
UDC 004.4
Automatic Code Generation for Stochastic Runge–Kutta

Methods

Migran N. Gevorkyan*, Anastasiya V. Demidova*,
Anna V. Korolkova*, Dmitry S. Kulyabov*†
* Department of Applied Probability and Informatics,

Peoples’ Friendship University of Russia (RUDN University),
6 Miklukho-Maklaya str., Moscow, 117198, Russia

† Laboratory of Information Technologies
Joint Institute for Nuclear Research

6 Joliot-Curie, Dubna, Moscow region, 141980, Russia

Email: gevorkyan_mn@rudn.university, demidova_av@rudn.university, korolkova_av@rudn.university,
kulyabov_ds@rudn.university

In this paper we consider in detail the realization of Runge–Kutta stochastic numerical
methods with weak and strong convergence for systems of stochastic differential equations
in Ito form. The algorithm for generating the Wiener stochastic process, the algorithm for
approximation of Ito stochastic integrals, and the code generation algorithms for numerical
schemes are described. Python and Julia languages are used. The Jinja2 template engine is
used for the code generation .

Key words and phrases: stochastic differential equations; stochastic numeric methods;
automatic code generation; Python; Julia; the template engine.

90

Copyright © 2018 for the individual papers by the papers’ authors. Copying permitted for private and

academic purposes. This volume is published and copyrighted by its editors.

In: K. E. Samouylov, L. A. Sevastianov, D. S. Kulyabov (eds.): Selected Papers of the VIII Conference

“Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems”,

Moscow, Russia, 20-Apr-2018, published at http://ceur-ws.org

http://ceur-ws.org


1. Introduction

This article is divided into three sections. In the first section we define the Wiener
stochastic process and describe its implementation in Python and Julia . In the second
section the approximation algorithm of Ito integrals is given. Finally, in the third part
we introduce the details of code generator implementation for stochastic numerical
methods [1, 2] (in Python language with use of Jinja2 template engine)

2. Stochastic Wiener process

2.1. The Definition and Properties

The stochastic process 𝑊 (𝑡), 𝑡 > 0 is called scalar Wiener process if the following
conditions are true [3, 4]:

– P{𝑊 (0) = 0} = 1, or, in other words, 𝑊 (0) = 0 is almost certain;
– 𝑊 (𝑡) is the process with independent increments, i.e. {∆𝑊𝑖}𝑁−1

0 are independent
random variables: ∆𝑊𝐼 = 𝑊 (𝑡𝐼+1)−𝑊 (𝑡𝐼) and 0 6 𝑡0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑁 6 𝑇 ;

– ∆𝑊𝑖 = 𝑊 (𝑡𝐼+1) − 𝑊 (𝑡𝐼) ∼ 𝒩 (0, 𝑡𝐼+1 − 𝑡𝐼) where 0 6 𝑡𝐼+1 < 𝑡𝐼 < 𝑡, 𝐼 =
0, 1, . . . , 𝑁 − 1

The symbol ∆𝑊𝑖 ∼ 𝒩 (0,∆𝑡𝑖) denotes that ∆𝑊𝑖 is normally distributed random
variable with expected value E[∆𝑊𝑖] = 𝜇 = 0 and variance D[∆𝑊𝑖] = 𝜎2 = ∆𝑡𝑖.

The Wiener process is the model of Brownian motion (random walk). If we consider
the process 𝑊 (𝑡) in time points 0 = 𝑡0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑁−1 < 𝑡𝑁 when it experiences
random additive changes, then directly from the definition of Wiener process follows:

𝑊 (𝑡1) = 𝑊 (𝑡0) + ∆𝑊0,𝑊 (𝑡2) = 𝑊 (𝑡1) + ∆𝑊1, . . . ,𝑊 (𝑡𝑁 ) = 𝑊 (𝑡𝑁−1) + ∆𝑊𝑁−1,

where ∆𝑊𝑖 ∼ 𝒩 (0,∆𝑡𝑖), ∀𝑖 = 0, . . . , 𝑁 − 1.
In the case of a multidimensional stochastic process one has to generate 𝑚 sequences

of 𝑛 normally distributed random variables.

2.2. Program generation of Wiener process

To simulate a one-dimensional Wiener process, it is necessary to generate 𝑁 normally
distributed random numbers 𝜀1, . . . , 𝜀𝑁 and to construct their cumulative sums

𝜀1,

𝜀1 + 𝜀2,

𝜀1 + 𝜀2 + 𝜀3,

...
𝜀1 + 𝜀2 + 𝜀3 + . . . 𝜀𝑁−1,

𝜀1 + 𝜀2 + 𝜀3 + . . . 𝜀𝑁−1 + 𝜀𝑁 .

The result will be the simulated sample path of the Wiener process 𝑊 (𝑡) or — using a
different terminology — concrete implementation of the Wiener process.

In the case of a multidimensional random process, 𝑛 sequences of 𝑚 normally
distributed random variables should be generated (that is, 𝑛 arrays, each of 𝑚 elements).

