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Abstract. Reactive decision making on heterogeneous streaming data
is gaining importance in a wide range of situations, e.g., in the electricity
management domain for reacting to anomaly consumption or in oil and
gas extraction sites to detect dangerous situations. Modern cities repre-
sent a relevant scenario for reactive decision making because of the vast
number of stakeholders willing to benefit from the growing availability of
streams of data from various sources. In the state-of-the-art, this problem
is addressed through ad-hoc solutions that fit only a specific scenario. In
this paper, I report on the models and technical implementations, which
I propose to enable reactive analysis of a variety of spatio-temporal data,
and on their evaluation in real-world scenarios to prove their adequacy.
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1 Relevancy

In an increasing number of situations, a decision must be reactive1 and must be
based on a variety of streaming data. In the electricity management domain, a
reactive anomaly detection system for the consumption data is useful to avoid
network problems. In the oil and gas extraction sites, the analyses of sensors’
readings from the wells are vital for reactive detection of dangerous situations.

The urban environment is particularly relevant when talking about reac-
tive decision. In modern cities, a dense network of interactions between people
and the environment produces a great amount of spatio-temporal fast evolv-
ing data [1] and a multitude of stakeholders are interested in reactive decisions.
Tourists would value information about the current top rated and less crowded
attractions around the city. Commuters would like to know the busiest roads to
choose the fastest way home. Public safety agencies would like to learn about
over-crowded area during a public event.

In the mid 2000s’, the growing use of location-based social networks via
mobile devices, improved the ability to capture the people’s interests, habits, and

1 Deciding an action in response to a stimulus before new incoming information makes
the planned action useless.
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preferences in a privacy-preserving manner and enabled innovative scenarios. It
became possible to create an accurate and up-to-date representation of reality
(a.k.a. Digital footprint or Digital reflection or Digital twin) exploiting either
social media or mobile phones data, i.e. Call Data Records (CDR). For instance,
analyzing social media Cho et. al. [2] were able to identify mobility patterns,
while I built a location-based recommendation engine for restaurant in Korea [3].
Parallel works exploited CDR to create models to estimate the density of crowds
and vehicles [4–6].

However, better decisions can result from the analyses of multiple data sources
simultaneously. The growing availability of new urban data sources (e.g. IoT, WI-
FI logs) stimulated the research of a conceptual model to manage data variety
in a comprehensive way. The current interest is for solutions that fuse streaming
heterogeneous data to enable reactive decisions.

2 Problem Statement

Before starting my PhD, I investigated for three years the modeling and the
analysis of streaming data from social media [3, 7–9]. I approached the problem
with Stream Reasoning [10], RDF Stream Processing (RSP) and state-of-the-art
techniques based on named entity recognition and linking, and machine learning
for recommendation.

Reflecting on the obtained results, I identified two main findings: (i) when
dealing with data stream, a continuous ingestion mechanism avoids data losses,
but continuous analysis is not always needed; an analysis can be reactive even if
postponed. (ii) Ontologies are an adequate knowledge representation technique
for modeling data characterized by high variety. In the previous works I counted
on two assumptions: (A) adequate ontologies to model a domain are available,
or they can be obtained with minimal effort by extending existing ones. Indeed,
SMA[7], an ontology ables to represent location-based social media data, was
defined starting from SIOC2 by adding only few axioms. (B) Data streams can
be RDF-ized at a negligible cost. Indeed, social media APIs return statuses in
JSON that can be easily transformed in JSON-LD3 exploiting standard formats,
such as Activity Stream4.

In my PhD, aiming to continuously and reactively analyze a variety of spatio-
temporal data, I reflected on the finding and on the assumptions of my previous
work. Social media data is semi-structured: only time and space information is
presented in a structured way; the content is unstructured, e.g. free texts or
images. On the contrary, IoT data, WI-FI logs, CDRs are structured. While the
integration of semi-structured data is generally based on the content analysis
(e.g. named entity recognition and linking), the integration of structured data
requires other methods, e.g., Ontology Based Data Integration (OBDI) [11].

2 http://sioc-project.org
3 https://json-ld.org
4 http://activitystrea.ms
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In approaching my PhD keeping working on Stream Reasoning, I needed to
check if the assumptions of my previous work still hold. Assumption A does not
hold in this extended scenario, so a first problem emerges:

Rp.1 Defining a conceptual model to represent a variety of streaming data.

Moreover, Assumption B holds only to a limited extent, i.e. for social media
data. Therefore, I need to face two problems :

Rp.2 Defining a streaming computational model to enable analysis on a variety
of data.

Rp.3 Defining appropriate technical instantiations of the computational model
in Rp.2.

Last, but not least, to verify and validate the solutions proposed to solve the
problems above, I need to:

Rp.4 Assess, in real world scenarios, the feasibility and the effectiveness of the
instantiations developed addressing Rp.3 using the models developed in
solving Rp.1 and Rp.2.

