
Experience Report of a Software Development Course

in a Faculty of Fine Arts

Luis Corral
School of Information Technology and Electronics

lrcorralv@itesm.mx

Monterrey Institute of Technology and Higher Education

Abstract

This paper describes the implementation of
Computational Thinking techniques to pro-
mote the development of software develop-
ment skills in Fine Arts postgraduate stu-
dents, understanding that the population does
not have formal academic training in Com-
puter Science. We present a case study ob-
served during a software development course
taught to a non-expert population of Fine
Arts postgraduate students. As a result of
the implementation of Computational Think-
ing concepts, students executed software solu-
tions applicable to real-world problems, and
Computational Thinking competencies were
observed through characteristics of concepts,
practices and perspectives. This paper dis-
cusses as well situations that may set basis
for strategies of assessment or evaluation of
Computational Thinking principles.

1 Introduction

Traditional education in Computer Science enables
students to become professionals able to apply com-
puter knowledge in problems that occur in everyday
life, thus supporting or serving several other disci-
plines. As Computer Science students acquire a core
skillset, it is expected that they develop a sufficient
command on [Perkovic 2010]:

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

In: A. Piotrkowicz, R. Dent-Spargo, S. Dennerlein, I. Koren,
P. Antoniou, P. Bailey, T. Treasure-Jones, I. Fronza, C. Pahl
(eds.): Joint Proceedings of the CC-TEL 2018 and TACKLE
2018 Workshops, co-located with 13th European Conference
on Technology Enhanced Learning (EC-TEL 2018), 03-09-2018,
published at http://ceur-ws.org

1. Computer literacy: the ability to use basic
computer applications, for example, an operating
system, a word processor, or a web browser;

2. Computational fluency: consists of having a
high level of understanding of the functioning of
a complete computer system;

3. Computational thinking: refers to the ability
to apply computer techniques to problems and
projects in all areas, for example multiple aspects
of science, arts and humanities [Wing 2006].

The current professional market makes this taxon-
omy very relevant: concepts like digital transforma-
tion, Industry 4.0, cyber-physical systems and others
make very relevant having a good command of Com-
puter Science concepts, even for non computer sci-
entists. In this front, Computational Thinking lays
the foundation for incorporating software development
skills in a wider span of profiles. It is not uncommon
that professionals in certain domain of a business, mar-
ket, or science, require to expand their knowledge to
gain basic or complex skills on software development.
The reason behind this is a strong push of the market
to make professionals to participate in the develop-
ment of software tools of different complexities that
enable the daily execution of their jobs, regardless of
the discipline or context of application (for example a
macro, an automation script, or a web page). A soft-
ware suite like Microsoft Office offers to the user the
capacity of automating repetitive tasks using macros
that can be built without coding. For users who need
more complex features, it is possible to implement sim-
ple code using Visual Basic. This illustrates how com-
mon products enable users to start developing basic
software pieces, that are created without strong basis
on programming languages or software development.

In a traditional perspective, the incorporation of
Computer Science topics in non-Computer Science



curriculum has been directed mainly to computer lit-
eracy, being the development of operational capacities
one of the most common learning objectives (that is,
the ability to use or operate a computer application
or package) [Bizzarri 2011]. However, this does not
necessarily mean that having a good level of computer
literacy will lead to having a good command of the
underlying principles of Computer Science. This be-
comes particularly important if we consider that those
principles are necessary for profiles who will develop
software as part of their professional jobs even though
they are not computer scientists or trained software
developers.

This paper describes the implementation of Com-
putational Thinking techniques to promote the devel-
opment of software development skills in a group of
postgraduate students of a Fine Arts Faculty, under-
standing that the target population has no previous
experience nor formal training in Computer Science.
Moreover, the paper discusses situations that may set
basis for strategies of assessment or evaluation of Com-
putational Thinking principles.

2 State of the Art

According to the definition of Computational Think-
ing (CT), it ”involves solving problems, designing sys-
tems, and understanding human behavior, making use
of the fundamental concepts of Computer Science”
[Wing 2006]. From this viewpoint, CT can be under-
stood as applying scientific-computer thinking when
facing and solving a problem. This capacity should be
made available not only in higher education programs
in Computing, but in other higher education programs
and even in basic education programs. In consequence,
the need to teach this skillset to students of all edu-
cational levels becomes relevant. To address the issue,
research efforts have focused on the definition of cur-
ricula that include teaching these skills; nevertheless,
there is still room to continue deepening in the topic,
and carrying out empirical research [Grover 2013].

