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Nowadays there is a very limited list of tasks using the theory of hypergraphs as in the
single-criterion and multi-criteria performances. However, the apparatus of the theory of
hypergraphs allows to reflect in the model the simultaneous interaction of several factors.This
is possible because the edge of the hypergraph is represented as a nonempty set of vertices
that contains more than two vertices.

In this paper a mathematical theory of the vector problem of combinations on 𝑙-homogeneous
𝑙-partite hypergraphs is formulated. An upper bound is obtained for the cardinality of the set
of admissible solutions both for problems with equipotential parts and for problems with parts
of different cardinality. An algorithm is constructed to solve this problem. The first part of
the presented algorithm for finding combinations on 𝑙-partite 𝑙-homogeneous hypergraphs is
based on the classical algorithm for finding matchings in a bipartite graph. The determination
of admissible solutions of the problem is performed without taking into account the values of
the weights of the edges of a given hypergraph. In the second part of the algorithm, from the
admissible solutions, a set of Pareto optimal solutions of the vectorial problem is constructed.
So there is no need to specify in the model building process pairwise interaction modeling.
This greatly simplifies the modeling process.

It should be noted, that the technology for solving such problems are also poorly understood.
Technology solution of the problem is understood clearly describes the system actions that
are performed when dealing with it. The main part of this technology is algorithmic. This is
due to the fact that even the optimization problem on graphs related to the problems of the
class NP. For mass tasks on graphs in an optimization (single-criterion) formulation known to
a limited number of both exact and approximate algorithms.

Homogeneity refers to the edges of a hypergraph, where each edge has exactly 𝑙 vertices.
When building the model this means that there is a need for description 𝑙 of objects that
interact simultaneously. In this case the binary relationship is not necessary to describe. We
must specify a common property that these 𝑙 objects have. The concept of 𝑙-partite should be
attributed to the set of vertices that are divided into 𝑙 of different classes. When constructing
the model, the partite means that 𝑙 sets are considered that 𝑙 sets that have different meaning.
Thus, each edge contains one vertex from each of these parts.

We obtained an upper bound for the cardinality of the set of admissible solutions both
for problems with equal powers of parts, and for problems with parts of different power of
parts. Admissible solutions are formed after the construction of admissible edges on the
hypergraph. An edge is valid if the pairs of vertices have taken the meaning the purpose for
which you built the model. For a problem with equal powers of parts, we have the problem of
perfect combinations. For a problem with the same powers of parts, we have the problem of
combinations. Theoretically, there are problems of covering a multi-part hypergraph with
various connectivity components, such as stars or trees. In these problems, tasks with different
powers of parts are used.
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1. Introduction

Currently, an increasing need for the development and study of methods of modeling
of technical, economic and social processes associated with direct human involvement.
These research methods often refer to discrete integer optimization. Discrete optimization
finds at present a wide application in various studies. A distinctive feature of processes
involving human beings is their weak structuredness and indistinctness in the values
of the initial data. Topical issues of modern discrete modeling are the development of
methods of structuring meaningful descriptions of discrete problems and formalization of
their parameters in conditions of uncertainty [1]. Thus, topical issues of modern discrete
modeling are the development of methods for structuring meaningful descriptions of
discrete problems and formalizing their parameters under uncertainty. In describing
these methods on the basis of graph theory, we understand that the model in its essence
will reflect the binary relations between the two factors of the problem. However,
in more complex systems, there are factors that are included in the binary relations
and qualitatively affect them. In such cases, problems arise that form relationships,
where factors reflecting a single interaction, more than two. Unlike the graph [2, 3], we
consider the performances of the vector (multicriteria) problems greatly simplify the
modeling process of real objects and processes [3]. For example, the classical problem of
allocation in which is the search for a minimum (maximum) sum of weights of edges
in a weighted bipartite graph. This task can be generalized and represent the task of
searching for combinations on a multi-partite hypergraph. In the classical setting the
problem is formulated in the optimization or single-criterion formulation. The problem
of combinations on hypergraphs is formulated in a multicriteria or vector formulation.
The advantage of using the theory of hypergraphs is that the edges of the hypergraph
allow one to describe the relation over an arbitrary set of objects, thereby simplifying
the process of modeling those problems in which it is impossible to mathematically
define an unambiguous dependence of objects on the basis of binary relations, as in
graph theory [4, 5]. It should be noted that this type of problem belongs to the class
of NP-difficult problems [6,7]. For such problems, even in single-criterion formulation
has not been investigated, and sometimes do not exist both exact and approximate
algorithms for its solution [8, 9].

