
Towards reproducibility of computational
environments for Scientific Experiments using

Container-based virtualization.

Maximiliano Osorio, Carlos Buil-Aranda, and Hernán Vargas

Informatics Department, Universidad Técnica Federico Santa Maŕıa, Chile
{mosorio, cbuil, hvargas}@inf.utfsm.cl

Abstract Experiment reproducibility is the ability to run an experi-
ment with the introduction of changes to it and getting results that
are consistent with the original ones. To allow reproducibility, the sci-
entific community encourages researchers to publish descriptions of the
these experiments. However, these recommendations do not include an
automated way for creating such descriptions: normally scientists have
to annotate their experiments in a semi automated way. In this paper
we propose a system to automatically describe computational environ-
ments used in in-silico experiments. We propose to use Operating System
(OS) virtualization (containerization) for distributing software experi-
ments throughout software images and an annotation system that will
allow to describe these software images. The images are a minimal ver-
sion of an OS (container) that allow the deployment of multiple isolated
software packages within it.

1 Introduction

Experiment reproducibility is the ability to run an experiment with the intro-
duction of changes to it and getting results that are consistent with the original
ones. Introducing changes allows to evaluate different experimental features of
that experiment since researchers can incrementally modify it, improving and
repurposing the experimental methods and conditions [12]. To allow experiment
reproducibility it is necessary to provide enough information about that experi-
ment, allowing to understand, evaluate and build it again. Usually, experiments
are described in scientific workflows (representations that allow managing large
scale computations) which run on distributed computing systems. To allow re-
producibility of these scientific workflows it is necessary first to address a work-
flow conservation problem, since experimental workflows need to guarantee that
there is enough information about the experiments so it is possible to build them
again by a third party, replicating its results without any additional information
from the original author [7].

To achieve conservation the research community has focused on conserving
workflow executions by conserving data, code, and the workflow description,
but not the underlying infrastructure (i.e. computational resources and software
components). There are some approaches that that focused on conserving the

environment of an experiment such as the work in [10] or the Timbus project1 [4]
that focuses on business processes and the underlying software and hardware
infrastructure. The authors in [10] identified two approaches for conserving the
environment of a scientific experiment: physical conservation, where the research
objects within the experiment are conserved in a virtual environment; and logical
conservation, where the main capabilities of resources in the environment are
described using semantic vocabularies to allow a researcher to reproduce an
equivalent setting. The authors defined a process for documenting the workflow
application and its related management system, as well as their dependencies.
However this process is done in a semi-automated manner, leaving much work
left to the scientists. Furthermore, usually most works leave out of the scope the
physical conservation of the execution of scientific workflows. In this paper we
approach to both, physical and logical conservation problems.

Herein we propose to improve the physical conservation solution by using
operating-system-level virtualization. This technology, also known as container-
ization, refers to an Operating System (OS) feature in which the OS kernel allows
the existence of multiple isolated user-space instances called containers. One of
the most popular virtualization technologies is Docker2, which implements soft-
ware virtualization by creating minimal versions of a base operating system (a
container). Docker Containers can be seen as lightweight virtual machines that
allow the assembling of a computational environment, including all necessary
dependencies, e.g., libraries, configuration, code and data needed, among oth-
ers. Docker distributes this computational environment through software images.
The main problem for conserving the physical environment of an experiment is
the amount of space needed. With container virtualization it is possible to re-
duce to the minimum the size of the virtual machine needed for running the
scientific workflow. We propose first to use Docker images as means for preserv-
ing the physical environment of an experiment. We use containers since they
are lightweight and more importantly, they are easier to automatically describe
so we improve the process of documenting scientific workflows. We do that by
describing the workflow management system, as well as their dependencies by
developing an annotator system for the Docker images before.

In the paper, we present a new system that scans the DockerHub portal
for Docker images and annotates them, achieving logical conservation by us-
ing container-based virtualization. We present this as a Proof-of-Work that will
allow to conserve the logical environment of an experiment. We assume that
the physical environment is already preserved at the Docker images we describe
semantically.

2 Docker Overview

Docker is a technology that allows virtualizing a minimal version of an Operating
System. Therefore users can run applications within it. Throughout this section,

1 http://www.timbusproject.net/
2 https://www.docker.com/

we introduce how Docker and its registry (Docker Hub) work, starting with how
Docker images are created and stored in Docker Hub.

2.1 Docker repositories and files

Docker builds a software image by reading a set of instructions from a Dockerfile.
A Docker file is a text file that contains all commands to build a Docker image.
Docker files usually have multiple lines, which are translated into image layers
whereas Docker builds the image. In the build process, the command is executed
sequentially, creating one layer after the other. When an image is updated or
rebuilt, only modified layers (i.e., modified lines) are updated.