3 Related Work

Concerning Rp.1, visual analytics is a common approach to support reactive
decision making, but there was a gap between low-level time-varying geo-located
data and the high-level needs of visual analytics. Vocabularies to publish the low-
level data exist, e.g., geosparql vocabulary5, event ontology6 or time ontology7,
but the high-level part, to enable visual analytics, was missing. Social Pixel [12]
represents a first attempt to create abstractions to visually represent spatio-
temporal phenomena analysing social media data.

The transient nature of streaming information often requires to treat it differ-
ently from persistent data. Data streams are often consumed on the fly by con-
tinuous queries. Such a paradigmatic change was investigated by the Database
community [13, 14] and, more recently, by the Semantic Web community [10] and
by the Distributed System community [15]. The processing model of RDF stream
processors (RSP) [16] was inspired by the work done in the Database community,
in particular by the CQL stream processing model [17]. With regards to Rp.2, at
the time I started my PhD, the Semantic Web stack was already extended with
stream computing concepts. RDF streams, continuous extensions to SPARQL,
as well as continuous reasoning concepts existed. Several RSP Engines also ex-
isted [16]. At that time I was maintaining the C-SPARQL Engine [18] and I
designed, developed and evaluated SLD [3], a system that exploits RDF stream

5 http://www.opengeospatial.org/standards/geosparql
6 http://motools.sourceforge.net/event/event.html
7 https://www.w3.org/TR/owl-time/
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processing and OBDI to enable the layout of complex query networks that con-
tinuously analyze social media. But, as I already mentioned in Section 2, I based
my works on Assumptions A and B, that don’t hold in all the scenarios.

With regards to Rp.3 and to Rp.4, I assessed the work done in benchmark-
ing [19]. In particular, in recent years, the benchmarking of single-threaded im-
plementations against distributed systems has drawn attention. McSherry et. al.
in COST [20] showed that a distributed solution, to be effective, must outper-
form a single-threaded one. Inspired by this work, I decided to solve Rp.3 both
with single-threaded and a distributed approach and to evaluate Rp.4 using the
cost-effectiveness metric.

4 Research Question

I developed my research question with the Macro, Mezzo and Micro method [21].
The three different levels aim at probing the validity (Rp.4) of the conceptual
model (Rp.1), of the computational model for streaming heterogeneous data
(Rp.2) and of its technical instantiations (Rp.3).

At Macro level I focused on relevancy and formulated the question: Is it
possible to support reactive decisions by managing data characterized by velocity
and variety without forgetting volume?

At Mezzo level, I focused the attention on a question for which I could find
a viable solution. I concentrate my effort on spatio-temporal streaming data,
I focused on the findings of my previous work and I characterized the way to
support reactive decisions, i.e. visually make sense of data. So, the Mezzo level
question is: Is it possible to visually make sense of a variety of spatio-temporal
streaming data by enabling continuous ingestion and reactive analysis?

Finally, at Micro level, I formalized a question that can be evaluated. I con-
centrate my effort on the streaming urban data and I specify a way to exploit
the visual analytics instrument to support reactive decision making, i.e. find
emerging patterns and data dynamics. As a result, my research question is: Is
it possible to continuously ingest and reactively analyses a variety of streaming
urban data in order to visualize emerging patterns and their dynamics?

In answering to the Micro level question, I’m directly contributing to answer
the Mezzo level question, and, indirectly, to cast some light on the Macro level
question.

5 Approach and Evaluation Plan

Inspired by OBDI methods, I approached the research problems in a modular
way by relaxing, in parallel, the two original assumptions presented in Section 2.
This modularity reflects the research problems structures and allows me per-
forming a continuous evaluation.

On the one hand, relaxing Assumption A, I approached the creation of a
conceptual model in the form of an ontology by following the Methontology [22]
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methodology, and I planned to evaluate the result using Tom Gruber’s princi-
ples [23].

On the other hand, relaxing Assumption B, I planned the development of
a computational model to enable continuous ingestion, wrangling and reactive
analysis of heterogeneous data streams. I planned to implement such a compu-
tational model using different technologies, i.e. single-threaded and distributed,
in order to prove its adequacy in different work conditions. To finalize the work
I planned the evaluation of the cited implementations against already existing
system (SLD) and one against the other. In particular, inspired by COST [20], I
decided to evaluate the cost-effectiveness of the single-threaded system against
the distributed one.

The modular approach, during the development and the evaluations phases,
allowed me planning an overall evaluation. I planned to put at work a complete
system, composed by an implementation of the computational model that ex-
ploits the conceptual model, in different scenario and to evaluate it: (i) in terms
of guessability [24] of data visualization by the users, and (ii) in terms of perfor-
mances using well-known indicators, i.e. throughput and cost-effectiveness.

