
Refutation of Products of Linear Polynomials

Jan Horáček and Martin Kreuzer

Faculty of Informatics and Mathematics
University of Passau, D-94030 Passau, Germany

Jan.Horacek@uni-passau.de, Martin.Kreuzer@uni-passau.de

Abstract. In this paper we consider formulas that are conjunctions of
linear clauses, i.e., of linear equations. Such formulas are very interesting
because they encode CNF constraints that are typically very hard for
SAT solvers. We introduce a new proof system SRES that works with
linear clauses and show that SRES is implicationally and refutationally
complete. Algebraically speaking, linear clauses correspond to products
of linear polynomials over a ring of Boolean polynomials. That is why
SRES can certify if a product of linear polynomials lies in the ideal
generated by some other such products, i.e., the SRES calculus decides
the ideal membership problem. Furthermore, an algorithm for certifying
inconsistent systems of the above shape is described. We also establish
the connection with an another combined proof system R(lin).

Keywords: linear clauses, Boolean polynomials, algebraic proof systems, SAT
solving

1 Introduction

In this paper we deal with a special case of the ideal membership problem: given
a set of Boolean polynomials S which are products of linear polynomials and
a Boolean polynomial f which is also a product of linear polynomials, decide
whether f ∈ 〈S〉 . Traditionally, one can use Gröbner bases to solve this prob-
lem. The assumption that the given polynomials are products of linear polyno-
mials allows us introduce a new calculus, called SRES, that is tailored to tackle
this problem. It needs only a lightweight version of the S -polynomials used
Gröbner basis algorithms, namely the s-resolvents we introduced in [6]. These
s-resolvents also generalize the classical resolution rule from propositional logic.
Nevertheless, we consider SRES to be an algebraic proof system (in the sense
of [5], [2] or [4]), and hence we mostly use the terminology of commutative al-
gebra to describe it. The main difference in the algebraic approach is that we
study assignments that yield False , i.e., are zeros of a system, in constrast to
look for assignments that yield True in the SAT terminology.

From the propositional logic point of view, we would like to decide if the
semantic implication S |= f holds. Recall that a linear Boolean polynomial
xi1 + · · · + xij corresponds to a linear XOR constraint xi1 ⊕ · · · ⊕ xij . Such
constraints are very difficult for SAT solvers because the truth value depends

33

34 Jan Horáček and Martin Kreuzer

genuinely on all variables, i.e., changing the value of one variable results in flip-
ping the truth value of the XOR. Many hard formulas in CNF can be constructed
by combining literals into linear XOR constraints, resulting in so-called linear
clauses. For details, we refer the readers to [1] or [12]. Such formulas appear
quite frequently in cryptography, where linear constraints are typically mixed
with highly nonlinear ones, for instance in substitution permutation networks.
Another application is to handle the bit-blasted version of ARX operations (Add-
Roll-Xor) which is becoming a popular part of ARX ciphers. When converted to
bit-wise operations, these conversions give XOR-heavy formulae with a handful
of AND gates describing the carry chains of the adders.

The paper is organized as follows. In Section 2 we recall the definition of
linear clauses and introduce several ways of describing them, in particular using
products of linear Boolean polynomials. Our main data structure to describe
them is the set of linear polynomials that appear in the linear clause.

In Section 3 we define the proof system SRES which incorporates and ex-
tends the s-resoution rule defined in [6]. We prove that the SRES proof system
is implicationally and refutationally complete. Moreover, we establish a rela-
tion with other combined systems that use resolution and polynomial calculus
(see [11]). In particular, we show that SRES simulates the proof system R(lin)
defined in [7, 11].

In Section 4 we describe a concrete algorithm that searches for SRES-refuta-
tion proofs of inconsistent systems, called the SRES Refutation Algorithm, and
compare it to other approaches to the problem at hand. Finally, in Section 5, we
apply the SRES Refutation Algorithm to some examples and point out possible
further improvements.

In the following we use some of the definitions and results given in [6], in par-
ticular the algorithm Sres given there. However, to aid the readers, we tried to
make the paper as self-contained as possible and mention any overlaps explicitly.

2 Background

Let F2 = Z/2Z be the binary field and F2[x1, . . . , xn] a polynomial ring over F2 .
The ring Bn = F2[x1, . . . , xn]/F with F = 〈x21 + x1, . . . , x

2
n + xn〉 is called the

ring of Boolean polynomials in the indeterminates x1, . . . , xn . Let Ln be
the set of all linear polynomials in F2[x1, . . . , xn] , i.e., the set of all polynomials
of degree ≤ 1. (Here we use deg(0) = −1.)

Throughout the paper we consider the obvious correspondences between the
following types of objects, where `1, . . . , `k ∈ Ln :

(C1) A set of linear polynomials H = {`1, . . . , `k} ⊆ Ln .

