, 𝑦) plane. The formula implies that the coefficient 𝑛

continuously varies from 𝑛0

√
2 to 𝑛0 starting from the center of the lens and ending

with its boundary. The refractive index of the medium outside the lens is constant and
is equal to 𝑛0. Usually 𝑛0 is equal to 1.

To solve the eikonal equation by the method of characteristics, it is necessary to
find partial derivatives of the function 𝑛(𝑥, 𝑦). For the Luneburg lens case the partial
derivatives are:

𝜕𝑛(𝑥, 𝑦)

𝜕𝑥
= −

𝑛2
0(𝑥−𝑋0)

𝑅2𝑛(𝑥, 𝑦)
,
𝜕𝑛(𝑥, 𝑦)

𝜕𝑦
= −

𝑛2
0(𝑦 − 𝑌0)

𝑅2𝑛(𝑥, 𝑦)
, 𝑟 6 𝑅.

Outside lens region the derivatives are equal to 0.
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2.4. Maxwell’s fish eye lens

The Maxwell’s fish eye lens [19] is also a spherical lens of radius 𝑅 with center at
point (𝑋0, 𝑌0) (consider the projection on the plane Oxy) with a refractive index of the
following form:

𝑛(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
𝑛0

1 +
(︁ 𝑟

𝑅

)︁2
, 𝑟 6 𝑅,

𝑛0, 𝑟 > 𝑅.

To solve the eikonal equation by the method of characteristics, it is necessary to find
partial derivatives of the function 𝑛(𝑥, 𝑦). For Maxwell’s lens case these derivatives may
be written in the form:

𝜕𝑛(𝑥, 𝑦)

𝜕𝑥
= −

2𝑛2(𝑥, 𝑦)(𝑥−𝑋0)

𝑛0𝑅2
,
𝜕𝑛(𝑥, 𝑦)

𝜕𝑦
= −

2𝑛2(𝑥, 𝑦)(𝑦 − 𝑌0)

𝑛0𝑅2
, 𝑟 6 𝑅.

3. Numerical simulation of Luneburg and Maxwell lens

3.1. Description of the numerical modeling

We carry on numerical modeling for lenses with a radius 𝑅 = 1, the refractive
index of the external medium 𝑛0 = 1, the center of the lens was placed in the point
(𝑋0, 𝑌0) = (2, 0), the boundary region was set as the rectangle 𝑥min = 0, 𝑥max = 5,
𝑦min = −1.5 and 𝑦max = 1.5. The point source was placed on the lens boundary
at (𝑥0, 𝑦0) = (0, 0). 50 values of the 𝛼 parameter have bee taken from the interval
[−𝜋/2 + 𝜋/100, 𝜋/2 − 𝜋/100], which allowed to simulate rays trajectories from a point
source within an angle slightly smaller than 180∘. The 𝑡 parameter was changed within
the [0, 5] interval.

Each 𝛼 parameter value sets new initial conditions for the ODE system. The
process of numerical simulation consists in multiple solution of this system for different
initial conditions. The numerical solution of the ODE system for a particular initial
condition gives us a set of points (𝑥𝐼 , 𝑦𝐼), 𝐼 = 1, . . . , 𝑁 approximating the trajectories
of a particular beam. After performing calculations for all the selected initial conditions,
we obtain a set of rays. To visualize the rays, it is enough to depict each of the obtained
numerical solutions. The result of the simulation may be seen in 1 and 2.

To visualize the wave fronts with the resulting numerical data it is necessary to carry
out additional manipulations. From each numerical solution, we must select points
(𝑥𝐼 , 𝑦𝐼) that correspond to a specific point in time 𝑡𝐼 .

The use of a numerical method with a fixed step gives an advantage, since each
numerical solution will be obtained for the same uniform grid 𝑡0 < 𝑡1 < . . . < 𝑡𝑖 < . . . <
𝑡𝑛.

3.2. The description of software implementation

For the simulation of rays transmission through the lens we used Julia language [20]
and Python with Matplotlib and NumPy for visualization. To solve the ODE system we
used the classical Runge–Kutta methods of order 6 with a constant step, implemented
by us in Julia as a separate function.

The main program files are located in the src directory. Files of Julia source code
have jl extension. Note that the Julia language encourages usage of Unicode variable so
we may use various characters of utf-8 encoding, which are often found in mathematical
formulas. So, we used Greek letters and symbols of partial differentiation 𝜕.

