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Abstract. Text understanding and reasoning is a very difficult but
highly important problem with many practical applications like chat-
bots. Babylon Health is building an AI-based symptom checking service
offered through a chatbot. Depending on what medical terms appear in
the text, nodes in a Probabilistic Graph Model (PGM) need to be ac-
tivated in order to start the symptom checking process. We developed
a Semantic Technologies-based solution where OWL concepts are build
from user text (in an attempt to capture its meaning) and then compared
with respect to subsumption against the conditions in PGM which are
encoded using concepts form a medical KB. We developed a knowledge
extraction method as well as a hybrid reasoning algorithm that compares
concepts using both logical axioms from the medical KB as well as po-
tentially additional information hidden in their labels. We implemented
all our algorithms and conducted an experimental evaluation compar-
ing to a baseline text annotation and an ML-based approach obtaining
encouraging results.

1 Introduction

Text understanding and reasoning is at the heart of modern chatbots. Users
input text which needs to be interpreted in order to activate the respective
background services and accomplish the requested task. Babylon Health offers a
chatbot which users can use to check their symptoms. Users input text such as
“I am feeling my head is going to explode since this morning” and subsequently
nodes in a Probabilistic Graph Model (PGM) need to be activated in order to ask
the user about more specific questions. The nodes in PGM are annotated with
classes from a medical KB constructed in Babylon which integrates well-known
medical ontologies like SNOMED, NCI, and more [5]. To accomplish the above
task medical terms in user text need to be identified and compared against medi-
cal concepts in the PGM. A naive approach would be to annotate user text using
some text annotator and then check these concepts in the PGM. However, this
approach does not capture potential relations between the medical terms in the
user text, e.g., the relations between “sever” with “pain”and “morning” in our
running example. To understand meaning in text we designed a knowledge ex-
traction method which given small medical phrases extracts concept definitions,
e.g., given “recent head injury” it would ideally extract the concept expression
RecentInjury u ∃locatedIn.Head.



Subsequently, we implemented a custom reasoner to compare such concept
expressions with concepts in PGM. The need to implement a custom reasoner
instead of an off the shelf one is motivated by the fact that although many
of the ontologies we use are well-engineered, in many cases they contain “ill-
defined” concepts whose meaning is still implicitly encoded in free text. For
example, SNOMED does not define the concept RecentInjury in terms of Injury
and Recent. Hence, the following subsumption cannot be identified by an OWL
reasoner:

RecentInjury u ∃locatedIn.Head v Injury u ∃occurred.Recently (1)

Surprisingly, SNOMED contains a large number of such “ill-defined” con-
cepts other examples of which are ThermalInjury, which is not defined in terms
of Thermal and Injury, SevereDepression which is not defined in terms of Severe
and Depression, CardiacMuscleThickness, and more. Our hybrid reasoner is using
the previous knowledge extraction method coupled with logic-based techniques
to compare concepts w.r.t. subsumption. Another challenge for our reasoner was
the scale of our KB which is at the order of half a billion triples and it is loaded
to GraphDB. The issue is that like every other tripe-store, GraphDB is inher-
ently incomplete for performing reasoning over constructors like those used in
the above DL concepts, i.e., ObjectSomeValuesFrom. Hence, some extended DL
inference functionality had to be simulated on top of GraphDB using SPARQL.

2 Extracting Concept Definitions From Text

To understand the meaning in text we built a method (buildConcept) that ex-
tracts concept definitions from small medical phrases. Examples of such phrases
are “acute duodenal ulcer”, “granuloma surgical wound”, “severe pain in left
leg”, etc. First, these phrases are decomposed into tokens using dependency pars-
ing. Figure 1a depicts the dependency tree of the medical phrase “Recent pain
provoked by injury”. Nodes correspond to words in text and edges to linguistic
relations between the tokens of the phrase. Second, a pre-processing step on the
dependency tree is applied to obtain the graph depicted in Figure 1b. This graph
contains mostly nouns, adjectives, and verbs while pronouns or other function
words are suppressed. The nodes of the graph are then matched to classes from
the KB by matching lemmatized text of each node to class labels or synonyms.
Finally, the tree is traversed in a depth-first manner and class expressions are
built. A non-trivial issue in our work is that the text rarely contains verbs which
can be used as relations between classes as usually assumed in the literature [3,
4, 2]. For instance, in our running example the relation between “Recent” and
“Pain” needs to be inferred. This is done based on the frequency that relations
associate pairs of categories in the KB. For example, diseases are associated
with temporal classes with the relation occurs. Hence, from the graph depicted
in Figure 1b our method can construct the following class expression:

Pain u ∃occurrs.Recently u ∃provokedBy.Injury
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Fig. 1. Dependency and normalised trees of “Recent pain provoked by Injury”.

3 Reasoning Using Textual Knowledge

As mentioned in the introduction, the “undefinedness” of concepts in the KB
motivated us to design a novel hybrid reasoning algorithm which given two
concepts it exploits both semantic as well as textual information encoded in
their labels to compare them w.r.t. subsumption. Given concepts C and D the
algorithm briefly works as follows:

1. If isSubsumed(C,D) then return true
2. C+ := buildConcept(C.label)
3. If isSubsumed(C+, D) then return true
4. D+ := buildConcept(D.label)
5. If isSubsumed(C+, D+) then return true
6. return false

At step 1, the algorithm checks subsumption between two classes using
a custom approximate algorithm which is based on a combination of struc-
tural subsumption [1], and SPARQL queries which attempt to simulate some
of the consequence-based inference rules that are relevant to OWL construc-
tors not handled by triple-stores like ObjectSomeValues. If subsumption fails,
then it proceeds in trying to extract knowledge from the labels of the classes.
For example, step 1. for the subsumption RecentInjury v Injury will fail and
hence buildConcept(“RecentInjury”) would be called, returning C+ = Injury u
∃occured.Recent. Then at step 3 Injury u ∃occured.Recent v Injury returns true.
The overall system (KAL) is depicted in Figure 2. User text is processed by con-
ceptBuilder and the output is compared against PGM nodes using the reasoner.

4 Evaluation

To evaluate conceptBuilder alone, we randomly picked 200 classes from our KB
which have a label that contains at least two words and used it to construct
a concept definition. Out of the 200 concepts conceptBuilder failed to build a
concept in 19 cases (9.5%) since it could not pick a concept from the KB. For



Fig. 2. System overview

example, there is no concept for the word “Ionizing”. For the remaining 181, we
asked an in-house doctor to evaluate their quality using one of the labels wrong,
correct, or partiallycorrect obtaining 21, 108 and 52, marked as such.

In the second experiment, we asked doctors to create natural language queries
mimicking the text that users would type into the chatbot when they report their
problem as well as the list of expected nodes form PGM that should be acti-
vated. For example, a user may type “I cut my finger”, “I feel really tired”,
or “my lower back hurts” and the expected nodes are HurtFinger, Fatigue, and
LowerBackPain, respectively; Table 1 presents Precision and Recall of our system
and compared against a baseline approach that simply annotates medical terms
using GATE annotator and then compares them to PGM as well as against
a sentence embedding approach (emb) which has been trained using word em-
bedding on medical blogs. As can be seen, using our system together with the
embedder as a backup plan provides the best results.

Table 1. Precision and Recal of all chatbot reasoning approaches.

GATE GATE+emb KAL KAL+emb

Precision 0.57 0.74 0.77 0.84
Recall 0.51 0.73 0.79 0.88
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