To solve the formulated problem we propose an exact algorithm for finding the Pareto
optimal set of admissible solutions. We obtained an upper bound for the maximum
power set of admissible solutions [10].

2. The formulation of the vectorial problem

The missing definitions on the theory of hypergraphs can be found in [2, 3]. A
hypergraph 𝐺 = (𝑉,𝐸) is a pair of sets (𝑉,𝐸). Where 𝑉 is represented by a finite
non-empty set, and 𝐸 is a family of subsets consisting of the set 𝑉 . 𝑉 = {𝑣} is the set
of vertices of the hypergraph, and 𝐸 = {𝑒} is the set of its edges. Pair of vertices 𝑣1
and 𝑣2 are adjacent if they belong to one edge 𝑒, 𝑣1 ∈ 𝑒, 𝑣2 ∈ 𝑒. The number of vertices
in an edge is called the degree of this edge. If the degree of each edge is equal to 𝑙, then
such a hypergraph is called 𝑙-homogeneous. If two edges have common vertices, they are
called adjacent. A combination in the graph 𝐺 is a subset of the set of edges 𝐸 in which
each pair of edges is non-adjacent [4, 5].

A hypergraph 𝐺 = (𝑉,𝐸) is said to be 𝑙-partite if the set of its vertices 𝑉 is divided
into parts (subsets) 𝑉𝑠, 𝑠 = 1, 𝑙 so that two conditions are satisfied:

1. Every pair of vertices of one part is not adjacent.
2. For every edge 𝑒 ∈ 𝐸 every pair of vertices 𝑣1, 𝑣2 ∈ 𝑒 belongs to different parts.
If every edge 𝑒 ∈ 𝐸 is incident to one vertex from each parts 𝑉𝑠, 𝑠 = 1, 𝑙, such a

hypergraph 𝐺 = (𝑉1, 𝑉2, . . . , 𝑉𝑙, 𝐸) is called complete 𝑙-partite hypergraph. If to each
edge 𝑒 ∈ 𝐸 of a hypergraph 𝐺 a sequence of numbers 𝑤𝑣(𝑒) > 0, 𝑣 = 1, 2, . . . ,𝑚 is
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associated, then it is called 𝑚-weighted. A hypergraph is called 𝑚-weighted if each of
its edges is 𝑚-weighted.

An admissible solutions to this problem is an edge subhypergraph 𝑥 = (𝑉,𝐸), 𝐸𝑥 ⊆ 𝐸
the hypergraph 𝐺 = (𝑉,𝐸) in which each connected component is a combinations.

Figure 1 shows 3-partite 3-homogeneous hypergraph, where |𝑉 | = 12, |𝐸| = 10,
𝑉1 = {1, 2, 3, 4}, 𝑉2 = {5, 6, 7, 8}, 𝑉3 = {9, 10, 11, 12}, 𝐸 = {𝑒1, . . . , 𝑒10}, 𝑒1 = {1, 5, 9},
𝑒2 = {1, 6, 10}, 𝑒3 = {1, 7, 11}, 𝑒4 = {2, 5, 9}, 𝑒5 = {2, 6, 10}, 𝑒6 = {2, 7, 11}, 𝑒7 =
{3, 7, 11}, 𝑒8 = {3, 8, 12}, 𝑒9 = {4, 7, 11}, 𝑒10 = {4, 8, 12}.

Figure 1. 12-vertebral 3-partite 3-homogeneous hypergraph

We denote by 𝑋 = 𝑋(𝐺) = 𝑥 the (SAS) set of admissible solutions of this problem.
on the hypergraph 𝐺 = (𝑉,𝐸) in Figure 1 |𝑋| = 4, 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝑥1 =
{𝑒1, 𝑒5, 𝑒7, 𝑒10}, 𝑥2 = {𝑒2, 𝑒4, 𝑒7, 𝑒10}, 𝑥3 = {𝑒1, 𝑒5, 𝑒8, 𝑟9}, 𝑥4 = {𝑒2, 𝑒4, 𝑒8, 𝑟9}.

The solution of multicriteria problems leads to the fact that there is no single optimal
solution. In this case, it becomes necessary to search for a set of alternatives instead of
the optimum [9,10].

The quality of the admissible solutions 𝑥 ∈ 𝑋 is estimated by (VOF) a vector
objective function [12,13].

