
SMT-like Queries in Maple

Stephen A. Forrest

Maplesoft Europe Ltd., Cambridge, UK
sforrest@maplesoft.com

Abstract. The recognition that Symbolic Computation tools could ben-
efit from techniques from the world of Satisfiability Checking was a pri-
mary motive for the founding of the SC2 community. These benefits
would be further demonstrated by the existence of “SMT-like” queries
in legacy computer algebra systems; that is, computations which seek to
decide satisfiability or identify a satisfying witness.

The Maple CAS has been under continuous development since the 1980s
and its core symbolic routines incorporate many heuristics. We describe
ongoing work to compose an inventory of such “SMT-like“ queries ex-
tracted from the built-in Maple library, most of which were added long
before the inclusion in Maple of explicit software links to SAT/SMT
tools. Some of these queries are expressible in the SMT-LIB format us-
ing an existing logic, and it is hoped that those that are not could help
inform future development of the SMT-LIB standard.

1 Introduction

1.1 Maple

Maple is a computer algebra system originally developed by members of the
Symbolic Computation Group in the Faculty of Mathematics at the University
of Waterloo. Since 1988, it has been developed and commercially distributed
by Maplesoft (formally Waterloo Maple Inc.), a company based in Waterloo,
Ontario, Canada, with ongoing contributions from affiliated research centres.
The core Maple language is implemented in a kernel written in C++ and much
of the computational library is written in the Maple language, though the system
does employ external libraries such as LAPACK and the GNU Multiprecision
Library (GMP) for special-purpose computations.

2 The commands is and coulditbe

Consistent with Maple’s roots as a computer algebra system, its core symbolic
solvers (such as solve, dsolve, and int) generally aim to provide a general
solution to a posed problem which is both compact and useful. Further trans-
formation or simplification of such solutions using simplifiers based on heuristic
methods [3] is often necessary.



SMT-like Queries in Maple 119

Nevertheless the approach of posing queries as questions about satisfiability
or requests for a satisfying witness is not unknown in Maple. The most obvious
example is in the commands is and coulditbe. These are the standard general-
purpose commands in Maple for querying universal and existential properties,
respectively, about a given expression. [5] They are widely used by other symbolic
commands in Maple (e.g. solve, int).

The is command accepts an expression p and asks if p evaluates to the value
true for every possible assignment of values to the symbols in p. The coulditbe
command operates similarly but asks if there is any assignment of values to the
symbols in p which could cause p to evaluate to true.

Both is and coulditbe return results in ternary logic: true, false, or FAIL.
Both also make use of the “assume facility”, which is a system for associating
Boolean properties with symbolic variables. This provides limits on the range of
possible assignments considered by is and coulditbe and is roughly analogous
to a type declaration. For example, the expression is(x^2>=0) evaluates to
false because there are many possible values of x which do not evaluate to
nonnegative real numbers, in particular the imaginary unit

√
−1. By contrast,

the expression is(x^2>=0) assuming x::real returns true because the range
of possible values of x has been constrained to real numbers.

An illustrative example is found in the function product. In the evaluation of
the expression product(f(n),n=a..b), the system seeks to compute a symbolic

formula for the product
∏b

n=a f(n). As one can verify by inspecting the source
code with showstat(product), the implementation of product computes a set
of roots of f(n) and, if neither a nor b is infinite, checks whether there exists a
root r such that r is an integer and a ≤ r ≤ b. If so, it returns zero as the result
of the product. (Similar logic is applied if either of a or b is infinite.)

As evidence of the ubiquity of such queries, Table 1 summarizes the distinct
invocations of is and coulditbe encountered during a complete run through
Maplesoft’s internal test suite for the Maple library performed on 24 April 2018.
(An investigation into an earlier version of this dataset was published in [4]). This
includes both instances in which the test case explicitly calls is/coulditbe and
instances in which is/coulditbe are invoked by other library functions such as
product, as shown previously.

Note that in the above table, whenever logic L2 is an extension of logic L1,
the listed results for logic L2 refer only to those queries which are expressible
in L2 but not in L1. For example, the 2888 is queries expressible in QF LIA are
not included among the 1449 queries expressible in QF LIRA, even though all of
them are expressible in the more general logic.