The development of CT skills also means the im-
provement of certain competences, which are usu-
ally organized by a progression table, which includes,
among others, collecting, analyzing and representing
data, decomposing and abstracting problems, system-
atizing, automating and simulating solutions. Previ-
ous work in CT has focused on issues of definition
of the concept and the tools that foster CT. Repen-
ning [Repenning 2010] lists a series of conditions that a
computerized tool must meet for the systemic impact:
low learning threshold, allow prototype development,
facilitate the transfer of knowledge, be systemic and
sustainable. On the other hand, it is recommended
the balance and universality in the previous training

of the population that implements CT [Cooper 2010].

In a practical approach, the question about the
teaching of computer skills to non-computer scientists
has caught the attention of the academic community
over the time, from the 80s to the present. However,
during recent years, the current perspective has fo-
cused on CT as an efficient strategy to accomplish the
mission. This approach has attracted the attention of
a broad academic community, and several scientific ar-
ticles have tried to capture the essence of CT and its
field of application [Bloss 2001, Walker 2010]. Previ-
ously, it has been discussed and researched how CT
helps in understanding the capabilities of computer
science applied in other areas. For example, the appli-
cability of CT in other fields has been studied, includ-
ing Medicine [Gong 2011], Astronomy [Gray 2010],
Archeology [Troccoli 2005], Journalism [Corral 2010],
Political Science [Conitzer 2007], etc. In this paper,
we extend the experience previously reported incorpo-
rating an additional domain: Fine Arts.

3 Objectives

The goal of the implementation of CT as a learning
strategy is to improve the ability of students to concep-
tualize, understand and use information technology in
different fields of application. Likewise, the presence of
study programs that involve software development in
non-specialized schools and faculties, as well as gradu-
ation profiles, include the training of professionals ca-
pable of interacting with others in order to find ideas
to solve problems, and imperatively requires the im-
plementation and systematization of a computational
strategy.

Research Goal

Understanding if through Computational Thinking,
didactic and methodological tools can be created to
explain computer concepts in a way that facilitates
students with non-software profiles to create compu-
tational solutions applicable to real-world problems.

4 Research Setting

A work setting was developed in the form of soft-
ware development training courses in a segmented non-
software population. A group of five graduate Fine
Arts students was observed. The students came from
different undergraduate profiles, mainly graphic design
and other visual arts, pursuing a graduate degree on
Web Design in a Mexican state-funded, public Univer-
sity. The profile of this population is approximately 30
years old, with a university degree, preferably in artis-
tic or creative careers, which allows observing students



with relatively limited knowledge in software develop-
ment.

The graduate program they course is a professional
degree designed to train specialists in Web design, pro-
viding our students with theoretical and methodolog-
ical elements to solve needs through technological in-
novation in the field of digital communication in Web
environments. This mesh of disciplines requires start-
ing from strong basis on visual communication and
design, but transcend those skills into abilities to de-
sign and implement the software product (that is, a
web system, web site or web app). This provides an
ideal working setting to implement CT techniques and
evaluate outcome products. Students are expected to
expose themselves to sort out a real-world challenge
from an industrial setting, which can be solved in the
form of a software product. Hence, students shall un-
derstand the problem, abstract it, propose a flow of
execution of a solution, and leverage the different in-
formation sources.

Our research setting is a course called Dynamic Web
Development. The course spans in one semester, four
hours a week through about 16 weeks of coursework.
The teaching methodology was frontal lessons with
laboratories to practice the acquired knowledge. The
period assigned to laboratories comprised half of the
workload in the course.

To guarantee the development of CT skills, the
course aims to develop certain competences that in-
cludes, among others, collecting, analyzing and repre-
senting data, decomposing and abstracting problems,
systematizing, automating and simulating solutions.
In addition to these competences, there are also three
fundamental dimensions: (1) computational con-
cepts (sequences, cycles, events, parallelism, condi-
tions, operators and data), (2) computational prac-
tices (incremental and iterative development, testing,
reuse, modularization), and (3) computational per-
spectives (expression, connection and questioning)
[Brennan 2012].

The range of computational tools to be used is seg-
mented to the typical technological stack of the web
environment: applications developed in HTML, CSS
and JavaScript, adding complementary instruments
such as jQuery, Ajax and AngularJS. The final prod-
uct shall be a fully functional web application. The
software systems developed are part of an industrial
domain selected by the student, under the supervision
of the course advisor.