(C2) A Boolean polynomial h =
∏k

i=1 `i which is a product of linear polynomials
in Bn .

(C3) A linear clause (`1 = 0) ∨ · · · ∨ (`k = 0).

Next we give an example of the above correspondence.

Refutation of Products of Linear Polynomials 35

Example 1 Let H = {x1 +x2 + 1, x1 +x3} ⊆ L3 . Then h = (x1 +x2 + 1)(x1 +
x3) = x1x3 +x1x2 +x2x3 +x3 , and H (resp. h) coresponds to the propositional
logic formula

(x1 ⊕ x2 ⊕ 1 = 0) ∨ (x1 ⊕ x3 = 0).

To simplify the notation, we view the sets in (C1) as polynomials in (C2),
e.g., we speak of zeros of H instead of zeros of h . Furthermore, we always assume
that the linear polynomials `1, . . . , `k appearing in (C1) are pairwise distinct,
i.e., that the set H does not contain duplicates. The notion of linear clauses has
been considered before in [7,11]. Note that many difficult CNF instances can be
naturally encoded in the form (C3). Thus we are targeting very hard formulas
(see [10, Sec. 3]). Furthermore, we observe that two different subsets in (C1)
may represent the same polynomial, as the following example shows.

Example 2 Consider the sets of linear polynomials {x3, x2 + x3, x1 + x3 + 1}
and {x3, x1+x2, x1+x3+1} as in (C1). Then we have x3(x2+x3)(x1+x3+1) =
x3(x1 +x2)(x1 +x3 +1) in B3 , i.e. the corresponding polynomials in (C2) agree.

The subsets in (C1) are measured by degree and size. We recall here some
definitions from [6] and [11].

Definition 3 Let H = {`1, . . . , `k} ⊆ Ln .

(1) The number deg(h) = #H is called the degree of H .
(2) For ` ∈ Ln , we let var(`) be the set of indeterminates occurring in ` . We

call the number size(H) = # var(`1) + · · ·+ # var(`k) the size of H .

Our goal in this paper is to show that a given set of linear clauses is unsat-
isfiable. For this purpose, we define semantic implication as follows.

Definition 4 Let F1, . . . , Fm, H ⊆ Ln . We say that F1, . . . , Fm semantically
imply H if every F2 -rational common zero of the Boolean polynomials corre-
sponding to F1, . . . , Fm is a zero of H . In this case we write F1, . . . , Fm |= H .

From the algebraic point of view, we have F1, . . . , Fm |= H if and only if
H ∈ 〈F1, . . . , Fm〉 ⊆ Bn . Note that the zeros of an ideal in Bn are always F2 -
rational, because ideals in Bn correspond to ideals in F2[x1, . . . , xn] that contain
the field ideal 〈x21 +x1, . . . , x

2
n +xn〉 . Using the newly defined terminology, we

can say that our goal is to refute a given set of linear clauses, i.e. to prove that
the corresponding sets of linear polynomials semantically imply {1} .

3 The SRES Proof System

Recall that a proof system, sometimes called a Hilbert system or Hilbert calcu-
lus, consists of a syntax, i.e. a set of rules which determine the set of well-formed
formulas of the system, by a set of axioms, i.e. a set of formulas which are as-
sumed to be tautologies, and by its set of rules of inference, i.e. by a set of rules
which determine how one can get new tautologies from known ones.

36 Jan Horáček and Martin Kreuzer

For instance, the Gröbner proof system defined in [5] admits all formulas
of the form f(x1, . . . , xn) = 0 where f ∈ F2[x1, . . . , xn] . Its axioms are the
Boolean axioms x2i + xi = 0 for i = 1, . . . , n , and its rules of inference are

f g

f + g
(Pa) and

f

xif
(Pm)

where f, g ∈ F2[x1, . . . , xn] and xi is an indeterminate.
In this section we continue to study the proof system based on s-resolution

which was introduced in [6]. More precisely, we extend that system by other
inference rules, and thus we define the new proof system called SRES. Let us
begin by recalling the proof system in [6].

Definition 5 The proof system s-resolve is defined by the following parts:

(1) A formula is a set of linear polynomials {`1, . . . , `s} ⊂ Ln , where s ∈ N+ .
(2) The axioms are the Boolean axioms given by {xi, xi + 1} for i = 1, . . . , n .
(3) There exists one rule of inference (R), namely⋃s

i=1{`i} ∪G
⋃s

i=1{`i + 1} ∪ G̃⋃s−1
i=1 {`i + `i+1 + 1} ∪G ∪ G̃

(R)

where G, G̃ ⊆ Ln and s ≥ 1. This rule is also called s-resolution. (For

s = 1, we let
⋃s−1

i=1 {`i + `i+1 + 1} = ∅ .) The result of an application of the
s-resolution rule is called an s-resolvent.

