
Make restaurants pay your server bills

Tobias Grubenmann, Daniele Dell’Aglio, Abraham Bernstein,
Dmitry Moor, and Sven Seuken

Department of Informatics, University of Zurich, Switzerland,
{grubenmann, dellaglio, bernstein, dmitry.moor, seuken}@ifi.uzh.ch

Abstract. So far, the Web of Data (WoD) has only marginally consid-
ered the problem of financing itself. In most of the cases, research funds
(either public or private) and donations are supporting the creation and
maintenance of WoD services. Applying typical Web financing mecha-
nisms to the WoD is not straightforward, since the machine-processable
nature of the WoD introduces new challenges. For example, users may
access the data through applications that filter out advertisement. We
believe that delayed-answer auctions are a possible way to overcome
such a problem: when a user submits a query, the SPARQL endpoint
serves the answers in sequence of batches. Behind the scenes, sponsors
bid to increase the chances that data they are interested in promoting
appears at the beginning of the sequence. In this demo, we show how
this delayed-answer auction can be realized. We built a scenario where
users can query for restaurants in New York City and restaurant owners
act as sponsors.

Keywords: Web of Data · Slot Auctions · Delay · Vickrey-Clarke-
Groves mechanism

1 Introduction

The Web of Data (WoD) consists of interlinked data owned and provided by
different entities. The result is one giant, distributed RDF graph which stores
knowledge related to all different kinds of topics. On a technical level, the WoD
has successfully extended the World Wide Web (WWW) idea, enabling the in-
tegration and querying of distributed and heterogeneous graph data. On an eco-
nomical level, however, key concepts and techniques to finance these new services
are lacking behind [2]. One reason for this is that the classical financial motors
of the WWW—advertisement and donation campaigns—cannot be straightfor-
wardly applied to the WoD. The problem is that the machine-processable nature
of the WoD renders these approaches useless as they rely on users seeing them
while navigating the Web sites. To remedy this situation, we proposed in [1] the
delayed-answer auction, a mechanism where third-party sponsors invest into the
publishers of RDF data. In this paper, we demonstrate an implementation of
the theoretical concepts from [1]. As a setting, we consider users searching for
restaurants in New York City through a WoD-based service.

2 The Delayed-Answer Auction

The core idea of the delayed-answer auction is to delay parts of a SPARQL
answer to influence the probability that a certain solution set is considered by the
user issuing the query. Given solutions composing a SPARQL query answer, each
of them has a different delay. Consequently, the solutions are not delivered in one
batch, but are delivered in a sequence of batches at different time. Naturally,
the sooner a solution is provided to the user, the higher the probability that
the user considers it. We call sponsors the entities interested in minimizing
the delays of certain solutions. However, a sponsor is not just promoting any
arbitrary solution, but solutions which contain service links, i.e. URIs to specific
services or Web pages. Examples of sponsors are hotel and restaurant owners,
product shops or touristic departments of cities. The delayed-answer auction
allows sponsors to increase the chance that a user will consider buying their
service, similar to advertisement in the WWW. Unlike advertisement, however,
data containing service links are legit solutions to the SPARQL query and do
not constitute additional and, potentially, distracting information.

The design of the auction mechanism relies on two key questions: how to as-
sign the delays and how to charge the sponsors. To decide which solution should
receive which delay, the mechanism ranks the different solutions according to the
bids that the included service links receive. A solution containing a service link
with a high bid is ranked before a solution containing a service link with a lower
bid. This ranked list is used to decide the order on which solutions are returned.
It is worth noting that the auctioneer can decide to perturbate this ranked list
to allow solutions containing low (or missing) bids to also receive a top posi-
tion, although with a lower probability. To increase the comprehensibility of our
demo, we did not implement such perturbations, however.

In our delayed-answer auction, sponsors only pay if a user actually looks
up the corresponding service link. To determine the actual price a sponsor has
to pay when the service link is looked up, we use the pricing mechanism of
the weighted Vickrey-Clarke-Groves (VCG) auction [3]. The advantage of using
this pricing mechanism is that the auction is robust against manipulations of a
single sponsor: a sponsor is not able to influence the utility (weighted difference
of value and price) by changing the bid [4]. The VCG price πi of a service link
i can be calculated using the following formula:

πi =

m∑
j=b(i)

v2ndj ·∆pj · 1−(1−prel)
Nj

Nj

m∑
j=b(i)

∆pj · 1−(1−prel)
Nj

Nj

,

where b(i) refers to the batch number of link i—counting starts from the batch
with the lowest delay—and m refers to the total number of batches. Nj is the
sum of solutions contained in the batches from 1 to j and prel refers to the
probability that a specific solution is relevant to the user—this probability is
the same for all solutions and has to be estimated by the auctioneer when setting

up the auction. The parameter ∆pj indicates how likely it is that the user stops
waiting for more solutions after receiving batch j and selects one of the received
solutions, or abandons the search. Again, the ∆pjs have to be estimated by the
auctioneer when setting up the auction. Finally, v2ndj indicates highest reported

bid in the next batch after batch b(i)1.
It is worth stressing the importance of the delays to create the necessary

competition to incentivize sponsors to bid money. Without them, there would
be a very limited influence on the order of the solutions and, consequently, on
the probability that a user follows up a certain service link. This is because the
inherent structure of a SPARQL query answer allows an application to easily
reorder any orderings of the solution one might impose.