2.2 Publishing and Deploying Docker images from Docker Hub

Docker Hub is an online registry that stores two types of public repositories,
both official, and community. Official repositories contain public, verified images
such as Canonical, Nginx, Red Hat, and Docker. At the same time, community
repositories can be public or private and are created by any user or organization.
By using that registry and a command line, it is possible to download and deploy
Docker images locally as a running container into a host executing thus the
software within the image. Anyone has the chance to create and store images
into the Docker Hub registry by first creating a descriptor file called Dockerfile.
This descriptor describes what software packages will be within the image, builds
the image and finally uploads it to Docker Hub. However, Docker Hub does not
control what packages are in the images, whether the image will deploy correctly
or the images might have any security problem. Thus, Docker images work as
a black box, which refers that users know that the main software package runs
within the container but they do not know the other packages needed to run it.

There are two ways of uploading images to a user repository, either by a
push from a local host or automating that process from a Github repository.
In order to push a repository to the Docker Hub, the users need to name their
local images using their Docker Hub username, and the repository name they
had created. Afterwards, users add multiple images to a repository by adding a
specific :<tag> to it. This is all the information that normally Docker images
have, being thus almost impossible to reproduce the execution environment if
any of the used software packages within the images is modified.

3 DockerPedia Resource

In this section, we describe how we automatically annotate the software images
stored at the DockerHub. Once these images are annotated we claim that we
can obtain the execution environment of a scientific experiment by using a sin-
gle SPARQL query. We store the descriptions generated at our RDF database
called DockerPedia (available at https://dockerpedia.inf.utfsm.cl/). This RDF
database is available as a 5-star linked data resource.

3.1 DockerPedia Annotator

We first describe the images at DockerHub by using the DockerPedia Anno-
tator. This tool extracts and annotates the software components, their version
and metadata of a software image automatically. DockerPedia Annotator relies
on four components: DockerPedia API, Metadata Extractor, Feature Extractor
and Clair. First, DockerPedia-API receives the user environment and sent it to
two components: Metadata Extractor and Clair. The Metadata Extractor ex-
tracts metadata from Dockerfile and DockerHub and saves the data on Postgres
through DockerPedia API. In parallel, Clair downloads all layers from an image
as a filesystem, mount it and analyzes it, determining the layer’s operating sys-
tem, and the packages added and removed from the layer. Finally, the Feature
Extractor organizes the image layers and computes the resultant packages.

The Figure 1 shows an overview of the process.

Figure 1. DockerPedia annotator overview.

User

User sends the
environment

DockerPedia-API

RDF
Store

Feature Extractor

The API pushes the
image to Clair

Clair

Clair stores the
description

using Postgres

Feature Extractor
 process the

capabilities of the
 computational resources

Metadata Extractor

API sent the
Dockerfile and

the repository on
DockerHub

Metadata is stored on Postgres

Postgres

Morph
(transform data

to RDF)
Capabilities are stored

 on Postgres

Having the Docker images semantically described it is possible to obtain
their descriptions all the packages (including their versions) and dependencies
by using a SPARQL query. Notice that this is not possible by just looking at
the Docker file from the original image (assuming it exists such file) since the
Docker file only shows the main packages to be installed (i.e. through commands
like apt-get install package name). In Listing 1.1 we show all packages that are
installed within the TensorFlow Docker image:

Listing 1.1. Query to obtain TensorFlow image packages

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX vocab : <http :// dockerpedia . i n f . utfsm . c l /vocab#>

SELECT ?packagename ? packagever s i on in t WHERE {
? image vocab : id 3013931 .
? image vocab : hasLayer ? l aye r .
? mod i f i ca t i on vocab : modif iedLayer ? l aye r .
? mod i f i ca t i on vocab : re latedPackage ? packagevers ion .
? package vocab : hasVers ion ? packagevers ion .
? package rd f s : l a b e l ?packagename .

? packagevers ion rd f s : l a b e l ? packagever s i on in t
} l im i t 500

The results from the query in Listing 1.1 are the 183 packages needed to
run the TensorFlow image at DockerHub. With this data available, a scientist
developing a TensorFlow algorithm today would know exactly what software
packages she needs to run again that algorithm in the future, replicating the
exact same execution environment.