Let us note that the Boolean axioms immediately imply the following remark.

Remark 6 By applying 2-resolution to the axioms {xi, xi+1} and {xi+1, xi} ,
we obtain that {0} is a tautology in the s-resolve proof system.

In [6] we showed that s -resolve is correct in the sense of the following defi-
nition.

Definition 7 Let (I) be a rule of inference of a proof system. We say that the
rule of inference (I) is correct if

F1 F2 . . . Fm

H
(I)

for some formulas F1, . . . , Fm, H implies F1, . . . , Fm |= H .

For s ≥ 3, the s -resolution rule depends e.g. on the numbering of the linear
polynomials. (2-resolvents are unique because there is only one way how to form
the linear polynomial `1+`2+1.) However, considered as a Boolean polynomial,
the s-resolvent is uniquely determined. The next example is a point in case.

Refutation of Products of Linear Polynomials 37

Example 8 Resolving two sets F = {x1 + 1, x1 + x3, x1 + x2 + 1, x2 + x3 + 1}
and G = {x1, x1 + x3 + 1, x1 + x2, x2 + x3} with the numbering `1 = x1 + 1,
`2 = x1 + x3 , `3 = x1 + x2 + 1, `4 = x2 + x3 + 1 yields the 4-resolvent
R1 = {x3, x2 + x3, x1 + x3 + 1} . If we swap the last two polynomials in G ,
4-resolution with the numbering `1 = x1 + 1, `2 = x1 + x3 , `4 = x1 + x2 + 1,
`3 = x2 + x3 + 1 yields R2 = {x3, x1 + x2, x1 + x3 + 1} . Both R1 and R2

correspond to the same Boolean polynomial, as we saw in Example 2.

Next we enrich s-resolve with a new rule of inference as follows.

Definition 9 The proof system SRES is defined by the following parts.

(1) The syntax agrees with the syntax of s -resolve, i.e. a formula is a set of
linear polynomials {`1, . . . , `s} ⊂ Ln , where s ∈ N+ .

(2) The axioms are the Boolean axioms {xi, xi + 1} for i = 1, . . . , n .
(3) The rules of inference consist of s-resolution (R) and the following weak-

ening rule (W):
H

H ∪ {`}
(W)

for H ⊆ Ln and ` ∈ Ln .

Since we trivially have H |= H ∪{`} , the proof system SRES is correct with
respect to semantic implication. Next we recall the definition of a proof.

Definition 10 Let PS be a proof system. A PS-proof of a formula H from the
initial premises F1, . . . , Fm in the proof system PS is a sequence of formulas
π = (G1, . . . , Gk) such that Gk = H and each of the formulas Gi is of one of
the following forms:

(1) Gi ∈ {F1, . . . , Fm}
(2) Gi is one of the axioms of PS.
(3) Gi is obtained from some of the formulas Gj with j < i by applying one of

the rules of inference of the proof system PS.

If a formula H has a PS-proof from {F1, . . . , Fm} , we write F1, . . . , Fm `PS

H , or simply F1, . . . , Fm ` H if no confusion can arise.

Since the proof system SRES is correct, our goal to refute {F1, . . . , Fm}
can now be expressed by asking that we should prove F1, . . . , Fm ` {1} . No-
tice that the intended semantics is that an unsatisfiable formula corresponds to
polynomial equations `i,1 · · · `i,s = 0 for i ∈ {1, . . . ,m} which has no solution.
Equivalently, a tautology is an equation which holds for all points of Fn

2 . A proof
can be seen as a sequence of applications of rules to axioms or previously proved
tautologies.

Next we extend the capabilities of our proof system by deriving the following
further rules of inference.

Definition 11 Let F,G be subsets of Ln , and let `, `1, `2 ∈ Ln .

38 Jan Horáček and Martin Kreuzer

(1) The rule (U) defined by
H ∪ {1}

H
(U)

is called unit cancellation.
(2) The rule (MP) defined by

{`} H ∪ {`+ 1}

H
(MP)

is called modus ponens.
(3) The rule (A) defined by

F ∪ {`1} H ∪ {`2}

F ∪H ∪ {`1 + `2}
(A)

is called the addition rule.

Proposition 12 The rules (U), (MP), and (A) are correct. Furthermore, any
proof derived using (U), (MP) and (A) can be rewritten into an SRES-proof.

Proof. The correctness of (U) follows from the observation that multiplying a
Boolean polynomial by 1 does not change its zeros. Using Remark 6 we apply
1-resolution on H ∪ {1} and {0} , and we get H . To prove modus ponens it
suffices to use (R) with s = 1 and G = ∅ . Finally, we show the correctness
of (A). Using the weakening rule, we infer F ∪ {`1, `2 + 1} from F ∪ {`1} and
H∪{`2, `1+1} from H∪{`2} . Then, using 2-resolution, we get F∪H∪{`1+`2} .

ut

The following remark and the subsequent proposition will become important
later in the proof of Proposition 18.