We implemented Wiener process generator in Python [5] and Julia [6]. To generate
an array of numbers distributed according to the standard normal distribution in
the case of Python, we used the function random.normal from the NumPy [7] library
and, in the case of Julia, the built-in randn function. Both functions give qualitative
pseudorandom sequences, since their work uses generators of uniformly distributed

Gevorkyan MigranN. et al. 91



pseudorandom numbers based on an algorithm called Mersenne’s vortex [8] (Mersenne
Twister), and generators of pseudorandom normally distributed numbers use the Box–
Mueller transformation [?, 9].

To generate the Wiener process in Python one should use the WienerProcess class.
The following code gives an example of this class usage.
import stochastic

N = 100
T = (0.0, 10.0)
W = stochastic.WienerProcess(N=N, time_interval=T)

print("Step size: ", W.dt)
print("Time points: ", W.t)
print("Process iterations: ", W.dx)
print("Wiener Process trajectory: ", W.x)
print("Intervals numbers: ", len(W.dx))
print("Points number: ", len(W.x))

The class constructor does not have any required arguments. By default, a process is
generated on a time interval [0, 1], which is divided into 1000 parts (N=1000). Thus, by
default, a path consisting of 1001 points with step dt equal to 0.001. An example of
Wiener trajectories is shown on fig. 1.

0 2 4 6 8 10
t

5

0

5

10

W
t

Figure 1. Multiple Wiener trajectories

In the case of Julia, the Wiener process generator is implemented as the composite
data type struct
"""Stochastic Wiener process"""
struct WienerProcess <: AbstractStochasticProcess

"Number of process steps"
N::Int64
"Time interval starting point"
t_0::Float64
"Time interval end point"
t_N::Float64
"Step size"
dt::Float64
"Time points"
T::Vector{Float64}
"Winer process values"

92 ITTMM—2018



X::Vector{Float64}
"Winer process increments dX ~ N(0, dt)"
dX::Vector{Float64}

end
With following contractors
WienerProcess(N::Int64, t_0::Float64, t_N::Float64)
WienerProcess(N::Int64, dt::Float64)
WienerProcess(N::Int64)
WienerProcess()

3. Calculation and approximation of multiple Ito integrals of special form

Here we will not go into the general theory of multiple stochastic Ito integrals, a
reader can refer to the book [4] for additional information. Here we will consider multiple
special integrals, which are included in the stochastic numerical schemes.

In general, for the construction of numerical schemes with order of convergence
greater than 𝑝 = 1

2
, it is necessary to calculate single, double and triple Ito integrals of

the following form:

𝐼𝛼(𝑡𝑛, 𝑡𝑛+1) = 𝐼𝛼(ℎ𝑛) =

𝑡𝑛+1∫︁
𝑡𝑛

d𝑊𝛼(𝜏),

𝐼𝛼𝛽(𝑡𝑛, 𝑡𝑛+1) = 𝐼𝛼𝛽(ℎ𝑛) =

𝑡𝑛+1∫︁
𝑡𝑛

𝜏1∫︁
𝑡𝑛

d𝑊𝛼(𝜏2)d𝑊𝛽(𝜏1),

𝐼𝛼𝛽𝛾(𝑡𝑛, 𝑡𝑛+1) = 𝐼𝛼𝛽𝛾(ℎ𝑛) =

𝑡𝑛+1∫︁
𝑡𝑛

𝜏1∫︁
𝑡𝑛

𝜏2∫︁
𝑡𝑛

d𝑊𝛼(𝜏3)d𝑊𝛽(𝜏2)d𝑊 𝛾(𝜏1),

where 𝛼, 𝛽, 𝛾 = 0 . . . ,𝑚 and 𝑊𝛼, 𝛼 = 1, . . . ,𝑚 are components of multidimensional
Wiener process. In the case of 𝛼, 𝛽, 𝛾 = 0, the increment of d𝑊 0(𝜏) is assumed to be
d𝜏 .

The problem is to get analytical formulas for these integrals with ∆𝑊 𝐼
𝑛 = 𝑊 𝐼(𝑡𝑛+1)−

𝑊 𝐼(𝑡𝑛) in them. Despite its apparent simplicity, this is not achievable for all possible
combinations of indices. Let us consider in the beginning those cases when it is possible
to obtain an analytical expression, and then turn to those cases when it is necessary to
use an approximating formulas.

In the case of a single integral, the problem is trivial and the analytic expression can
be obtained for any index 𝛼:

𝐼0(ℎ𝑛) = ∆𝑡𝑛 = ℎ𝑛, 𝐼𝛼(ℎ𝑛) = ∆𝑊𝛼
𝑛 , 𝛼 = 1, . . . ,𝑚.