3.2 The Annotation Process

To annotate the Docker images we need first to obtain them from the Docker
Hub. In February 2018, this search returned 1,363,510 Docker repositories and
4,608,443 images composed of 4,593,602 community images and 14,841 official
images. The total size of these images is 53.47 PB. Our machines do not have the
computing power nor the network requirements needed to perform the analysis to
that amount of data. Therefore, we only analyzed the 160,000 most downloaded
Docker images from Docker Hub. To perform that analysis we used seven virtual
machines with following specifications: 2 CPU (2.20GHz) and 3 GB of memory
from Digital Ocean.

Once we discovered the name of the images to analyze, we obtain from the
Docker Hub the Username, repository name, image description, whether the
image is an automated build or not, when the image was updated for the last
time, number of pulls and the number of stars of that image as well. We also
obtain all versions of each image (which is called “tag” by the Docker Hub). For
instance, the Docker repository “google/cadvisor” has 59 different images of the
original software, and each image has different packages. By each of the tag, we
obtain its name when was updated for the last time and its size.

After that, we use the tool from the Clair project3 to detect the packages
and vulnerabilities within each downloaded image. Clair is an open-source tool
from CoreOS designed to identify known vulnerabilities in Docker images. Clair
has been primarily used to scan images in CoreOS is private container registry,
Quay.io4, but it can also analyze Docker images. Clair downloads all layers from
an image as a file system, mounts it and analyzes it, determining the layer’s
operating system, and the packages added and removed from the layer. Finally,
the result of the analysis is the following: a list of the installed packages in the
image, the layers associated with this image and the relationship between them.
To store the data from the analysis Clair uses a relational database. However,
this database is not available on the Web. Thus it does not comply with any of
the five stars for data publishing [2].

3.3 The Docker Ontology

To publish all these data from the previous step in the form of a knowledge
graph and link it to the Debian package RDF store we used Morph [9], a Rela-

3 https://coreos.com/clair/
4 http://status.quay.io

tional Database to RDF (RDB2RDF [5]) engine. Since the RDF2RDF process
needs an ontology, we developed a lightweight ontology to shape the relations
between the different concepts we want to publish. The ontology first imports
abstract classes from well-known ontologies and relations from the Docker On-
tology [8] for some of the Docker concepts and the WICUS ontology [10] for the
software experiment reproducibility concepts. A scientific workflow requires a
stack of software components, and the researchers must know how to deploy this
software stack to achieve an equivalent environment. Thus, we import some ab-
stract classes, and relations from WICUS ontology: (1) SoftwareStack describes
the software components that must be installed and their dependencies, (2) De-
ploymentPlan, DeploymentStep, ConfigurationInfo and ConfigurationParameter
classes describe the steps to deploy and configure the software.

Our final ontology is depicted in Figure 2.

Figure 2. Docker ontology.

The main classes in ontology are SoftwareImage (image from which a
container is deployed), ImageLayer (a line within the Docker file that in-
stall the software within the container), the software packages installed
at the ImageLayer (including security vulnerabilities and version packages)
and the DockerFile class. DockerPedia resources are identified by the URI
http://dockerpedia.inf.utfsm.cl/resource while the vocabulary is identi-
fied by the URI http://dockerpedia.inf.utfsm.cl/ontology. In Listing 1.2
we show the RDF data about the Google’s “cadvisor” within Docker.

Listing 1.2. Cadvisor Docker repository from Google
@pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pref ix docker : <http :// dockerpedia . i n f . utfsm . c l /vocab#> .
@docker data : <http :// dockerpedia . i n f . utfsm . c l / r e source/> .
@pref ix dcterms : <http :// pur l . org /dc/ terms/> .

docker data : Repos itory /447135
dcterms : d e s c r i p t i on ”Analyzes r e source usage and performance c h a r a c t e r i s t i c s o f

running conta ine r s . ” ;
docker : hasImage docker data : Image /1139726 ,
docker data : Image /1139926 ,
docker data : Image /1151288 ;
docker : id 447135 ;
docker : i s automated ” f ” ;
docker : l a s t updated ”2018−01−29T00 :31:11.971064−03”ˆˆ xmls : dateTime ;
docker : pu l l c ount 615791788 ;
docker : user ” goog le ” ;
a docker : Repos itory ;
<http ://www.w3 . org /2000/01/ rdf−schema#labe l> ” cadv i so r ” .