𝐹 (𝑥) = (𝐹1(𝑥), 𝐹2(𝑥), . . . , 𝐹𝑚(𝑥)), (1)

the criteria of which have the form MAXSUM:

𝐹𝑠(𝑥) =
∑︁

𝑒∈𝐸𝑥

𝑤𝑠(𝑒) −→ max, 𝑠 = 1, 2, . . . ,𝑚. (2)

The definition of these criteria uses weights 𝑤𝑠(𝑒), 𝑠 = 1, 2, . . . ,𝑚 assigned to the
edge 𝑒 ∈ 𝐸. VOF (1) whose criteria have the form (2) determines the problem on the
SAS, the Pareto set 𝑋′, consisting of Pareto optima 𝑥′. In the case if the equal in
value VOF solutions 𝑥′, 𝑥” ∈ 𝑋 are considered equivalent (indistinguishable), then from
𝑋′ a (CSA) complete set of alternatives is introduced 𝑋0. Subset 𝑋0 ⊂ 𝑋′ is called
CSA if it’s have minimal power |𝑋0| and the equality is true 𝐹 (𝑋0) = 𝐹 (𝑋′), where
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𝐹 (𝑋0) = {𝐹 (𝑥) : 𝑥 ∈ 𝑋0}, ∀𝑋0 ⊆ 𝑋 and 𝐹 (𝑋′) = {𝐹 (𝑥) : 𝑥 ∈ 𝑋′}, ∀𝑋′ ⊆ 𝑋. In this
way CSA 𝑋0 is the maximum system of vector-incomparable Pareto optima from 𝑋′,
𝑋0 ⊆ 𝑋′. The most expedient solution is selected from the CSA using the procedures
of the theory of choice and decision making [14, 15]. As the desired solution of the
𝑚-criteria problem under consideration, we take a complete set of alternatives [16,17].

3. Description of the recursive algorithm

To solve the formulated problem, we describe the algorithm. We consider the
problem when the hypergraph 𝐺 = (𝑉1, 𝑉2, . . . , 𝑉𝑙, 𝐸) is 𝑙-partite 𝑙-homogeneous. In
the hypergraph 𝐺 powers of the parts |𝑉𝑠|, 𝑠 = 1, . . . , 𝑙 are different. We introduce the
following notation:

– 𝑋(𝐺) is a required set of Pareto optimal solutions;
– 𝑊 (𝑋) is a set of weights (in the form of vectors (𝑤1, . . . , 𝑤𝑚) uniquely matched

to the set of solutions 𝑋(𝐺);
– 𝑥𝑘 is a admissible solution of 𝑘;
– 𝑅 is a set of non-adjacent edges complemented by the search for combinations;
– 𝑇 is a subset edges of 𝐸 hypergraph 𝐺 = (𝑉,𝐸), each of which is non-adjacent

with any edge in 𝑅;
– 𝑇 ′ is a subset of edges from 𝑇 , 𝑇 ′ ⊆ 𝑇 ∖ {𝑡𝑗} : ∀(𝑡𝑗 , 𝑡′𝑘), 𝑡

′
𝑘 ∈ 𝑇 ′, 𝑡′𝑘

⋂︀
𝑡𝑗 = ⊘;

– 𝑤𝑥(𝑥𝑘) is a vector of values of criteria (weights) 𝑘 combination;
– 𝑤𝑒(𝑒𝑘) is a vector of values of criteria (weights) 𝑘 edge;
– 𝑉min is the smallest part of the hypergraph.
The initial data of the algorithm are: 𝑙-partite 𝑙-homogeneous 𝑚-weighted hypergraph

𝐺 = (𝑉,𝐸) = (𝑉1, . . . , 𝑉𝑙, 𝐸), |𝑉min| is a power of the smallest part of the hypergraph
𝐺, |𝑉min| = min{|𝑉1|, |𝑉2|, . . . , |𝑉𝑙|}.

The result of the algorithm is represented by a pair of sets (𝑋′,𝑊 (𝑋)). These sets
are uniquely matched. 𝑋′ is a set of Pareto optimal solutions. The admissible solution
is a combination that contains all the vertices of part 𝑉min.

The algorithm is divided into two parts. The first part of the algorithm finds SAS
without considering the weights of edges. The second part, based on weights and
evaluation criteria, allocates a subset of the Pareto optimal solutions from SAS. The
algorithm uses intermediary sets 𝑇 and 𝑅. The construction of each admissible solution
is based on a recursive selection from a given set of edges 𝐸 of the subset 𝑅. The subset
𝑅 is complemented by an edge from 𝑇 ⊆ 𝐸 at each level of recursion such that it is
non-adjacent with any edge in 𝑅. The recursion terminates if 𝑅 becomes |𝑉min|. When
𝑅 < |𝑉min| recursive calls continue. In this case, instead of T the nest step of recursion
is transmitted to 𝑇 ′, the subset of edges in 𝑇 such that 𝑇 ′ ⊆ 𝑇 ∖{𝑡𝑗} : ∀(𝑡𝑗 , 𝑡′𝑘), 𝑡

′
𝑘 ∈ 𝑇 ′,

𝑡′𝑘
⋂︀

𝑡𝑗 = ⊘. If at the considered step 𝑇 = ⊘, then the construction of the current
admissible solution is completed.