– eikonal.jl — the right part of the system of differential equations, for all lenses
it has the same form, differing only in functions n(x,y) and 𝜕n(x,y).
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Figure 1. The trajectories of the rays inside of Maxwell’s lens for a point source
and 𝑛0 = 1.

1 2 3 4 5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 2. The trajectories of the rays inside of Luneburg lens for a point source
and 𝑛0 = 1.
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– maxwell.jl — refractive index n(x,y) and its derivatives 𝜕n (x,y) for the Maxwell
lens.

– luneburg.jl — similar to the previous item, but for Luneberg lens.
– parameters.jl — common parameters for all lenses: lens radius, refractive index

of the external medium, coordinates of the center of the lens, area boundaries for
Cartesian and polar coordinates, etc.

– RK.jl — a separate function that implements the Runge-Kutta method.
Outside the directory src are scripts that trigger calculations. The script cartesian1.jl

performs calculations for the point source, the script cartesian2.jl for parallel rays,
and the script polar.jl for polar coordinates. Depending on the argument, the files
corresponding to the desired lens are loaded. The calculation process for all lenses is the
same. The script plot.py is written in Python and is used to visualize the trajectories
of rays and fronts of the waves.

Consider, for example, the script cartesian1.jl, briefly explaining the Julia syntax.
At the very beginning of the script the variables and functions are selectively imported
from files.
include("src/RK.jl")
include("src/parameters.jl")

if length(ARGS) > 0
ARGS[1] == "maxwell" && include("src/maxwell.jl")
ARGS[1] == "luneburg" && include("src/luneburg.jl")

else
include("src/maxwell.jl")

end

include("src/eikonal.jl")
Julia is a JIT-compiled language, so it considers the speed of a compiled language with
the flexibility of an interpreted one. In this case, it allows us to include the necessary
code during the program execution and we get versions of the n(x,y) and 𝜕n(x,y)
functions for Maxwell and Luneberg lens depending on which command-line argument is
passed when the program is run. The operator && allows you write conditional execution
in the short form. So, the code from the maxwell.jl file will be enabled only if the first
conditional expression is true (if maxwell argument is passed).

Then follows the process of calculation. As described above, we have to solve the
ODE system for the set of initial values. Each solution gives the coordinates (𝑥, 𝑦) of
the corresponding ray. The calculation results for each ray are stored in a separate file.
isdir(dir) ? true : mkdir(dir)

# x_0, y_0, p1_0, p2_0
xn_0 = Vector{Float64}(4)
i = 0
# The point source. Rays are radiated at an angle alpha
for alpha in linspace(alpha_min, alpha_max, 50)

i = i + 1
file = open("./$(dir)/data$i.txt", "w")
xn_0[1:2] = [x_0, y_0]
xn_0[3:4] = [cos(alpha)*n(x_0, y_0), sin(alpha)*n(x_0, y_0)]

tn, xn = RK.RKp6n1(eikonal, xn_0, h, t_start, t_stop)

for (t, x, y) in zip(tn, xn[:, 1], xn[:, 2])
write(file, "$t,$x,$y\n")

end

close(file)
end
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3.3. Visualization of trajectories and fronts

Since the solution of the ODE system gives the trajectory of a single ray, visualization
of rays trajectories is a simple task. The solutions for each system are saved as three
columns of data: 𝑡, 𝑥 and 𝑦. To visualize the ray it is sufficient to read columns 𝑥 and 𝑦
and and plot them.

A more complex task is to visualize the wave fronts. Geometrically, the wave front is
formed from points of the beam corresponding to the same time. Thus, to get all the
points of the front, it is necessary to consider the coordinates 𝑥 and 𝑦 corresponding
to the same time 𝑡from each file with ODE solutions. Since we used the Runge–Kutta
method with a constant step, the same time in different files corresponds to the same
line number. The following code fragment shows how a list containing the points of the
wave fronts is formed.
# The lines_num variable contains the number of lines in the file
levels = [[] for i in range(lines_num)]
# Sequentially open all files for reading
for fname in fnames:

with open(fname) as f:
for li, line in enumerate(f.readlines()):

levels[li].append([float(s) for s in line.strip(’\n’).split(’,’)])
levels = np.array(levels)
As a result, we form the nested list, each element containing all the points of the
corresponding front.

4. Conclusions

The paper presents the description of the numerical solution of the eikonal equation
for the case of Luneburg and Maxwell lenses. The results are visualized as trajectories
of rays passing through lenses and as fronts of electromagnetic waves.
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