In the case of a double integral 𝐼𝛼𝛽(ℎ𝑛), the exact formula takes place only at 𝛼 = 𝛽:

𝐼00(ℎ𝑛) =
1

2
∆𝑡𝑛 =

1

2
ℎ2
𝑛, 𝐼𝛼𝛼(ℎ𝑛) =

1

2

(︀
(∆𝑊𝛼

𝑛 )2 − ∆𝑡𝑛
)︀
, 𝛼 = 1, . . . ,𝑚,

in other cases, when 𝛼 ̸= 𝛽 it is not possible in the final form to express 𝐼𝛼𝛽(ℎ𝑛) in
terms of ∆𝑊𝛼

𝑛 and ∆𝑡𝑛 , so we can only use numerical approximation.
For the mixed case 𝐼0𝛼 and 𝐼𝛼0 in [10], simple formulas of the following form are

given:

𝐼0𝛼(ℎ𝑛) =
1

2
ℎ𝑛

(︂
𝐼𝛼(ℎ𝑛) −

1
√

3
𝜁𝛼(ℎ𝑛)

)︂
,

Gevorkyan MigranN. et al. 93



𝐼𝛼0(ℎ𝑛) =
1

2
ℎ𝑛

(︂
𝐼𝛼(ℎ𝑛) +

1
√

3
𝜁𝛼(ℎ𝑛)

)︂
,

where 𝜁𝛼𝑛 ∼ 𝒩 (0, ℎ𝑛) are multidimensional normal distributed random variables.
For the general case 𝛼, 𝛽 = 1, . . . ,𝑚, the book [4] provides the following formulas for

approximating the double Ito integral 𝐼𝛼𝛽 :

𝐼𝛼𝛽(ℎ𝑛) =
∆𝑊𝛼

𝑛 ∆𝑊𝛽
𝑛 − ℎ𝑛𝛿𝛼𝛽

2
+ 𝐴𝛼𝛽(ℎ𝑛),

𝐴𝛼𝛽(ℎ𝑛) =
ℎ

2𝜋

∞∑︁
𝑘=1

1

𝑘

[︃
𝑉 𝛼
𝑘

(︃
𝑈𝛽
𝑘 +

√︃
2

ℎ𝑛
∆𝑊𝛽

𝑛

)︃
− 𝑉 𝛽

𝑘

(︃
𝑈𝛼
𝑘 +

√︃
2

ℎ𝑛
∆𝑊𝛼

𝑛

)︃]︃
,

where 𝑉 𝛼
𝑘 ∼ 𝒩 (0, 1), 𝑈𝛼

𝑘 ∼ 𝒩 (0, 1), 𝛼 = 1, . . . ,𝑚; 𝑘 = 1, . . . ,∞; 𝑛 = 1, . . . , 𝑁 is the
numerical schema number. From the formulas it is seen that in the case of 𝛼 = 𝛽, we
may get the final expression for the 𝐼𝛼𝛽 , which we mentioned above. In the case of
𝛼 ̸= 𝛽, one has to sum the infinite series 𝑎𝛼𝛽 . This algorithm gives the approximation
error of order 𝑂(ℎ2/𝑛), where 𝑛 is number of left terms of an infinite series 𝑎𝑖𝑗 .

In the article [11] the matrix form of approximating formulas is introduced. Let
1𝑚×𝑚, 0𝑚×𝑚 be the unit and zero matrices 𝑚×𝑚, then

I(ℎ𝑛) =
∆W𝑛∆W𝑇

𝑛 − ℎ𝑛1𝑚×𝑚

2
+ A(ℎ𝑛),

A(ℎ𝑛) =
ℎ

2𝜋

∞∑︁
𝑘=1

1

𝑘

(︁
V𝑘(U𝑘 +

√︀
2/ℎ𝑛∆W𝑛)𝑇 − (U𝑘 +

√︀
2/ℎ𝑛∆W𝑛)V𝑇

𝑘

)︁
,

where ∆W𝑛,V𝑘,U𝑘 are independent normally distributed multidimensional random
variables:

∆W𝑛 = (∆𝑊 1
𝑛 ,∆𝑊 2

𝑛 , . . . ,∆𝑊𝑚
𝑛 )𝑇 ∼ 𝒩 (0𝑚×𝑚, ℎ𝑛1𝑚×𝑚),

V𝑘 = (𝑉 1
𝑘 , 𝑉 2

𝑘 , . . . , 𝑉 𝑚
𝑘 )𝑇 ∼ 𝒩 (0𝑚×𝑚,1𝑚×𝑚),

U𝑘 = (𝑈1
𝑘 , 𝑈

2
𝑘 , . . . , 𝑈

𝑚
𝑘 )𝑇 ∼ 𝒩 (0𝑚×𝑚,1𝑚×𝑚).

If the programming language supports vectored operations with multidimensional arrays,
these formulas can provide a benefit to the performance of the program.

Finally, consider a triple integral. In the only numerical scheme in which it occurs, it
is necessary to be able to calculate only the case of identical indexes 𝛼 = 𝛽 = 𝛾. For
this case, [10] gives the following formula:

𝐼𝛼𝛼𝛼(ℎ𝑛) =
1

6

(︀
(𝐼𝛼(ℎ𝑛))3 − 3𝐼0(ℎ𝑛)𝐼𝛼(ℎ𝑛)

)︀
=

1

6

(︀
(∆𝑊𝛼

𝑛 )3 − 3ℎ𝑛∆𝑊𝛼
𝑛

)︀
.