6 Hypotheses

In order to answer my research questions, I formulated a set of hypotheses that
I used to operationalize my work, w.r.t. the four problems in Section 2.

Hp.1 A conceptual model containing concepts from the image processing do-
main can represent spatio-temporal data in an extendable and coherent
way with a minimal encoding bias and a minimal ontological commit-
ment.

Hp.2 A streaming computational model that defers as long as possible the
data transformation is less complex, in terms of time and space, than a
computational model that cast data into RDF at ingestion time.

Hp.3 A single-threaded implementation of the streaming computational model
from Hp.2 that uses the conceptual model from Hp.1 can be more cost-
effective than a distributed implementation of the same model while guar-
anteeing the reactiveness of the system

Hp.4 An implementation from Hp.3 can create a bridge between data analytics
and data visualization that enhances the comprehension of a variety of
spatio-temporal data and, at the same time, is reactive.

7 Results

To validate Hp.1, I created the FraPPE ontology. Figure 1(a) offers a graphical
overview of the FraPPE concepts. The abstractions in the FraPPE ontology [25]
exploit classical image processing concepts (i.e. Pixel and Frame) as well as com-
mon sense concepts (i.e. Place and Event). The intuition behind the FraPPE
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Fig. 1. (a) presents a high-level view of FraPPE including Frames, Pixels, Places and
Events, (b) presents an overview of the operators inspired by CQL

data model is the discretization of space and time in atomic units. The repre-
sentation of the geographical space is mediated by a Grid of Cells that contain
Places. Frame, Pixels and Events are the time-varying representation (i.e. taken
every given interval of time) of, respectively, Grid, Cells and Places. FraPPE
was developed using Methontology [22], and complies with the Tom Gruber’s
principles [23], i.e clarity, coherence, minimal encoding bias, minimal ontological
commitment, extendibility.

In parallel, I investigated a streaming computational model to enable access
and analysis of a variety of streaming data. The main idea behind this part of
the work is to combine my previous findings (see Section 2) with the intuition
that, often, data transformation can be deferred (as stated in Hypothesis Hp.2).
For example, if we need to filter a stream of JSON items in a first stage of a long
query network, the execution of a path query with JSONiq8, before transforming
the data in RDF, is for sure faster than transforming the data in RDF and then
executing a graph pattern matching.

Figure 1(b) shows the three proposed classes of operators inspired by
CQL [17]. T denotes a generic type to-be-specified-later, S〈T 〉 is a generic data
stream and I〈T 〉 a collection of instantaneous generic data items (e.g., a ta-
ble, a document, or a graph, which are normally manipulated by relational,
document-based or graph-based databases). Those operators allow moving from
generic data streams to instantaneous generic collection an vice versa.

As a first implementation of the computational model, I developed Natron:
a direct improvement of SLD that maintains the single threaded nature of the
original platform. I empirically evaluated the performance of Natron against
SLD and validated Hypothesis Hp.2 by proving that a deferred data transfor-
mation, namely Lazy Transformation principle, can improve the performance
of a stream processing framework [26]. Inspired by the momentum of the dis-
tributed technologies and by the work presented in [20], I also implemented a
horizontally scalable version of the computational model based on Spark. Both

8 http://jsoniq.org
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implementations operate on data in its original format as long as they can, and
they transform it only if it is really needed. I evaluated the cost-effectiveness
of the distributed implementation against Natron and I demonstrated that the
single-threaded implementation can outperform the distributed one [27]. This
result validated Hp.3 from an empirical perspective.

In order to validate Hp.4, Natron and FraPPE were then put at work and
evaluated in real-world scenario [28–30]. Those works demonstrate the validity
of the whole infrastructure in various scenarios facing heterogeneous streaming
data. The guessability and the reactiveness of the visual analytics instruments
enabled by the system were evaluated by tens of real-world users via question-
naires and interviews.

8 Reflections

During my PhD, I collected positive evidences that a system such as Natron
(based on a streaming computational model and on the Lazy Transformation
principle), and a conceptual model such as FraPPE (containing concepts inspired
by image processing) represents an adequate solution to enable visual analytics
of heterogeneous streaming urban data in a reactive way. Unfortunately, so far,
the evaluation was conducted only exploiting the multiple implementations of
the two proposed models. This approach poses limits to the positive evaluation
of Hypothesis Hp.2. I now need to perform a formal evaluation of Hypothesis
Hp.2. In the remaining part of my PhD, I intend to define a formal algebra for
the computational model in order to estimate the time and space complexity of
the operators and to define cost models that can be exploited to automatically
optimize query networks designed by users with a limited know-how on the
internals of my implementations.

Acknowledgments. I worked under the supervision of Prof. E. Della Valle.
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