5 Evaluation

Considering the age range and previous knowledge of
the students, they were first asked for a paper and pen-
cil design with a graphic sequence of their computer

system. This allows conceptualizing and sequencing
in a dimension that is familiar to the student making
use of creative and plastic skills and then moving to
software level implementation. Considering the frame-
work proposed in [Brennan 2012], the practice allows
to sequence, express, connect and question. Nonethe-
less, the implementation in HTML has as a conse-
quence that there are no graphical interface tools to
offer assistance when it comes to actual software pro-
gramming: the aid offered by ”what you see is what
you get” (WYSIWYG) editors like Dreamweaver fall
short to assist the integration of control structures
such as cycles, events or repetitions in JavaScript. Stu-
dent face a situation of more independence to choose
software development techniques, and as a result they
encounter more implementation problems.

As evaluation technique for the outcome products
(namely homeworks and final projects) we proposed a
two-fold strategy that includes:

• Automatic code review: implementing code
inspection and analysis using an automatic tool
(http://jshint.com/) looking for complexity
and eventual code errors;

• Visual code scrutiny: implementing a visual
code inspection, looking for optimization oppor-
tunities and implementation vices.

Performing automatic analysis on about 15 home-
work assignments, it is uncommon to detect code
that exceeds a McCabe cyclomatic complexity num-
ber greater than 2. Performing visual code scrutiny,
it is often found errors where the student expresses a
solution in a strictly sequential manner without dis-
covering which pieces of code can be reused or asso-
ciated with events. For instance, in Figure 1, we can
observe a deficiency of implementation, where the stu-
dent repeats three times an instruction that could be
expressed in a single line of code.

Figure 1: Deficiency in the implementation of a com-
mon loop

Instead, the student did not identify the ability to
cycle a code that can be embedded in a cycle where
an index is increased:

for (i = 0; i <2; i ++) {
vnav [i] .style.color = "red";



}

6 Discussion and conclusions

The frontal lectures in the course guaranteed that all
participants have sufficient knowledge of all CT con-
cepts through the resolution of examples and joint ex-
ercises. However, during the execution part of the
project, it was noticed that the students experienced
problems using the concepts of CT autonomously in
their own work context. During the project, in fact,
they were required to identify a problem themselves,
select the most effective solution based on the intro-
ductory part, and finally, the creation of the solution.
In this way, we have a first indication that the research
question, considering that the Computational Think-
ing strategy effectively allowed students to take advan-
tage of Computational Science concepts, the creation
of computational solutions applicable to real problems,
considering that the observed group did not have for-
mal education in software development.

As a limitation of this work, it is clear that the
number of students participating in the course is rather
small and will not necessarily lead to firm conclusions.
Further research or replicating studies are needed to
shed more light in the behavior of similar populations
on similar educational contexts.

In line with related literature, we concur with the
idea that CT is a valuable resource for students, be-
cause it allows for timely efforts to develop system-
atic thinking. Having a design and implementation
methodology collaborates to cultivate and benefit from
CT skills and put them at the service of subjects of
different fronts of their studies (in light that web tech-
nologies can be approached from the commercial, com-
munication, visual design and software development
viewpoints). However, a clear need can be identified
as the observed students typically struggled using di-
rectly in source code.

This article describes the implementation of an edu-
cational framework to teach CT skills in a non-software
context. Five graduate students of a Faculty of Art
were able to implement software systems in a web en-
vironment using the common web stack in a context
of industrial application. Students and teachers par-
ticipated in a collaborative effort that unites not only
Computational Science but other topics such as Art
and Design. A two-fold CT assessment strategy is pro-
posed, which includes both automatic analysis and vi-
sual inspection. Yet the strategy is efficient helping the
analysis of the outcome products, it is acknowledged
that the strategy can be improved for robustness and
depth. In conclusion, CT skills delivered the neces-
sary resources to help students analyze and decompose

a problem, understand their complexity and feasibil-
ity, and design a solution to and develop a successful
software application.

References

[Bizzarri 2011] G. Bizzarri, L. Forlizzi, G. Proietti; In-
formatica: didattica possibile e pensiero com-
putazionale. Proceedings of DIDAMATICA,
2011.

[Bloss 2001] Adrienne Bloss. Teaching Fundamentals
for Web Programming and e-Commerce in a Lib-
eral Arts Computer Science Curriculum. Journal
of Computing Sciences in Colleges. vol. 16, no 2.
pp. 297-302. 2001.