Remark 13 Let π = (H1, . . . ,Hk) be an SRES-proof of Hk from F1, . . . , Fm

that uses only the s-resolution rule. Let ` be an element of one of the sets Hi .
Then ` lies in the F2 -vector space generated by the linear polynomials contained
in the union

⋃m
i=1 Fi .

Proposition 14 Let F ⊆ Ln and let i ∈ {1, . . . , n} . For a ∈ {0, 1} , let
F (xi 7→ a) denote the set which is obtained by substituting xi 7→ a into
the linear polynomials contained in F . Then the following claims hold true
for i ∈ {1, . . . , n} .

(1) F, {xi} `SRES F (xi 7→ 0)
(2) F (xi 7→ 0), {xi} `SRES F
(3) F, {xi + 1} `SRES F (xi 7→ 1)
(4) F (xi 7→ 1), {xi + 1} `SRES F

Refutation of Products of Linear Polynomials 39

Proof. First we prove (1). Let ` ∈ F be such that xi occurs in ` . The poly-
nomial xi + ` corresponds to substituting xi = 0 into ` . This addition can be
derived in SRES using Proposition 12. The claims (2)–(4) follow analogously
from Proposition 12. ut

The next example illustrates this proposition.

Example 15 Let F1 = {x1 + x2, x1} and F2 = {x1 + 1} . By Proposition 12,
there exists an SRES-proof of the set {x2 +1, 1} from F1, F2 which corresponds
to the substitution of x1 = 1 into F1 . On the other hand, we can “backtrack”
the substitution, i.e. we have F2, {x2 + 1, 1} `SRES F1 .

The following example shows an important advantage of the SRES proof
system over the Gröbner proof system defined in [5]. More precisely, it shows
that the data structures (C1)–(C3) efficiently store dense linear clauses.

Example 16 Consider the sets

F1 = {x1 + x2, . . . , xn + xn+1}
F2 = {x1 + x2 + 1}
F3 = {x2 + x3 + 1}
... =

...

Fn+1 = {xn + xn+1 + 1}

On one hand, it is easy to see that the system is inconsistent because sub-
stituting F2, . . . , Fn+1 into F1 gives us 1. On the other hand, the input for
the Gröbner basis algorithm is assumed to be expanded (i.e., not in the form of
products of linear polynomials). We can always find n ∈ N such that expand-
ing F1 to the polynom f1 =

∏n
i=1(xi + xi+1), which has 2n terms, exceeds the

available memory, and hence any Gröbner basis algorithm can not be applied.
Notice that we have size(F1) = 2n .

One workaround would be to introduce new indeterminates to break the
long product, but it does not help too much because the Gröbner basis algo-
rithm substitutes the new indeterminates back, and thus recovers the expanded
polynomial F1 again.

However, by Proposition 14, there exists a short SRES refutation that cor-
responds to the substitution of F2, . . . , Fn+1 into F1 .

The following definition provides further useful properties of proof systems.

Definition 17 (1) A proof system is called implicationally complete if for
every formula H and every set of formulas {F1, . . . , Fm} such that we have
F1, . . . , Fm |= H , there exists a proof of H from F1, . . . , Fm in this proof
system.

(2) A proof system is called refutationally complete if for every inconsistent
set of formulas {F1, . . . , Fm} , i.e. for F1, . . . , Fm |= {1} , there exists a proof
of {1} from F1, . . . , Fm in this proof system.

40 Jan Horáček and Martin Kreuzer

The proof of the following proposition is inspired by the corresponding proof
for the classical resolution calculus (see for instance [3, Th. 4.1.5]) and by the
proof given in [11, Th. 5.1])

Proposition 18 The proof system SRES is implicationally and refutationally
complete.

Proof. First we show that SRES is implicationally complete. Let F1, . . . , Fm, H ⊆
Ln be sets of linear polynomials such that F1, . . . , Fm |= H . We want to
prove that F1, . . . , Fm `SRES H . We proceed by induction on the number
k = size(F1) + · · ·+ size(Fm) + size(H).

Let us consider the case k = 0, i.e. the case when all linear polynomials
in Fi and H are constants 0 or 1. If all sets F1, . . . , Fm are equal to {0} , there
is trivially an SRES-proof of {0} . All the semantic implicants of {0} of size 0
can be derived from {0} by the weakening rule. If there exists a set Fi = {1} ,
then there is trivially an SRES-proof that refutes F1, . . . , Fm , and hence we can
derive any linear clause by the weakening rule and the unit cancellation rule.
Finally, if Fi = {0, 1} , then Fi is simplified to {0} by unit cancellation, and
thus we can use the previous argument.