4. Stochastic Runge–Kutta methods

Consider the random process x(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑑(𝑡))𝑇 , where x(𝑡) belongs to the
functional space L2(Ω) with the norm ‖ · ‖. We assume that the random process x(𝑡) is
a solution for the Ito SDE [3,4] if:

x(𝑡) = f(𝑡,x(𝑡))d𝑡 + G(𝑡,x(𝑡))dW,

where W = (𝑊 1, . . . ,𝑊𝑚)𝑇 is the multidimensional Wiener process, known as the
driving process for SDE. The function f : [𝑡0, 𝑇 ] × R𝑑 → R𝑑 is called as the drift vector,

94 ITTMM—2018



and the matrix-valued function G : [𝑡0, 𝑇 ] ×R𝑑 ×R𝑚 → R𝑑 ×R𝑚 is called the diffusion
matrix. The same equation can be rewritten in the indexed form

𝑥𝛼(𝑡) = 𝑓𝛼(𝑡, 𝑥𝛾(𝑡))d𝑡 +
𝑚∑︁

𝛽=1

𝑔𝛼𝛽 (𝑡, 𝑥𝛾(𝑡))d𝑊𝛽 ,

where 𝛼, 𝛾 = 1, . . . , 𝑑, 𝛽 = 1, . . . ,𝑚, and 𝑓𝛼(𝑡, 𝑥𝛾(𝑡)) = 𝑓𝛼(𝑡, 𝑥1(𝑡), . . . , 𝑥𝑑(𝑡)).
On the interval [𝑡0, 𝑇 ], we introduce the grid 𝑡0 < 𝑡1 < . . . < 𝑡𝑁 = 𝑇 with step

ℎ𝑛 = 𝑡𝑛+1 − 𝑡𝑛, where 𝑛 = 0, . . . , 𝑁 − 1 and the maximum grid step ℎ = max {ℎ𝑛−1}𝑁1 .
Next, we assume that the grid is uniform, then ℎ𝑛 = ℎ = const. x𝑛 is grid function,
which approximate the stochastic process x(𝑡), so x0 = x(𝑡0), x𝑛 ≈ x(𝑡𝑛) ∀𝑛 = 1, . . . , 𝑁 .

4.1. Euler–Maruyama numerical method

The simplest numerical method for solving scalar equations and systems of SDEs is
the Euler–Maruyama method.

𝑥𝛼
0 = 𝑥𝛼(𝑡0), 𝑥𝛼

𝑛+1 = 𝑥𝛼
𝑛 + 𝑓𝛼(𝑡𝑛, 𝑥

𝛼
𝑛)ℎ𝑛 +

𝑑∑︁
𝛾=1

𝐺𝛼
𝛽 (𝑡𝑛, 𝑥

𝛾
𝑛)∆𝑊𝛽

𝑛 .

The method has a strong order (𝑝𝑑, 𝑝𝑠) = (1.0, 0.5). The value 𝑝𝑑 denotes the de-
terministic accuracy order, and value 𝑝𝑠 denotes the stochastic part approximation
order.

4.2. Weak stochastic Runge–Kutta-like method with order 1.5 for a scalar
Wiener process

In the case of a scalar SDE it is possible to construct a numerical scheme with strong
convergence 𝑝 = 1.5 [12–16]:

𝑋𝑖
0 = 𝑥𝑛 +

𝑠∑︁
𝑗=1

𝐴𝑖
0𝑗𝑓(𝑡𝑛 + 𝑐𝑗0ℎ𝑛, 𝑋

𝑗
0)ℎ𝑛 +

𝑠∑︁
𝑗=1

𝐵𝑖
0𝑗𝑔(𝑡𝑛 + 𝑐𝑗1ℎ𝑛, 𝑋

𝑗
1)

𝐼10(ℎ𝑛)
√
ℎ𝑛

,

𝑋𝑖
1 = 𝑥𝑛 +

𝑠∑︁
𝑗=1

𝐴𝑖
1𝑗𝑓(𝑡𝑛 + 𝑐𝑗0ℎ𝑛, 𝑋

𝑗
0)ℎ𝑛 +

𝑠∑︁
𝑗=1

𝐵𝑖
1𝑗𝑔(𝑡𝑛 + 𝑐𝑗1ℎ𝑛, 𝑋

𝑗
1)
√︀

ℎ𝑛,

𝑥𝑛+1 = 𝑥𝑛 +
𝑠∑︁

𝑖=1

𝑎𝑖𝑓(𝑡𝑛 + 𝑐𝑖0ℎ𝑛, 𝑋
𝑖
0)ℎ𝑛+

+
𝑠∑︁

𝑖=1

(︂
𝑏1𝑖 𝐼

1(ℎ𝑛) + 𝑏2𝑖
𝐼11(ℎ𝑛)
√
ℎ𝑛

+ 𝑏3𝑖
𝐼10(ℎ𝑛)

ℎ𝑛
+ 𝑏4𝑖

𝐼111(ℎ𝑛)

ℎ𝑛

)︂
𝑔(𝑡𝑛 + 𝑐𝑖1ℎ𝑛, 𝑋

𝑖
1),

where 𝑖, 𝑗 = 1, . . . , 𝑠 (𝑠 is the number of method’s stages). In the above numerical
scheme, the Wiener stochastic process may be present in implicit way. It is "hidden"
inside the stochastic Ito integrals: 𝐼10(ℎ𝑛), 𝐼1(ℎ𝑛), 𝐼11(ℎ𝑛), 𝐼111(ℎ𝑛).

