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Abstract. Modeling the driver’s behavior is an importance task in the automo-
tive field. Most data-driven approaches build a general model that works well for
the majority of drivers in the training set. Personalization, on the other hand, ad-
dresses the problem of adapting the model on the driver. A personalized model
has to be able to adjust to changing user preferences over time. In this work, we
propose an approach to extract and incorporate information from previous ma-
neuver executions to improve the performance of prediction tasks in impending
maneuvers. We apply our proposed adaptation method to predict the gap taken at
a left-turn scenario, and show that it can boost the prediction of a neural network.
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1 Introduction

It is often the case that users have to adapt themselves to a new system or function to be
able to use it. When the users’ expectation and preference of a system are not met, their
trust in the system will decrease and eventually they may ignore or turn it off . For a
standard not-adapting system, there could be a gap between the user’s expectation and
the outcome of the system. Personalization systems aim at closing this gap.

The problem of personalization is already addressed in different field studies and
applications. In recommender systems, for example, the data are mostly sequences of
actions [1] (i.e. “visiting a website” or “buying an item”...) The problem of personaliza-
tion in this case is usually formulated as a prediction task of the next action B given the
past actionAi or a sequence of the past actionsA0..i, i.e., π : A0...Ai → B. In the auto-
motive field, the sequence of maneuvers may by itself reveal very little about the driver.
For example, if a driver wants to get to his travel destination, certain maneuvers have
to be performed in any case (i.e. entering a roundabout, turning at an intersection...).
However, different drivers vary in the way they perform these maneuvers. As a conse-
quence, the problem of personalization must in this case be based on observing how a
driver performs the driving maneuvers to infer the driver’s preference or to predict how
s/he would perform the next maneuver or some specific maneuver of interest. Thus we
need to learn a function which maps the driving style f(.) of previous maneuvers to the
driving style of an upcoming maneuver:

π : f(A0)...f(Ai)→ f(B) (1)
? Supported by Continental AG. An extended version of this paper can be found at [2]
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2 Approach on Personalization

Driving style is an abstract concept that is not directly observable from the data. What
we can observe is the reflection of driving style on some measurable signals like speed,
acceleration, etc. A survey conducted by Martinez et al. [5] shows that the choice of
input signals to use for detecting driving style can be divided into three main groups:
vehicle dynamics, energy consumption and personality traits. In this work we focus on
the groupsince it is more general and always available in all maneuver execution.

Problem Formulation. Given a situation Si and a driver Dj , the driving maneuver at
this situation can be formulated as a function of Si and Dj

Mi = f(Si, Dj + εi) (2)

where Si represents all environmental factors, Dj constitutes the driver’s dispositional
factors. And εi is introduced to capture the fluctuations in the driver’s behavior.

To personalize the predictions of y0, we additionally have to consider the influ-
ences of the driver Dj + ε0 in this situation, since y0 depends on both factors, i.e.,
y0 ← S0, Dj + ε0. Now we have the same problem as in modeling maneuver exe-
cution, namely that the driver’s dispositional factors are not directly observable. This
make it impossible to learn the individual impacts of driver Dj on y0.

As mentioned above, in real-world driving data, the drivers’ factors are encoded
in each maneuver execution Mi. We therefore propose that instead of learning y0 as
a function of S0 and Dj , we can learn y0 as a function of S0 and Mi, where Mi is a
recently performed maneuver This temporal restriction of Mi allows us to approximate
the current impact of the driver Dj + ε0 with Dj + εi, which was captured in the Mi.

y0 ← S0,Mi = S0, f(Dj + εi, Si) ≈ S0, f(Dj + ε0, Si) (3)

y0 can then be written as a function G of S0, Dj + ε0 and Si:

y0 = g(S0, f(Dj + ε0, Si)) = G(S0, Dj + ε0, Si) (4)

With the assumption that y0 does not depend on other situations than the current
S0, there should be no information of y0 contained in Si. G will be forced to learn to
extract useful information about the driver from past maneuvers and then how they will
affect the decision of the driver in the current situation.