Now assume that the claim holds for some k ≥ 0 and consider a semantic
implication

F1, . . . , Fm |= H

in which the sum of sizes of F1, . . . , Fm, H is at most k+1. Choose i ∈ {1, . . . , n}
such that xi occurs in F1∪· · ·∪Fm∪H . Given a ∈ {0, 1} , let F (xi 7→ a) denote
the set which is obtained by substituting xi 7→ a into the linear polynomials
contained in F .

By Proposition 14, we have Fj , {xi} `SRES Fj(xi 7→ 0) for j = 1, . . . ,m .
Moreover, we clearly have F1(xi 7→ 0), . . . , Fm(xi 7→ 0) |= H(xi 7→ 0). By
the induction hypothesis, there is an SRES-proof of H(xi 7→ 0) from F1(xi 7→
0), . . . , Fm(xi 7→ 0). Altogether, we get

{xi}, F1, . . . , Fm `SRES H(xi 7→ 0).

Furthermore, by Proposition 14, we have H(xi 7→ 0), {xi} `SRES H . All in
all, there is an SRES-proof π1 of H from {xi}, F1, . . . , Fm . Analogously, we get
an SRES-proof π2 of H from {xi + 1}, F1, . . . , Fm .

Next we modify the derivations of π1 (resp. π2) such that they start from
{xi, xi + 1}, F1, . . . , Fm instead of {xi}, F1, . . . , Fm (resp. {xi + 1}, F1, . . . , Fm).
Note that the same rules of inference can be applied, and thus one can rewrite
the proof π1 into an SRES-proof α1 from {xi, xi + 1}, F1, . . . , Fm of either H
or H ∪ {xi} . Similarly, we rewrite π2 into an SRES-proof α2 from {xi, xi +
1}, F1, . . . , Fm of H or H ∪ {xi + 1} . If the proof α1 or α2 ends with H , we
are done. Otherwise, we have H ∪ {xi}, H ∪ {xi + 1} `SRES H by a single step
of the 1-resolution rule, which concludes the proof. ut

The SRES proof system is in fact a combined proof system in the sense of [8,
Sec.7.1]. For instance, R(lin) in [11] is an another example of a combined proof

Refutation of Products of Linear Polynomials 41

systems that combines resolution with polynomial calculus. By Proposition 12 we
immediately get that SRES efficiently simulates the system R(lin). This means
that there exists a polynomial-time algorithm that translates any R(lin)-proof
of H from F1, . . . , Fm to an SRES-proof of H from F1, . . . , Fm .

On the other hand, SRES cannot simulate the rule (Pa) of the Gröbner proof
system because addition of two products of linear polynomials does not have to
be a product of linear polynomials in Bn , e.g., x1 · x2 + 1 cannot be written as
a product of linear polynomials in B3 .

4 The SRES Refutation Algorithm

In [6] the authors introduced an algorithm that finds refutation proofs for un-
satisfiable formulas in CNF using s-resolution. In this section we generalize this
result to formulas that are conjuctions of linear clauses and show that it is refuta-
tionally complete in the sense of Definition 17. We recall the following algorithm
for computing the s-resolvent of two polynomials which is described in [6].

Algorithm 1 Sres (s-Resolution of Two Polynomials)
Input: Sets F,G ⊆ Ln . We assume that #{` ∈ F | `+ 1 ∈ G} ≥ 1.
Output: A set R ⊆ Ln such that R is the s-resolvent of F and G .

1: Write {` ∈ F | ` + 1 ∈ G} as {`1, . . . , `s} .
2: F ′ := {` ∈ F | ` + 1 /∈ G}
3: G′ := {` ∈ G | ` + 1 /∈ F}
4: R := F ′ ∪G′

5: if s = 1 and R = ∅ then
6: return {1}
7: else
8: for i = 1, . . . , s− 1 do
9: if `i + `i+1 /∈ R then

10: R := R ∪ {`i + `i+1 + 1}
11: else
12: return {0}
13: end if
14: end for
15: end if
16: return R

Algorithm 2 extends two polynomials by the weakening rule in all possible
ways such that s-resolution can be applied. More precisely, this set of extensions
is defined as follows.

Definition 19 Let F,G ⊆ Ln . The set of all pairs K ⊆ Ln ×Ln such that the
following two conditions hold for all (F ′, G′) ∈ K

(1) #{` ∈ F ′ | `+ 1 ∈ G′} ≥ 1

42 Jan Horáček and Martin Kreuzer

(2) F ′ ∪G′ ⊆ F ∪G ∪ {`+ 1 | ` ∈ F ∪G}

is called the set of expansions for F,G .