Gevorkyan MigranN. et al. 95



4.3. Stochastic Runge–Kutta method with strong order 𝑝 = 1.0 for vector
Wiener process

For SDE system with a multidimensional Wiener process, one can construct a
stochastic numerical Runge-Kutta scheme of strong order 𝑝𝑠 = 1.0 [4, 17] using single
and double Ito integrals [18].

𝑋0𝑖𝛼 = 𝑥𝛼
𝑛 +

𝑠∑︁
𝑗=1

𝐴𝑖
0𝑗𝑓

𝛼(𝑡𝑛 + 𝑐𝑗0ℎ𝑛, 𝑋
0𝑗𝛽)ℎ𝑛 +

𝑚∑︁
𝑙=1

𝑠∑︁
𝑗=1

𝐵𝑖
0𝑗𝐺

𝛼
𝑙 (𝑡𝑛 + 𝑐𝑗1ℎ𝑛, 𝑋

𝑙𝑗𝛽)𝐼𝑙(ℎ𝑛),

𝑋𝑘𝑖𝛼 = 𝑥𝛼
𝑛 +

𝑠∑︁
𝑗=1

𝐴𝑖
1𝑗𝑓

𝛼(𝑡𝑛 + 𝑐𝑗0ℎ𝑛, 𝑋
0𝑗𝛽)ℎ𝑛 +

𝑚∑︁
𝑙=1

𝑠∑︁
𝑗=1

𝐵𝑖
1𝑗𝐺

𝛼
𝑙 (𝑡𝑛 + 𝑐𝑗1ℎ𝑛, 𝑋

𝑙𝑗𝛽)
𝐼𝑙𝑘(ℎ𝑛)
√
ℎ𝑛

,

𝑥𝛼
𝑛+1 = 𝑥𝛼

𝑛 +
𝑠∑︁

𝑖=1

𝑎𝑖𝑓
𝛼(𝑡𝑛 + 𝑐𝑖0ℎ𝑛, 𝑋

0𝑖𝛽)ℎ𝑛 +
𝑚∑︁

𝑘=1

𝑠∑︁
𝑖=1

(𝑏1𝑖 𝐼
𝑘(ℎ𝑛) + 𝑏2𝑖

√︀
ℎ𝑛)𝐺𝛼

𝑘 (𝑡𝑛 + 𝑐𝑖1ℎ𝑛, 𝑋
𝑘𝑖𝛽),

𝑛 = 0, 1, . . . , 𝑁 − 1; 𝑖 = 1, . . . , 𝑠; 𝛽, 𝑘 = 1, . . . ,𝑚; 𝛼 = 1, . . . , 𝑑.

4.4. Stochastic Runge–Kutta method with weak order 𝑝 = 2.0 for vector
Wiener process

Numerical methods with weak convergence are good for approximation the distri-
bution characteristics of stochastic process 𝑥𝛼(𝑡). The weak numerical method does
not need information about the trajectory of driving Wiener process 𝑊𝛼

𝑛 and random
increments for these methods can be generated on another probability space [4, 19–21].

