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Abstract. The original Semantic Web vision foresees to describe enti-
ties in a way that the meaning can be interpreted both by machines and
humans. Following that idea, large-scale knowledge graphs capturing a
significant portion of knowledge have been developed. In the recent past,
vector space embeddings of semantic web knowledge graphs – i.e., pro-
jections of a knowledge graph into a lower-dimensional, numerical feature
space (a.k.a. latent feature space) – have been shown to yield superior
performance in many tasks, including relation prediction, recommender
systems, or the enrichment of predictive data mining tasks. At the same
time, those projections describe an entity as a numerical vector, without
any semantics attached to the dimensions. Thus, embeddings are as far
from the original Semantic Web vision as can be. As a consequence, the
results achieved with embeddings – as impressive as they are in terms
of quantitative performance – are most often not interpretable, and it is
hard to obtain a justification for a prediction, e.g., an explanation why
an item has been suggested by a recommender system. In this paper, we
make a claim for semantic embeddings and discuss possible ideas towards
their construction.
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1 Introduction

Knowledge Graphs are directed, labeled graphs that encode knowledge about
entities from multiple domains [7]. Embeddings form a projection of those knowl-
edge graphs into a lower dimensional, so-called latent or embedding vector space,
where each entity is represented as a point in that space. Such an embedding
space has the following key features:

Density the individual dimensions are not sparse (i.e., the do not contain
mainly zeros), but exhibit an even distribution of values. This way, the in-
formation content of each dimension is maximized.

Clustering similar entities have a similar position in the vector space.
Relation preservation relations between entities are represented by a con-

stant vector representation. That way, (approximate) arithmetics such as
−−−−−−→
Germany +

−−−−→
capital ≈

−−−−→
Berlin become possible.

Fig. 1 depicts selected entities of DBpedia and Wikidata in the two dimensional
PCA projection of an embedding space and illustrates these properties. Countries



and cities form clusters, and the displacement between a country and its capital
is similar for all the countries.

Over the past years, quite a few approaches for generating such embeddings
have been proposed, including TransE [1], TransH [11], and TransR [6], NTN
[10], RDF2vec and its variants [2, 8], RDFGlove [3], and many others. It has been
shown that they perform well on tasks such as relation prediction [11], content-
based recommender systems [9], as well as prediction problems with background
knowledge in RDF datasets [8].

While the quantitative performance on those tasks is undisputed, the seman-
tics of the knowledge representation are given up in favor of an entirely numeric,
non-semantic representation. Therefore, the use of embeddings does not allow
the interpretation of results. However, interpretations are useful, e.g., for
– justifying why a relation was added to a knowledge graph,
– explaining why an item was suggested by a recommendation system, or
– allowing for descriptive, not only predictive data mining.

With embedding methods such as the ones enumerated above, the only explana-
tions a user can get look like The item is close in the latent vector space to other
items you liked, or Resources which have a value larger than 0.412 on dimension
108 usually have the property. Compared to the original Semantic Web vision,
which foresees maximal interpretability of data and justifications, these methods
exist at the opposite end of the design space, i.e., they are as non-semantic as
can be. Hence, we argue for the need of semantic embeddings, which preserve
the interpretability.

2 Towards Semantic Embeddings

As a semantic embedding, we understand an embedding space where each di-
mension can be assigned a human interpretable meaning. For example, for cities,
such dimensions could be size or economic wealth. In terms of the underlying
knowledge graph, they can map to elementary properties (e.g., population) or
complex constructs (e.g., number of headquarter relations from companies).

2.1 A Posteriori Learning of Interpretations

One possible approach to solve this issue could be to learn a semantic interpre-
tation for each dimension a posteriori, i.e., training a symbolic regression model
to predict the value of each dimension based on interpretable features extracted
from the knowledge graph. In theory, this works on any possible embedding, but
there is no guarantee that such an approach would actually yield a meaningful
model, and, depending on the task and type of model, it would still not be a
trivial task to exploit the model for coming up with a semantic explanation.

2.2 Pattern-based Embeddings

Another possible approach is deriving embedding dimensions from patterns ob-
served in a knowledge graph. While the design space for embedding construction



is arbitrarily large – i.e., each dimension can be any arbitrary function – pattern-
based embeddings would work differently. They guide the process of computing
an embedding by restricting that search space so that each dimension corre-
sponds to a pattern in the data, or combinations thereof. This allows tracking
back the origin of a dimension to the original pattern(s) from which it was de-
rived, and thereby fosters the interpretation of embedding dimensions.

We propose to first learn a set of universal patterns that hold for a knowledge
graph, e.g., by learning graph patterns [4] or Horn clauses [5]. As a first step
towards a semantic embedding, each of those patterns can be regarded as a latent
feature – either binary (i.e., a resource exposes the pattern or not) or continuous
(i.e., a resource exposes the pattern to a certain extent). This would provide a
first approximation of a semantic embedding.

However, at this stage, the embedding space might still be high-dimensional
and sparse, because it might take a lot of patterns to describe a knowledge graph.
Therefore, a second step is required for compacting the embedding space. This
could be achieved, e.g., by identifying patterns that are completely or almost
mutually exclusive, and combining them in compacted dimensions. For example,
only movies may have Oscar-winning actors, whereas only cities may be located
in Europe (but movies have no location, and cities have no actors). Therefore, we
could define an embedding dimension combining those two patterns, exposing
different semantics depending on the type of entity at hand.

3 Challenges

While some works on pattern induction in RDF graphs exist, it is not trivial to
assume that each pattern is also a good candidate for an embedding dimension
(or a partial one). Therefore, we need to develop heuristics for identifying pat-
terns that are suitable as latent features, and ideally adapt the pattern learners
so that they focus on finding such patterns.

Since embedding spaces should be continuous, another challenge is to find
patterns that are not just binary (e.g., an instance has a type or not), but
continuous in a sense that they can be fulfilled to a certain extent. Here, involving
numerical and date-valued literals would also be desired, since they are often
neglected in current embedding approaches, but contain a lot of useful semantics.

Finally, the dimensionality reduction of the pattern-based embeddings also
needs to be carefully designed. We can assume that compacting will ultimately
lead to some information loss, but it may even lead to false information. If we,
as in the example above, combine a lot of features for movies and cities, this will
ultimately render movies and cities to be indistinguishable in the vector space.

4 Conclusion

While embeddings have been proven to yield superior quantitative performance
on many tasks, a vector space embedding is a very non-semantic representation
of a knowledge graph. Hence, we consider semantic embeddings as a research



(a) DBpedia vectors (b) Wikidata vectors

Fig. 1: Two-dimensional PCA projection of RDF2vec vectors of countries and
their capital cities for DBpedia and YAGO [8]

direction with a lot of potential. We assume that since semantic embeddings
are more constrained than generic embeddings, they will not reach their full
quantitative performance. We rather see a continuous design space for knowledge
graph embeddings with a trade-off between interpretability and quantitative
performance.
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