Condition (1) encodes the fact that there exists at least one ` ∈ Ln in F ′ and
G′ on which we can s-resolve. Condition (2) restrains F ′, G′ to contain linear
polynomials ` or `+ 1 such that ` ∈ F ∪G . Note that the set of expansions for
F,G is unique.

Algorithm 2 produces the set of expansions in a brute-force way, i.e., Condi-
tion (1) is implemented in Step 10, and Condition (2) is fulfilled because of the
two foreach loops in Steps 3, 4.

Algorithm 2 AllExpansions (All Possible Expansions to s-Resolution)
Input: Sets F,G ⊆ Ln .
Output: The set of expansions for F,G .

1: {`1, . . . , `k} := {` ∈ F | ` /∈ G, ` + 1 /∈ G}
2: {`′1, . . . , `′k′} := {` ∈ G | ` /∈ F, ` + 1 /∈ F}
3: foreach A ∈ {`1, `1 + 1, 1} × · · · × {`k, `k + 1, 1} do
4: foreach B ∈ {`′1, `′1 + 1, 1} × · · · × {`′k′ , `′k′ + 1, 1} do
5: Write A = (a1, . . . , ak) .
6: Write B = (b1, . . . , b

′
k) .

7: F ′ := F ∪
⋃k

i=1{ai}
8: G′ := G ∪

⋃k′

i=1{bi}
9: Minimize the representation of F ′ and G′ by applying unit cancellation, i.e.,

remove the element 1 from F ′, G′ .
10: if #{` ∈ F ′ | ` + 1 ∈ G′} ≥ 1 then
11: K := K ∪ {(F ′, G′)}
12: end if
13: end foreach
14: end foreach
15: return K

The next example shows the generation of the pairs in Algorithm 2.

Example 20 Let F = {x1, x2, x3 + 1} and G = {x1 + 1, x2, x4} . Then we
may extend F to F itself, to {x1, x2, x3 + 1, x4} , or to {x1, x2, x3 + 1, x4 + 1} .
Similarly, we may extend G to G , to {x1 + 1, x2, x4, x3 + 1} , or to {x1 +
1, x2, x4, x3} . Altogether, nine pairs are constructed.

Next we process the pairs computed by Algorithm 2 in increasing order with
respect to the following ordering relation.

Definition 21 Let F,G, F1, F2, G1, G2 ⊆ Ln .

(1) We write F � G if we have deg(F) < deg(G), or if we have deg(F) = deg(G)
and size(F) < size(G).

Refutation of Products of Linear Polynomials 43

(2) Let #{` ∈ F1 | `+ 1 ∈ G1} ≥ 1 and #{` ∈ F2 | `+ 1 ∈ G2} ≥ 1. We write
(F1, G1) E (F2, G2) if Sres(F1, G1) � Sres(F2, G2).

Note that the size of the s-resultants can be determined without actually
executing Sres (see [6, Alg. 8]). Now we are ready to present Algorithm 3 for
constructing SRES-refutations. We assume that all sets occurring in the algo-
rithm do not contain duplicates, i.e., that removal of duplicates is applied when-
ever possible. This is the classical assumption on sets in programming languages
such as python.

Algorithm 3 SRES Refute (SRES Refutation Algorithm)
Input: Subsets F1, . . . , Fm ⊆ Ln such that Fi does not contain any duplicate
elements.
Output: False if F1, . . . , Fm |= {1} , True otherwise.
Require: Algorithms 1, 2.

1: S := {F1, . . . , Fm}
2: if {1} ∈ S then
3: return False

4: end if
5: Apply unit simplification and cancellation on S .
6: {Q1, . . . , Qk} := S ∪

⋃n
i=1{xi, xi + 1}

7: Let P be the list containing all pairs computed by AllExpansions(Qi, Qj) for
1 ≤ i < j ≤ k .

8: while P 6= ∅ do
9: Let (F,G) be a minimum of P w.r.t. E , and remove (F,G) from P .

10: R :=Sres(F,G)
11: if R = {1} then
12: return False

13: else if R is not a subset of any Q ∈ S then
14: Remove all Q from S with R (Q and all pairs (Q1, Q2) from P such that

R (Q1 or R (Q2 .
15: Append all pairs in AllExpansions(R,G) for G ∈ S,R 6= G to the list P .
16: S := S ∪ {R}
17: end if
18: end while
19: return True

Proposition 22 Algorithm 3 is correct, refutationally complete, and finite. In
particular, the algorithm returns False if and only if F1, . . . , Fm |= {1} .

Proof. Finiteness follows from the fact that there are only finitely many linear
polynomials in Ln . Hence the sets in S are finite, and so is the set P ⊆ Ln×Ln .

The algorithm is correct because the SRES inference rules semantically imply
their results.