𝑋0𝑖𝛼 = 𝑥𝛼
𝑛 +

𝑠∑︁
𝑗=1

𝐴𝑖
0𝑗𝑓

𝛼(𝑡𝑛 + 𝑐𝑗0ℎ𝑛, 𝑋
0𝑗𝛽)ℎ𝑛 +

𝑠∑︁
𝑗=1

𝑚∑︁
𝑙=1

𝐵𝑖
0𝑗𝐺

𝛼
𝑙 (𝑡𝑛 + 𝑐𝑗1ℎ𝑛, 𝑋

𝑙𝑗𝛽)𝐼𝑙,

𝑋𝑘𝑖𝛼 = 𝑥𝛼
𝑛 +

𝑠∑︁
𝑗=1

𝐴𝑖
1𝑗𝑓

𝛼(𝑡𝑛 + 𝑐𝑗0ℎ𝑛, 𝑋
0𝑗𝛽)ℎ𝑛 +

𝑠∑︁
𝑗=1

𝐵𝑖
1𝑗𝐺

𝛼
𝑘 (𝑡𝑛 + 𝑐𝑗1ℎ𝑛, 𝑋

𝑘𝑗𝛽)
√︀

ℎ𝑛,

̂︀𝑋𝑘𝑖𝛼 = 𝑥𝛼
𝑛 +

𝑠∑︁
𝑗=1

𝐴𝑖
2𝑗𝑓

𝛼(𝑡𝑛 + 𝑐𝑗0ℎ𝑛, 𝑋
0𝑗𝛽)ℎ𝑛 +

𝑠∑︁
𝑗=1

𝑚∑︁
𝑙=1,𝑙 ̸=𝑘

𝐵𝑖
2𝑗𝐺

𝛼
𝑙 (𝑡𝑛 + 𝑐𝑗1ℎ𝑛, 𝑋

𝑙𝑗𝛽)
𝐼𝑘𝑙
√
ℎ𝑛

,

𝑥𝛼
𝑛+1 = 𝑥𝛼

𝑛 +
𝑠∑︁

𝑖=1

𝑎𝑖𝑓
𝛼(𝑡𝑛 + 𝑐𝑖0, 𝑋

0𝑖𝛽)ℎ𝑛 +
𝑠∑︁

𝑖=1

𝑚∑︁
𝑘=1

(︃
𝑏1𝑖 𝐼

𝑘 + 𝑏2𝑖
𝐼𝑘𝑘
√
ℎ𝑛

)︃
𝐺𝛼

𝑘 (𝑡𝑛 + 𝑐𝑖1ℎ𝑛, 𝑋
𝑘𝑖𝛽)+

+
𝑠∑︁

𝑖=1

𝑚∑︁
𝑘=1

(︁
𝑏3𝑖 𝐼

𝑘 + 𝑏4𝑖
√︀

ℎ𝑛

)︁
𝐺𝛼

𝑘 (𝑡𝑛 + 𝑐𝑖2ℎ𝑛, ̂︀𝑋𝑘𝑖𝛽)

In the weak numerical schema 𝐼𝑘𝑙 are

𝐼𝑘𝑙 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2
(𝐼𝑘𝐼𝑙 −

√
ℎ𝑛𝐼

𝑘), 𝑘 < 𝑙,

1

2
(𝐼𝑘𝐼𝑙 +

√
ℎ𝑛𝐼

𝑙), 𝑙 < 𝑘,

1

2
((𝐼𝑘)2 − ℎ𝑛). 𝑘 = 𝑙.

96 ITTMM—2018



Here 𝐼𝑘 denotes three point distributed random variable. It means, that 𝐼𝑘 may have
three values {−

√
3ℎ𝑛, 0,

√
3ℎ𝑛} with probabilities 1/6, 2/3 and 1/6 respectively. 𝐼𝑘

denotes two point distributed random variable {−
√
ℎ𝑛,

√
ℎ𝑛} with probabilities 1/2 and

1/2 respectively.

4.5. Automatic code generation for stochastic numerical methods of
Runge–Kutta type

To study the calculation errors and the efficiency of different stochastic numerical
methods, it is necessary to have a universal implementation of such methods. The
universality means the possibility to use any stochastic method with a desired strong or
weak error by setting its coefficient table. With direct transfer of mathematical formulas
to the program code, one need to use about five nested cycles, which extremely reduces
performance, since such code does not take into account a large number of zeros in
the coefficient tables and arithmetic operations on zero components are still performed,
although this is an extra waste of processor time.

One way to achieve versatility and acceptable performance is to generate code for a
numerical method step. This approach minimizes the number of arithmetic operations
and saves memory, since the zero coefficients of the method do not have to be stored.

We implemented a code generator for the three stochastic numerical methods men-
tioned above:

– scalar method with strong convergence 𝑝𝑠 = 1.5,
– vector method with strong convergence 𝑝𝑠 = 1.0,
– vector method with weak convergence of 𝑝𝑠 = 2.0.

We use Python to implement the code generator and Jinja2 [22] template engine. This
template engine was originally created to generate HTML code, but its syntax is universal
and allows you to generate text of any kind without reference to any programming or
markup language.

Information about the coefficients of each particular method is stored as a JSON file
of the following structure:
{

"name": "method’s name (the future name of the function)",
"description": "method’s short description",
"stage": 4,
"det_order": "2.0",
"stoch_order": "1.5",
"A0": [...],
"B0": [...],
"A1": [...],
"B1": [

["0", "0", "0", "0"],
["1/2", "0", "0", "0"],
["-1", "0", "0", "0"],
["-5", "3", "1/2", "0"]

],
"c0": ["0", "3/4", "0", "0"],
"c1": ["0", "1/4", "1", "1/4"],
"a": ["1/3", "2/3", "0", "0"],
"b1": ["-1", "4/3", "2/3", "0"],
"b2": ["-1", "4/3", "-1/3", "0"],
"b3": ["2", "-4/3", "-2/3", "0"],
"b4": ["-2", "5/3", "-2/3", "1"]

}
The parameter stage is the number of method’s stages, det_order is the error order

of the deterministic part (𝑝𝑑), stoch_order is the error order of the stochastic part
(𝑝𝑠), name is the name of the method, which will then be used to create the name of
the generated function, so it should be written in one word without spaces. All other

Gevorkyan MigranN. et al. 97



parameters are the coefficients of the method. In this case, we give the coefficients of
the scalar method with strong convergence 𝑝𝑠 = 1.5, omitting the coefficients a0, a1 and
B0 to save text space. It is necessary to note that the values of the coefficients can be
specified in the form of rational fractions, for which they should be presented as JSON
strings and enclosed in double quotes.

For internal representation of stochastic numerical methods we created three Python
classes: ScalarMethod, StrongVectorMethod and WeakVectorMethod. The implementa-
tion of these classes is contained in the file coefficients_table.py. The constructors of
these classes read the JSON file and, based on them, create objects, which can later be
used for code generation. The Fraction class from the Python standard library is used
to represent rational coefficients. Each class has a method that generates a coefficient
table in LaTeX format.

