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Motivation. Knowledge Graphs (KGs) nowadays power many important applications
including Web search1, question answering [1], machine learning [13], data integra-
tion [7], entity disambiguation and linking [3, 5]. A KG is typically defined as a col-
lection of triples 〈entity , predicate, entity〉 that form a directed graph where nodes are
entities and edges are labeled with binary predicates (relations). Examples of large-scale
KGs range from general-purpose such as Yago [17] and DBPedia [9] to domain specific
ones such as Siemens [7] and Statoil [6] corporate KGs.

Large-scale KGs are often automatically constructed and highly incomplete [4] in
the sense that they are missing certain triples. Due to their size and the speed of growth,
manual completion of such KGs is infeasible. In order to address this issue, a number
of relational learning approaches for automatic KG completion have been recently pro-
posed, see [4, 10] for an overview. Many of these approaches are based on learning rep-
resentations, or embeddings, of entities and relations [2, 11, 16]. It was shown that the
quality of embeddings can be significantly improved if the embedding’s vector space is
enriched with additional information from an external source, such as a corpora of natu-
ral language text [19] or structural knowledge such as rules [18] or type constraints [8].

An important type of external knowledge that is common in practice and to the best
of our knowledge has not been explicitly considered so far is event log data. Events
naturally appear in many applications including social networks, smart cities, and man-
ufacturing. In social networks the nodes of a KG can be people and locations, and edges
can be friendship relations and places of birth [20], while an event log for a person can
be a sequence of (possibly repetitive) places that the person has visited. In smart cities
a KG can model traffic [15] by representing cameras, traffic lights, and road topology,
while an event log for one day can be a sequence of traffic signals where jams or acci-
dents have occurred. In smart manufacturing an event log can be a sequence of possible
states, e.g., overheating or low power of machines such as conveyors, and these logs
can be emitted during a manufacturing process.

In this work we define an event log for a KG as a set of sequences constituted of
entities (possibly with repetitions) that may occur in the KG as nodes. Moreover, we
assume that not every entity from a KG, but only what we call event entities can occur
in logs. In the above: visited cities, traffic signals, and alarms are event entities. As we
see later in the paper this separation of entities in a KG into event and non-event is
important and practically motivated. We now illustrate an industrial KG and event log.

1 https://en.wikipedia.org/wiki/Knowledge_Graph
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Fig. 1: Excerpt of a manufacturing KG and an event log.

Illustration of Scenarios. Consider an industrial KG that is inspired by a Siemens au-
tomated factory, that we will use later on for experiments, and that contains information
about factory equipment, products, as well as materials and processes to produce the
products. The KG was semi-automatically generated by parsing heterogeneous spread-
sheets and other semi-structured data repositories and it is incomplete. In Figure 1 we
depict a small excerpt from this KG where solid lines denote relations that are in the
KG while dashed – the missing relations. The KG contains the topology of the con-
veyors A, B, and C and says that two of them (A and B) are connected to each other:
〈ConveyorA, connectedTo,ConveyorB〉. The KG also stores operator control spec-
ifications, in particular, event entities that the equipment can emit during operation.
For example, CoilJam, is an event entity and it can be emitted by conveyor C, i.e.,
〈CoilJam, hasSource, ConveyorC〉. Event entities have further semantics described
by the typing, e.g. CoilJam is of type JamAlarm, severity levels, and possible emit-
ting source locations. At the same time, the KG misses the facts that the conveyors
A and C are connected in the factory; that BoardJam is of type JamAlarm, and
HighEnergy (HE) has the source ConveyorA and is of type EnergyEvent.

Additionally, in the example, we assume that an event log recorded during the op-
eration of the factory consists of three following sequences over event entities:

(HE,LE,LE,BoardJam), (HE,LE,LE,CoilJam), (LE,HE,LE,HE).

Observe that the event log suggests that a jam typically occurs after a sequence of two
consecutive low energy consumption (LE) events.

Problem Statement. An event log gives external knowledge to the KG by specifying
frequent sequential patterns on the KG’s entities. These patterns capture some processes
that the nodes of a KG can be involved in, i.e., manufacturing with machines described
by the KG, traveling by a person mentioned in the KG, or traffic around traffic signals.
This type of external knowledge has conceptual differences from text corpora where
KG entities are typically described in a natural language and where occurrences of KG
entities do not necessarily correspond to any process. Events are also different from
rules or constraints that introduce formal restrictions on some relations.

The goal of this work is to understand how event logs can enhance relational learn-
ing for KGs. We address this problem by proposing an Event-enhanced Knowledge
Learning (EKL) approach for KG completion that intuitively has two sub–steps:

1. Event alignment, where event entities are aligned in a low-dimensional vector space
that reflects sequential similarity, and

2. KG completion, where the KG is extended with missing edges that can be either
event-specific, e.g., such as the type edge between BoardJam and JamAlarm



in our rubbing example, or not event-specific, e.g., such as connectedTo between
ConveyorA and ConveyorC in the running example.

Observe, the event logs directly influence the first step while also indirectly the second
step of EKL. Hence, we expect a collective learning effect in a sense that the overall
KG completion can benefit from event alignment, and vice versa.

Illustration of Ideas. During the first step EKL will align BoardJam and CoilJam
to be similar. In the second step EKL will accordingly adjust entities ConveyorC
and ConveyorB and then predict that ConveyorA is likely to also be connected
to ConveyorC. Intuitively the missing link between the conveyors can be inferred
from the sequential pattern in the event log: the log tells us that both BoardJam and
CoilJam occur as a consequence of two consecutive LE events and therefore exhibit
similar semantics. This similarity is carried to conveyor entities B and C, which leads
to an increased likelihood that they both follow the same entity ConveyorA.

Note that the prediction of event-specific missing links is not the standard task for
relational learning since we are predicting links within the background. Moreover, our
approach can address the zero-shot scenario, where some event entities only appear in
the event log, but they are novel to the KG (it is marked with red in Figure 1). E.g.,
HE in the running example corresponds to an entity that is missing in the KG, that has
to be aligned during the first step of EKL and then linked to ConveyorA as well as to
its type during the second step of EKL. Thus, EKL can also populate a KG with new
(unseen) entities.

Contributions. The contributions of our work are as follows:

– We proposed several EKL approaches to KG completion that comprise

• two model architectures that allow to combine (representations of) a KG and an
event log for simultaneous training of both representations; this requires a non-
trivial design of a model architecture that reflects interconnections of shared
embeddings,

• three models for event logs that reflect different notions of event context.

– We conducted an extensive evaluation of our approach and comparison to a state-
of-the-art baseline on real-world data from a factory, on smart city traffic data, and
controlled experiment data. Our results show that we significantly outperform two
state-of-the-art baselines and the advantages are most visible for predicting links
between entities that reflect the sequential process nature within the KG.

We presented a very preliminary version of this work as a short in-use paper [14]
and a longer version as a research paper [12].
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