[Brennan 2012] K. Brennan, M. Resnick; New frame-
works for studying and assessing the develop-
ment of computational thinking. 2012 Annual
Meeting of the American Educational Research
Association (AERA’12), Vancouver, Canada,
2012.

[Conitzer 2007] V. Conitzer, T. Sandholm, J. Lang,
When are elections with few candidates hard to
manipulate? Journal of the ACM, vol. 3, no. 54,
2007.

[Cooper 2010] S. Cooper, S. Cunningham; Teaching
computer science in context. ACM Inroads, vol.
1, no. 1, pp. 5-8, Mar. 2010.

[Corral 2010] L. Corral; Educational Techniques and
Classroom Experience on Multimedia Systems
Development by Journalism and Communica-
tion Undergraduate Students 2010 International
Conference on Software Engineering: Theory
and Practice (SETP 2010), pp. 62-67, ISRST.
2010.

[Gray 2010] J. Gray, A. S. Szalay, A. R. Thakar, P. Z.
Kunszt, C. Stoughton, D. Slutz, J. vandenBerg;
Data Mining the SDSS SkyServer Database. 4th
International Meeting on Distributed Data and
Structures 2010, pp. 189-210.

[Gong 2011] H. Gong, P. Zuliani, E. Clarke; Model
checking of a diabetes-cancer model 3rd Interna-
tional Symposium on Computational Models for
Life Sciences, 2011, pp. 234-243.

[Grover 2013] S. Grover, R. Pea, Computational
thinking in K12, A review of the state of the
field. Educational Researcher, vol. 42, no. 1, pp.
38-43, 2013.



[Hambrusch 2009] S. Hambrusch, C. Hoffmann, J. T.
Korb, M. Haugan, A. L. Hosking; A multidisci-
plinary approach towards computational think-
ing for science majors. SIGCSE Bulletin, vol.
41, no. 1, pp. 183-187, Mar. 2009.

[Koh 2010] K. H. Koh, A. Basawapatna, V. Bennett,
A. Repenning; Towards the automatic recog-
nition of computational thinking for adaptive
visual language learning. Proceedings of the
2010 IEEE Symposium on Visual Languages and
Human-Centric Computing, IEEE. 2010, pp. 59-
66.

[Layman 2008] L. Layman, L. Williams, K. Slaten, S.
Berenson, M. Vouk; Addressing diverse needs
through a balance of agile and plan-driven soft-
ware development methodologies in the core soft-
ware engineering course, International Journal
of Engineering Education, vol. 24, pp. 659-670,
2008.

[Leoni 2011] L. Leoni; Competenze e competizioni
di informatica: valutazioni sperimentali. Mas-
ter Degree Thesis, University of Bologna (Italy),
2011.

[Perkovic 2010] L. Perkovic, A. Settle, S. Hwang,
J. Jones; A framework for computational
thinking across the curriculum. Proceedings of
the Fifteenth Annual Conference on Innovation
and Technology in Computer Science Education,
ITiCSE ’10. ACM, 2010, pp. 123-127.

[Repenning 2010] A. Repenning, D. Webb, A. Ioan-
nidou, Scalable game design and the develop-

ment of a checklist for getting computational
thinking into public schools. Proceedings of the
41st ACM Technical Symposium on Computer
Science Education, 2010, pp. 265-269.

[Troccoli 2005] A. Troccoli. New methods and
tools for 3D-modeling of large scale out-
door scenes using range and color images.
Doctoral Degree Thesis. Columbia University.
2007 Stanford University. Computational Law.
http://complaw.stanford.edu/ 2005.

[Tucker 2003] Tucker, M. D., et al.; A model curricu-
lum for K-12 computer science: Report of the
ACM K-12 Task Force Computer Science Cur-
riculum Committee. Association for Computing
Machinery, 2003.

[Walker 2010] Henry M. Walker, Charles Kelemen.
Computer Science and the Liberal Arts: A Philo-
sophical Examination. ACM Transactions on
Computing Education. vol 10, no. 1, 2010.

[Werner 2012] L. Werner, J. Denner, S. Campe, D.
C. Kawamoto; The fairy performance assess-
ment: Measuring computational thinking in mid-
dle school. Proceedings of the 43rd ACM Techni-
cal Symposium on Computer Science Education.
2012, pp. 215-220.

[Wing 2006] J. M. Wing; Computational thinking.
Communications of ACM, vol. 49, no. 3, Mar.
2006.

[Wing 2014] J. M. Wing; Computational thinking
benefits society. Social issues in computing. 2014.