The file stoch_rk_generator.py is a script which handles the jinja2 templates and,
based on them, generates a code of python functions. For vector stochastic methods, a
code is generated for dimensions up to 6. Functions are named based on the information
specified in JSON files, such as strong_srk1w2, strong_srk2w5, weak_srk2w6, and so on.

In addition to the code in Python, LaTeX formulas are generated. It allows one to
check the correctness of the generator. For example, we give below the formula generated
automatically based on the data from JSON file for Runge–Kutta method strong_srk1w2
with stages 𝑠 = 3, and 2 dimensioned Wiener process. Nonzero coefficients of the method
are as follows:

𝐴2
01 = 1, 𝐴2

11 = 1, 𝐴3
11 = 1, 𝐵2

11 = 1, 𝐵3
11 = −1,

𝑎1 = 1/2, 𝑎2 = 1/2, 𝑐20 = 1, 𝑐21 = 1, 𝑐31 = 1, 𝑏11 = 1, 𝑏22 = 1/2, 𝑏23 = −1/2.

The numerical scheme formulas are quite cumbersome, despite the large number of
zeros in the coefficient table:

𝑋01𝛼 = 𝑥𝛼
𝑛 , 𝑋11𝛼 = 𝑥𝛼

𝑛 , 𝑋21𝛼 = 𝑥𝛼
𝑛 ,

𝑋02𝛼 = 𝑥𝛼
𝑛 + ℎ𝑛

[︁
𝐴2

01𝑓
𝛼(𝑡𝑛, 𝑋

01𝛽)
]︁
,

𝑋12𝛼 = 𝑥𝛼
𝑛 + ℎ𝑛

[︁
𝐴2

11𝑓
𝛼(𝑡𝑛, 𝑋

01𝛽)
]︁

+ 𝐵2
11𝐺

𝛼
1 (𝑡𝑛, 𝑋

11𝛽)
𝐼11(ℎ𝑛)
√
ℎ𝑛

+ 𝐵2
11𝐺

𝛼
2 (𝑡𝑛, 𝑋

21𝛽)
𝐼21(ℎ𝑛)
√
ℎ𝑛

,

𝑋22𝛼 = 𝑥𝛼
𝑛 + ℎ𝑛

[︁
𝐴2

11𝑓
𝛼(𝑡𝑛, 𝑋

01𝛽)
]︁

+ 𝐵2
11𝐺

𝛼
1 (𝑡𝑛, 𝑋

11𝛽)
𝐼12(ℎ𝑛)
√
ℎ𝑛

+ 𝐵2
11𝐺

𝛼
2 (𝑡𝑛, 𝑋

21𝛽)
𝐼22(ℎ𝑛)
√
ℎ𝑛

,

𝑋13𝛼 = 𝑥𝛼
𝑛 + ℎ𝑛

[︁
𝐴3

11𝑓
𝛼(𝑡𝑛, 𝑋

01𝛽)
]︁

+ 𝐵3
11𝐺

𝛼
1 (𝑡𝑛, 𝑋

11𝛽)
𝐼11(ℎ𝑛)
√
ℎ𝑛

+ 𝐵3
11𝐺

𝛼
2 (𝑡𝑛, 𝑋

21𝛽)
𝐼21(ℎ𝑛)
√
ℎ𝑛

,

𝑋23𝛼 = 𝑥𝛼
𝑛 + ℎ𝑛

[︁
𝐴3

11𝑓
𝛼(𝑡𝑛, 𝑋

01𝛽)
]︁

+ +𝐵3
11𝐺

𝛼
1 (𝑡𝑛, 𝑋

11𝛽)
𝐼12(ℎ𝑛)
√
ℎ𝑛

+ 𝐵3
11𝐺

𝛼
2 (𝑡𝑛, 𝑋

21𝛽)
𝐼22(ℎ𝑛)
√
ℎ𝑛

,

𝑥𝛼
𝑛+1 = 𝑥𝛼

𝑛 +ℎ𝑛

[︁
𝑎1𝑓

𝛼(𝑡𝑛, 𝑋
01𝛽) +𝑎2𝑓

𝛼(𝑡𝑛 + 𝑐20ℎ𝑛, 𝑋
02𝛽)

]︁
+ 𝑏11𝐼

1(ℎ𝑛)𝐺𝛼
1 (𝑡𝑛, 𝑋

11𝛽)

+ 𝑏22
√︀

ℎ𝑛𝐺
𝛼
1 (𝑡𝑛 + 𝑐21ℎ𝑛, 𝑋

12𝛽) + 𝑏23
√︀

ℎ𝑛𝐺
𝛼
1 (𝑡𝑛 + 𝑐31ℎ𝑛, 𝑋

13𝛽)

98 ITTMM—2018



+ 𝑏11𝐼
2(ℎ𝑛)𝐺𝛼

2 (𝑡𝑛, 𝑋
21𝛽) + 𝑏22

√︀
ℎ𝑛𝐺

𝛼
2 (𝑡𝑛 + 𝑐21ℎ𝑛, 𝑋

22𝛽)

+ 𝑏23
√︀

ℎ𝑛𝐺
𝛼
2 (𝑡𝑛 + 𝑐31ℎ𝑛, 𝑋

23𝛽).