In total, 24006 distinct is and 5701 distinct coulditbe queries were issued
during the course of the test run. The inputs vary considerably in size and in the
complexity of the underlying theory, and for both is and coulditbe approxi-
mately 11% of queries cannot be decided (i.e. return FAIL rather than true or
false). A complete list of queries encountered may be viewed at
https://doi.org/10.5281/zenodo.943349.

https://doi.org/10.5281/zenodo.943349


120 Stephen A. Forrest

Description is coulditbe
Total expressible in SMT-LIB 15572 4690

Expressible with QF LIA 2888 1686
Expressible with QF NIA 2129 744
Expressible with QF LRA 1542 505
Expressible with QF NRA 284 41

Expressible with AUFLIRA 1449 687
Expressible with AUFNIRA 7230 1027

Total not expressible in SMT-LIB 8434 1011

Expressible with complex arithmetic 4134 565
Linear arithmetic with Gaussian integers (“QF LICA”) 258 171

Nonlinear arithmetic with Gaussian integers (“QF NICA”) 259 88
Linear arithmetic with complex numbers (“AUFLIRCA”) 165 32

Nonlinear arithmetic with complex numbers (“AURNIRCA”) 2728 207

All “special” functions 3248 441
Exponential functions and logarithms 461 76

RootOf expressions 232 40
RootOf with exponential and trigometric functions 231 24

Remaining queries with Boolean structure 599 5

Total distinct queries 24006 5701

Table 1. Distinct is and coulditbe queries encountered in a full library test run

Of the total, 15572 of the is queries and 4690 of the coulditbe queries can be
assigned to one of the SMT-LIB2 predefined logics. Of the queries which cannot
be so assigned, the reasons include the use of special functions unsupported by
SMT-LIB, as well as complex arithmetic.

3 Future Work

Recent versions of Maple have seen the addition of explicit links to SAT and
SMT solvers: Maple 2018 is distributed with both the SAT solver MapleSAT [1]
and the SMT solver Z3 [7]. In future, we aim to examine the effectiveness of
using these packaged solvers on SMT instances which arise during evaluation of
symbolic expressions.

An important factor in this assessment will be whether this implementation
offers better performance and meaningful answers (not FAIL) for a larger class
of such queries than existing tools in Maple.

References

1. Hui Liang, Vijay Ganesh. MapleSAT development site.
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/

2. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo The-
ories Library (SMT-LIB), http://www.smt-lib.org, 2016.

https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
http://www.smt-lib.org


SMT-like Queries in Maple 121

3. Jacques Carette. 2004. Understanding Expression Simplification. In Proceed-
ings of the 2004 International Symposium on Symbolic and Algebraic Compu-
tation, Santander, Spain (ISSAC 2004), ACM, New York, NY, USA, 72-79.
doi:10.1145/1005285.1005298.

4. Stephen A. Forrest. 2017. Integration of SMT-LIB Support into Maple. Second
Annual SC2 Workshop, ISSAC 2017, Kaiserslautern, Germany. http://www.sc-
square.org/CSA/workshop2-papers/EA5-FinalVersion.pdf

5. The Assume Facility in Maple, Maple Online Help : The Assume Facility.
6. Logics in SMT-LIB, http://smtlib.org/logics.shtml.
7. de Moura, L. M., and Bjørner, N. Z3: an efficient SMT solver. In TACAS

(2008), vol. 4963 of Lecture Notes in Computer Science, Springer, pp. 337340.
https://github.com/Z3Prover/z3.

http://dx.doi.org/10.1145/1005285.1005298
http://www.sc-square.org/CSA/workshop2-papers/EA5-FinalVersion.pdf
http://www.sc-square.org/CSA/workshop2-papers/EA5-FinalVersion.pdf
https://www.maplesoft.com/support/help/maple/view.aspx?path=assume
http://smtlib.org/logics.shtml
https://github.com/Z3Prover/z3

	SMT-like Queries in Maple