An estimate of the maximum cardinality of the SAS for the general case (when the
powers of the hypergraph parts |𝑉𝑘| > 1, 𝑘 = 1, . . . , 𝑙).

|𝑋(𝐺)| 6
𝑝∏︁

𝑗=0

𝑙∏︁
𝑘=1

(|𝑉𝑘| − 𝑗), 𝑝 = |𝑉min| − 1.

For the special case, when given 𝑙-partite 𝑙-homogeneous hypergraph 𝐺 = (𝑉,𝐸) =
(𝑉1, . . . , 𝑉𝑙, 𝐸) is complete and |𝑉1| = |𝑉2| = . . . = |𝑉𝑙| the estimate represents:

|𝑋(𝐺)| 6
(︂(︂

|𝑉 |
𝑙

)︂
!

)︂𝑙−1

.
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When constructing a model, the completeness condition means that there were no
restrictions when constructing the edges.

Finding the Pareto optimal solutions among the admissible solutions is constructed
according to the following principle. The quality of the admissible solutions 𝑥 ∈ 𝑋 is
estimated by the VOF function (1) whose criteria have the form (2). It is assumed
that the qualitative characteristics of the solutions found (obtained according to a
given law from the set of edges included in them) are represented by numbers and
normalized. On the weight vector (𝑤1, . . . , 𝑤𝑚), each ordered pair of solutions can be
in four states relative to each other. To uniquely determine this relation, it is enough to
know the number of characteristics of the first solution, qualitatively superior to the
corresponding characteristics of the second, and the number of characteristics equivalent
to the corresponding characteristics of the second. In this case, the algorithm for
determining the relationship between solutions will have the following form:

1. If the number of equivalent characteristics coincides with the common set of
characteristics (𝑚), then these solutions are equivalent.

2. Otherwise, if the number of equivalent and superior characteristics of the first
solution coincides with the common set of characteristics (𝑚), then the first solution
qualitatively exceeds the second one.

3. Otherwise, if the number of superior characteristics of the first solution is zero,
then the second solution qualitatively exceeds the first.

4. Otherwise the pair of solutions is considered vectorally incomparable.
Figure 2 shows the function that performs comparisons solutions 𝑥.

Figure 2. Function that performs comparisons solutions 𝑥
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From the point of view of software implementation, the finding of admissible solutions,
their evaluation and subsequent allocation, a lot of Pareto optimal solutions occurs
as follows. At the beginning of the algorithm, a dynamic list of solution instances is
initialized, which will serve as the resultant Pareto optimal set. Alternately, each edge
from the given source list of edges is selected by a set of edges that do not have common
vertices and are listed in the list after this. For each list that is generated, the algorithm
is repeated until there remain lists of vertices that satisfy the conditions of an admissible
solution. When finding each new feasible solution, it is passed to the method of assessing
the quality of decisions. The solution is compared with each element of the given Pareto
optimal set by the algorithm given above.

Variants of the behavior of the method of formation of the set of Pareto optimal
solutions:

1. The first solution found is entered in the (PS) Pareto set without checking, respec-
tively.

2. If the solution found qualitatively inferior to all solutions from the PS, it is ignored.
3. If the solution is equivalent to one or more solutions from the PS, it is added to

the PS as an alternative.
4. If the solution exceeds one or more solutions from the PS, it is added to the PS,

and all qualitatively inferior ones are excluded from it.
5. If the solution is vectorally incomparable to none of the solutions in the PS, it is

added to it.
As a result of the verification of all found admissible solutions, we obtain a set of

Pareto optimal admissible solutions of the problem that interests us. Figure 1 shows
recursive algorithm for finding solutions to the vector combination problem [18,19].

4. Conclusions

As a result of the work the following results were obtained: the mathematical vectorial
problem of combinations on 𝑙 -homogeneous 𝑙-partite hypergraphs is formulated, the
upper bound for the cardinality of the SAS for problems with equal and different powers
of parts is obtained.

The results obtained in the work can be used to develop a decision support system.
They can be used in the process of modeling problems in different subject areas under
multicriterion conditions, the upper bound for the cardinality of the set of admissible
solutions both for problems with equal powers of parts and for problems with of different
cardinality of fractions is obtained.

An example of this approach can be found in [20]. In the future, it is planned to
program the problem of covering the hypergraph with stars.
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