5. Conclusion

We present the details of the software implementation of the Wiener process generation
in Julia and Python, the algorithm of approximation of multiple Ito integrals and the
details of the software implementation of the code generator for stochastic numerical
methods of Runge–Kutta type. The code generator allows one to get an effective
implementation of the methods and making it possible to use any table of coefficients.
The source code of the described programs is open and available at the link https:
//bitbucket.org/mngev/sde_num_generation.

Acknowledgments

The work is partially supported by Russian Foundation for Basic Research (RFBR)
grants No 16-07-00556. Also the publication was prepared with the support of the
“RUDN University Program 5-100”.

References

1. M. N. Gevorkyan, A. V. Demidova, T. R. Velieva, A. V. Korol’kova, D. S. Kulyabov,
L. A. Sevast’yanov, Implementing a Method for Stochastization of One-Step Pro-
cesses in a Computer Algebra System, Programming and Computer Software 44 (2)
(2018) 86–93. arXiv:1805.03190, doi:10.1134/S0361768818020044.

2. A. V. Demidova, M. N. Gevorkyan, D. S. Kulyabov, A. V. Korolkova, L. A.
Sevastianov, The Automation of Stochastization Algorithm with Use of SymPy
Computer Algebra Library, EPJ Web of Conferences 173 (2018) 05006_1–4.
doi:10.1051/epjconf/201817305006.

3. B. Øksendal, Stochastic differential equations. An introduction with applications,
6th Edition, Springer, Berlin Heidelberg New York, 2003.

4. P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations,
2nd Edition, Springer, Berlin Heidelberg New York, 1995.

5. G. Rossum, Python reference manual, Tech. rep., Amsterdam, The Netherlands,
The Netherlands (1995).

6. J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A Fresh Approach to
Numerical Computing, SIAM Review 59 (2017) 65–98.

7. E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for
Python, [Online; accessed 08.10.2017] (2001–).
URL http://www.scipy.org/

8. M. Matsumoto, T. Nishimura, Mersenne twister: A 623-dimensionally Equidis-
tributed Uniform Pseudo-random Number Generator, ACM Trans. Model. Comput.
Simul. 8 (1) (1998) 3–30. doi:10.1145/272991.272995.

9. G. E. P. Box, M. E. Muller, A note on the generation of random normal deviates,
The Annals of Mathematical Statistics 29 (2) (1958) 610–611.

10. A. Rößler, Runge-Kutta Methods for the Numerical Solution of Stochastic Dif-
ferential Equations, Ph.D. thesis, Technischen Universität Darmstadt, Darmstadt
(februar 2003).

11. M. Wiktorsson, Joint characteristic function and simultaneous simulation of iterated
Itô integrals for multiple independent Brownian motions, The Annals of Applied
Probability 11 (2) (2001) 470–487.

12. K. Burrage, P. M. Burrage, High strong order explicit Runge-Kutta methods for
stochastic ordinary differential equations, Appl. Numer. Math. (22) (1996) 81–101.

Gevorkyan MigranN. et al. 99



13. K. Burrage, P. M. Burrage, J. A. Belward, A bound on the maximum strong order
of stochastic Runge-Kutta methods for stochastic ordinary differential equations.,
BIT (37) (1997) 771–780.

14. K. Burrage, P. M. Burrage, General order conditions for stochastic Runge-Kutta
methods for both commuting and non-commuting stochastic ordinary differential
equation systems, Appl. Numer. Math. (28) (1998) 161–177.

15. P. M. Burrage, Runge-Kutta Methods for Stochastic Differential Equations, Ph.D.
thesis, University of Qeensland, Australia (1999).

16. K. Burrage, P. M. Burrage, Order conditions of stochastic Runge-Kutta methods
by B-series, SIAM J. Numer. Anal. (38) (2000) 1626–1646.

17. A. R. Soheili, M. Namjoo, Strong approximation of stochastic differential equations
with Runge–Kutta methods, World Journal of Modelling and Simulation 4 (2) (2008)
83–93.

18. A. Rößler, Strong and Weak Approximation Methods for Stochastic Differential
Equations — Some Recent Developments (2010).

19. Y. Komori, T. Mitsuri, Stable ROW-Type Weak Scheme for Stochastic Differential
Equations, RIMS Kokyuroku (932) (1995) 29–45.

20. V. Mackevičius, Second-order weak approximations for stratonovich stochastic
differential equations, Lithuanian Mathematical Journal 34 (2) (1994) 183–200.
doi:10.1007/BF02333416.
URL http://dx.doi.org/10.1007/BF02333416

21. A. Tocino, R. Ardanuy, Runge–Kutta methods for numerical solution of stochastic
differential equations, Journal of Computational and Applied Mathematics (138)
(2002) 219–241.

22. Jinja2 official site.
URL http://http://jinja.pocoo.org

100 ITTMM—2018