It remains to show that the algorithm is refutationally complete. Assume that
the ideal generated by the polynomials corresponding to the input sets has no

44 Jan Horáček and Martin Kreuzer

common zero. By Proposition 18, we know that there exists an SRES-refutation
of F1, . . . , Fm . The Boolean axiom is incorporated in Step 6, and weakening
takes place in the function AllExpansions such that all possible choices to form
an s -resolvent are created for all possible s ∈ N+ . The s-resolution rule is then
applied by calling Sres. Any set Q that is a proper superset of some set already
occurring in S is ignored because all possible s -resolvents that would be created
using Q are at that time already in P . Thus the algorithm sequentially creates
all SRES-derivations from F1, . . . , Fm . It arranges the computation such that
“smaller” sets in terms of size are preferred. Since Proposition 18 shows that
there exists an SRES-refutation, the set {1} is eventually discovered by the
algorithm. ut

The list P in Algorithm 3 can be implemented as a min-heap such that the
minimal pair is always easily found and extracted. The number of pairs in P may
be huge. Thus it is convenient to compute the s -resolvents only in Step 10. The
next example indicates how the pairs can be stored. The s-resolvent is created
only if its size is minimal.

Example 23 Let F1 = {x1 +1} and F2 = {x1, x2} . Algorithm AllExpansions

outputs (F1, F2), (F1 ∪ {x2 + 1}, F2), (F1 ∪ {x2}, F2). The pair (F1 ∪ {x2}, F2)
can be stored as a tuple (1, {x2}, 2, ∅, 1) with the meaning “Sres of F1 ∪ {x2}
and F2 ∪ ∅ has size 1”.

Recall that we need to know the sizes of all s-resultants in P in order to
select the minimum. Thus the chosen format is very convenient because the size
of the s -resolvent can be predicted as in [6, Alg. 8] without computing the actual
s-resolvents.

Furthermore, one can form only 2-resolvents in Algorithm 3 since 2-resolution
is enough to simulate R(lin) which is implicationally and refutationally complete.
However, “extra” linear clauses coming from s-resolution steps with s ≥ 3 may
come in handy, and the refutation can be found faster in Algorithm 3.

5 Examples and Future Directions

In this section we give some examples of the SRES proof system. Initial experi-
ments on refuting CNF formulae using SRES can be found in [6, Sec. 9]. Those
experiments were focused on comparing resolution with SRES based on CNF
benchmarks coming from [10]. These formulae are hard for classical resolution,
but there may exist short refutations in other axiomatic systems of propositional
calculus [13].

In the following example taken from [5], we compare SRES with algebraic
systems such as the Gröbner proof system and the Nullstellensatz system [4, Def.
2.1]. Let P = F2[x1, . . . , xn] . A Nullstellensatz proof of a polynomial h ∈ P
from polynomials f1, . . . , fm ∈ P is a tuple of polynomials (p1, . . . , pm, r1, . . . , rn)
∈ Pm+n such that the equation

Refutation of Products of Linear Polynomials 45

m∑
i=1

pifi +

n∑
j=1

rj(x
2
j + xj) = h

holds in P . The degree of the proof is defined as

max
{

max
i

(
deg(pi) + deg(fi)

)
,max

j

(
deg(rj) + 2

)}
.

Example 24 Consider the polynomials f1 = x1 + x1x2 and f2 = x2 + x2x3 in
F2[x1, x2, x3] . They encode two implications x1 → x2 and x2 → x3 . (E.g., if
x1 = 1, then x2 is constrained to be 1.) Let us write a proof of h = x1 + x1x3 ,
i.e., the implication x1 → x3 , in the Gröbner proof system.

Firstly, we multiply f2 by x1 , and we get g1 = x1x2 +x1x2x3 . The addition
f1 + g1 gives us x1 + x1x2x3 . Then we compute g2 = x3 · f1 = x1x3 + x1x2x3 .
Finally, we get g1 + g2 = x1 + x1x3 .

Note that the maximal degree appearing in the proof is 3. On the other
hand, there exists a Nullstellensatz proof of the maximal degree O(log(n)) of
x1 → xn from x1 → x2, . . . , xn−1 → xn (see [5]). In our case, the Nullstellensatz
proof is the tuple (1 + x3, x1, 0, 0, 0) because of the equality

(1 + x3)(x1 + x1x2) + x1(x2 + x2x3) = x1 + x1x3.

Now we write the polynomials f1, f2 as F1 = {x1, 1 +x2} and F2 = {x2, 1 +
x3} . Resolving on x2 yields H = {x1, 1+x3} which correponds to the polynomial
h . Note that the maximal degree in the proof is now 2, and the SRES proof is
simpler than the Gröbner proof.

Further typical examples that are easy for SRES and difficult for resolu-
tion [13] are inconsistent systems of linear equations. By Proposition 12, SRES
simulates the addition rule, and thus one can use Gaußian elimination to pro-
duce SRES-refutations for such systems. Recall the encoding into linear clauses
in Example 16 is very efficient for SRES, but multiplying out the products causes
an exponential blowup. A similar problem emerges in the next example in the
case of CNF encodings.