4 Related Work

Previously [11] analyzed the security of Docker images from a higher level point
of view. However, this work has not published the data from the image anal-
ysis (that data mainly includes security vulnerability issues). Other work such
as [6], have pointed the difficulty of reproducing scientific contributions due to
their high dependence with the computational environment. The authors pro-
pose the use of Docker Containers to allow reviewers and future researchers to
reproduce the experiments within the same environment. However, they do not
provide any means to perform it, and they only express desiderata. Similarly,
a different approach in which software ontologies are used is to allow software
experiment reproducibility [10]. In that work, the authors present a set of on-
tologies that model software and hardware components to allow the experiment
reproducibility. In [3] the author describes a set of good practices to use Docker
for reproducing experiments. One of them is to archive tarball snapshots point-
ing that Docker can rollback layers that have been added to an image, but not
revert to the earlier state of a particular layer. We allow the user to revert to
that state by providing exact descriptions of each layer. Also, the project Timbus
[1] address several issues including the computation environment conservation
by means of an annotator. For this purpose, they proposed an extractor to ex-
tract and annotate the Software and Hardware components. Nevertheless, the
extractor approach of Timbus Project is not adequate to be used in Contain-
ers since it increases the complexity of the container. Another related project
is Common Workflow Language (CWL, https://www.commonwl.org/), CWL is
a specification to describe analysis workflows and tools, as a result, this de-
scriptions are portable and scalable over a variety of software and hardware
environments including Docker Containers. However, CWL does not deal with
the tasks of describing the resources that define the environment. The tool My-
Binder (https://mybinder.org/) allows to generate Docker images from GitHub
repositories containing the dependency files from that GitHub repository, how-
ever the tool does not describe them. Finally [13] describes how to use RDF to
represent Docker files.

5 Conclusions

Throughout this paper, we have presented a resource that allows users to ana-
lyze Docker images before they run them into their hosts. We have gathered all
(4.5 million) Docker images stored at DockerHub (5TB of data) and analyzed
150,000 of them. The analysis resulted in a dataset with more than 140 million
triples, storing data about Docker images, software packages, and their vulnera-
bilities, links to the Debian package resource description, and the vulnerabilities
information pages.

First, we propose a method to conduct logical and physical conservation of
the computational environment of an experiment using Docker containers. Sec-
ond, we achieve logical conservation without spending the considerable amount

of effort annotating the software components and their dependencies. Finally,
we rely the physical conservation on DockerHub and their lightweight Docker
images.

Acknowledgments The authors has been supported by the Fondecyt Project
11170714.

References

1. J. Barateiro, D. Draws, M. A. Neuman, and S. Strodl. Digital preservation chal-
lenges on software life cycle. In Software Maintenance and Reengineering (CSMR),
2012 16th European Conference on, pages 487–490. IEEE, 2012.

2. T. Berners-Lee. Is your linked open data 5 star. Repéré à https://www. w3.
org/DesignIssues/LinkedData. html, 2010.

3. C. Boettiger. An introduction to docker for reproducible research. SIGOPS Oper.
Syst. Rev., 49(1):71–79, Jan. 2015.

4. A. Dappert, S. Peyrard, C. C. Chou, and J. Delve. Describing and preserving
digital object environments. New Review of Information Networking, 18(2):106–
173, 2013.

5. S. Das, S. Sundara, and R. Cyganiak. R2rml: Rdb to rdf mapping language. w3c
rdb2rdf working group, 2012.

6. P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and
C. Notredame. The impact of docker containers on the performance of genomic
pipelines. PeerJ, 3:e1273, 2015.

7. D. Garijo, S. Kinnings, L. Xie, L. Xie, Y. Zhang, P. E. Bourne, and Y. Gil. Quan-
tifying reproducibility in computational biology: the case of the tuberculosis dru-
gome. PloS one, 8(11):e80278, 2013.

8. D. Huo, J. Nabrzyski, and C. Vardeman. Smart container: an ontology towards
conceptualizing docker. In International Semantic Web Conference (Posters &
Demos), 2015.

9. F. Priyatna, O. Corcho, and J. Sequeda. Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using MORPH. In Proceedings of the
23rd international conference on World wide web, pages 479–490. ACM, 2014.

10. I. Santana-Perez, R. F. da Silva, M. Rynge, E. Deelman, M. S. Pérez-Hernández,
and O. Corcho. Reproducibility of execution environments in computational sci-
ence using semantics and clouds. Future Generation Computer Systems, 67:354–
367, 2017.

11. R. Shu, X. Gu, and W. Enck. A Study of Security Vulnerabilities on Docker Hub. In
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, CODASPY ’17, pages 269–280, New York, NY, USA, 2017. ACM.

12. V. C. Stodden. Reproducible research: Addressing the need for data and code
sharing in computational science. Computing in science & engineering, 12(5):8–
12, 2010.

13. R. Tommasini, B. De Meester, P. Heyvaert, R. Verborgh, E. Mannens, and
E. Della Valle. Representing dockerfiles in RDF. In ISWC2017, the 16e Inter-
national Semantic Web Conference, volume 1931, pages 1–4, 2017.