3 Demonstration

To show the feasibility of the delay-answer auction and how it works, we built
a demo2. The setting is the one of a search engine for restaurants in New York,
built on top of some open data service. We used Blazegraph as a triple store
and OpenStreetMap3 to collect the restaurant data (converted to RDF).

Meta-Data

RDF Data

Auction

Provider

RDF Data

Delay

Delay

Delay

Query Answer

http://example.com
Look Up

Select *
Where { … }

User Interface

Sponsor

Outdoor Seating

Take Away

Wheelchair Access

Service

A

1 1

B

DC

2 35

5

6 7

8

4

9

Bid⋈

Pay

Link

SPARQL query

E

Fig. 1. Overview of the workflow for our delayed-answer auction.

Figure 1 offers an overview of the demo. The Web page shows a search mask
where the users can choose among different selection criteria (A in the figure),
such as outside seating, wheelchair access and the possibility to take away. Once

1 Interested readers can find in [1] additional details and insights.
2 https://files.ifi.uzh.ch/ddis/delay-auction-demo/
3 https://www.openstreetmap.org

https://files.ifi.uzh.ch/ddis/delay-auction-demo/
https://www.openstreetmap.org
https://files.ifi.uzh.ch/ddis/delay-auction-demo/
https://www.openstreetmap.org

the user submits the search request, a SPARQL query is generated and issued to
the auction platform (1). The auction platform (B) generates a query answer
by executing the query (2) on the data of all participating data publishers (C).
In addition to the actual data needed to answer the SPARQL query, the auction
platform queries an additional triple store (D) holding meta-data necessary for
the auction (3). These meta-data include the service-links—the service links
need to link to the auction which redirects the user to the actual service—and
the bids placed on them (4). In this demo we assigned a uniformly distributed
random bid between 0 and 1 to each service link. The solution sets of the query
answer have to be sorted (in descending order) according to these bids. This is
done during query execution using the ORDER BY clause of SPARQL.

After the different solutions have been ordered according to the bids, the
query answer (E) starts to be sent to the user (5). The solutions are grouped
into batches: a batch is a set of solutions which have the same delay. The delay
periods are decided by the auction designer when setting up the auction. The
transmission of the answer is therefore asynchronous, and it ends when no more
solutions are left, or the user cancels the search. The demo adopts a polling
strategy, but pushing strategies are viable as well.

The user interface displays the received solutions on a map, including all
available data and the service link. The user can browse through the received
results and eventually click on one of the service links (6) or abandon the
search. Clicking on a service link redirects the user to the auction platform (7),
which in turn, redirects the user to the booking page of the restaurant (8).
This redirection is necessary for the auction platform to register the look up of
the service link. Once such a look up is registered, the sponsor is charged the
respective price (9).

As we have seen, using the delayed-answer auction, the auctioneer can gen-
erate revenue from the payments of the sponsors. In turn, part of this revenue
is invested into the datasets of participating data publishers, which solves our
problem of financing datasets in the WoD.

Acknowledgments: This work was partially supported by the Swiss National
Science Foundation under grant #153598.

References

1. Grubenmann, T., Bernstein, A., Moor, D., Seuken, S.: Financing the web of data
with delayed-answer auctions. In: WWW 2018: The 2018 Web Conference (2018)

2. Grubenmann, T., Dell’Aglio, D., Bernstein, A., Moor, D., Seuken, S.: Decentralizing
the Semantic Web: who will pay to realize it? In: Proceedings of the Workshop
on Decentralizing the Semantic Web (DeSemWeb) (2017), http://ceur-ws.org/
Vol-1934/contribution-01.pdf

3. Nisan, N., Ronen, A.: Computationally feasible vcg mechanisms. Journal of Artifi-
cial Intelligence Research 29, 19–47 (2007)

4. Varian, H.R., Harris, C.: The vcg auction in theory and practice. American Eco-
nomic Review 104(5), 442–45 (2014)

http://ceur-ws.org/Vol-1934/contribution-01.pdf
http://ceur-ws.org/Vol-1934/contribution-01.pdf

	Make restaurants pay your server bills