Example 25 Consider the linear system

f1 = x1 + · · ·+ xn, f2 = x1 + · · ·+ xn + 1

over F2 . On one hand, encoding f1 and f2 in CNF suffers from introducing
either exponentially many auxiliary variables or exponentially many new clauses.
On the other hand, by the weakening rule and 2-resolution we get f1(f2 + 1) +
(f1 + 1)f2 = 1 in Bn immediately.

Let us conclude this section and this paper with a few remarks about the
problem that is solved by Algorithm 3. The traditional way in Computer Algebra
is to use Gröbner basis algorithms. As we saw in Example 16, they have serious
drawbacks in our setting and tend to run out of memory quickly.

46 Jan Horáček and Martin Kreuzer

Another approach is to use a SAT solver, e.g. a version of the DPLL algo-
rithm. However, the DPLL approach needs a huge number of clauses to describe
XOR constraints. All in all, the classical DPLL algorithm can be extended to
linear clauses in a rather straightforward way, as for instance done in [7], but
appears to be not very efficient.

The new approach introduced here, namely the SRES proof system and the
SRES Refutation Algorithm, offers the prospect of a new and tailor-made way
to treat systems of linear clauses. Besides finding possible optimizations of the
implementation, we may enhance it further by combining it with a suitable
conflict-learning mechanism such as the ones which lie at the heart of modern
SAT solvers. Recall that conflict clauses in SAT solvers can be generated from
1-resolvents of a cut in the implication graph. Thus, s -resolution may generalize
conflict learning in the case of linear clauses or help to improve a separate XOR-
reasoning module such as one introduced in [9].

Acknowledgments. The authors thank Jan Kraj́ıček and Iddo Tzameret for
fruitful discussions on combined proof systems. We thank the anonymous review-
ers for their many insightful comments. This work was financially supported by
the DFG project “Algebraische Fehlerangriffe” [KR 1907/6-2].

References

1. Baumgartner, P., and Massacci, F. The taming of the (X)OR. In Computa-
tional LogicCL 2000. Springer, 2000, pp. 508–522.

2. Berkholz, C. The relation between polynomial calculus, Sherali-Adams, and
sum-of-squares proofs. In LIPIcs-Leibniz International Proceedings in Informatics
(2018), vol. 96, Leibniz-Zentrum fuer Informatik, Schloss Dagstuhl.

3. Büning, H. K., and Lettmann, T. Propositional logic: deduction and algorithms,
vol. 48. Cambridge University Press, 1999.

4. Buss, S., Impagliazzo, R., Kraj́ıček, J., Pudlák, P., Razborov, A. A., and
Sgall, J. Proof complexity in algebraic systems and bounded depth frege systems
with modular counting. Computational Complexity 6, 3 (1996), 256–298.

5. Clegg, M., Edmonds, J., and Impagliazzo, R. Using the Groebner basis al-
gorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing (New York, USA, 1996), STOC ’96, ACM
Press, pp. 174–183.

6. Horáček, J., and Kreuzer, M. On conversions from CNF to ANF. (submitted)
(2018).

7. Itsykson, D., and Sokolov, D. Lower bounds for splittings by linear combi-
nations. In International Symposium on Mathematical Foundations of Computer
Science (2014), Springer, pp. 372–383.

8. Krajicek, J. Proof complexity (book draft). Available at
https://www.karlin.mff.cuni.cz/k̃rajicek/prfdraft2.pdf, 2018.

9. Laitinen, T., Junttila, T., and Niemelä, I. Conflict-driven xor-clause learn-
ing. In Theory and Applications of Satisfiability Testing – SAT 2012 (Berlin,
Heidelberg, 2012), A. Cimatti and R. Sebastiani, Eds., Springer Berlin Heidelberg,
pp. 383–396.

Refutation of Products of Linear Polynomials 47

10. Lauria, M., Elffers, J., Nordström, J., and Vinyals, M. CNFgen: A gen-
erator of crafted benchmarks. In Theory and Applications of Satisfiability Testing
– SAT 2017 (Cham, 2017), S. Gaspers and T. Walsh, Eds., Springer International
Publishing, pp. 464–473.

11. Raz, R., and Tzameret, I. Resolution over linear equations and multilinear
proofs. Annals of Pure and Applied Logic 155, 3 (2008), 194 – 224.

12. Soos, M., Nohl, K., and Castelluccia, C. Extending SAT solvers to cryp-
tographic problems. In International Conference on Theory and Applications of
Satisfiability Testing (2009), Springer, pp. 244–257.

13. Urquhart, A. Hard examples for resolution. J. ACM 34, 1 (Jan. 1987), 209–219.