Extracting Driver’s Information. A maneuver execution Mi with length n is character-
ized by a multivariate time series (xi,t is a vector of sensor values at time t):

Mi = (xi,1, xi,2, ..., xi,n), n > 0 (5)

In this work, we used two approaches to extract a driver’s information from the last
executed maneuvers. The first approach use the statistical information from each sensor
(minimum, mean, maximum and standard deviation). The second approach makes use
of recurrent network layers and takes the whole maneuver execution as an input. While
the idea of the first approach is widely used in the literature for extracting driver’s
information, the second one does not make any assumption about the statistical values
but learns to extract useful information direct from raw data.
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3 Modeling Maneuver Dependency

We have now formulated the prediction of y0 as a function of the current situation
S0 and the previous maneuver Mi. This can be extended by incorporating the last k
maneuvers. Fig 1 shows an example of a network that uses k = 3 last maneuvers as
features. To validate this concept we test it with k = 1 which is easier to train and
requires less data.
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current situation
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past maneuvers

Fig. 1: Proposed architecture to capture the
driver information from previous maneuver
for predicting the current situation

Network Architectures. We design the
network using two input layers sepa-
rately, one takes the current situation (S0)
as input and one captures useful informa-
tion from the past maneuver Mi.

Each of these two input layers are
then followed by hidden layers and form
two separate paths. For the ultimate pur-
pose of predicting y0, these two paths are
then combined in the deeper layers, fol-
lowed by further hidden layers and lastly
the output layer. The whole network is
trained by back-propagating the classifi-
cation error.

Extracting Driver Information with Neural Network. As mentioned in Section 2, ex-
tracting driver information from Mi could be done in two different ways. We modeled
the first approach by configuring the first input path using fully connected layers that
take statistical values from the last maneuver execution as input. The function G could
then be written as or Gs for short. The second approach makes use of a recurrent layer
to capture the maneuver execution. In particular, we use Long short-term memory net-
works (LSTM) [4] for capturing past maneuvers Mi. LSTM Networks have proven to
be quite successful for sequence learning problems [3,6]. The function G in this case is
formalized as Glstm(S0,Mi) for short.

4 Experiments

Fig. 2: Histograms of taken and ignored gaps

Data set. The data used in this work
were collected from 32 drivers cov-
ering a wide range of ages and driv-
ing experiences. Each driver drove 30
rounds on a pre-defined route. The
data set was collected in real-world
traffic. The chosen route is a com-
mon urban route which requires the
driver to perform different maneuvers
roundabout, left turn, or intersection
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with right of way. For our experiments, we focused on the two most complex maneu-
vers, roundabout and left-turn.

For capturing the driving style we use four signals as features for describing a ma-
neuver execution, which include speed, longitude and latitude acceleration and steering
wheel speed. As features for describing the intersection situation we additionally use the
position of the ego vehicle to determine the distance to the middle of the intersection.

Gap Acceptance at Left-Turn Maneuver. In an unsignalized intersection scenario, in
which the incoming traffic has the right of way. We observe that the preference of the
driver in choosing gaps differs from driver to driver. As shown in Fig. 2, gaps that
are in range from approximately 3 to 7 seconds could either be taken or ignored. In
such a scenario, the problem of predicting the gap acceptance of driver should not only
consider the current traffic situation but also the driver’s individual preferences.

5 Evaluation

Evaluation Setup. We evaluate our method using 10-fold cross-validation to construct
training and testing sets. The data are split into disjoint folds according to the driver ID.
In total we evaluate four models. As the baseline model, we estimate the best possible
threshold that separates the taken and ignored gaps in the training set.

θ̂ = argmin
θ

L(y, ti > θ) (6)

where ti is the time available for turning left if gap i is taken. L is the loss function that
computes the error rate for a given label y and the predictions based on threshold θ. The
baseline is then compared to the three models described in the previous sections.

Table 1: Mean of F1 and accuracy score on
validation set over 10-fold cross-validation

Model F1 Score Accuracy
Threshold 81.9 % 89.8 %
G(S0) 86.8 % 92.6 %
G(S0, hs(Mi)) 89.9 % 94.1 %
G(S0, hlstm(Mi)) 91.7 % 95.1 %

Learning from previous maneuvers. The
average F1 score and the accuracy of
all four models on the validation sets
are show in Table 1. Both variants that
extract information from Mi show sig-
nificant improvements. The overall best
score is obtained by Glstm, which uses
an LSTM layer for capturingMi. Various
network configuration are tested with dif-
ferent regularization parameters applied
to each input path individually. In all settings, using extra information from Mi always
leads to improvement of the prediction performance.

Reviewing the cross-validation results, we observe the improvement in terms of F1
score and accuracy of Gs and Glstm over G(S0) in eight out of ten folds. The maximal
improvement reaches 18.5 % in F1 score which translates to 9.4 % accuracy. Fig 3a
shows the validation score of all three models in one of these eight folds. Here we
can see that G(S0) gets stuck and its best score is quite low, whereas both, the Gs
and Glstm models benefit from the extra input Mi and reach much higher accuracy.
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(a) Incorporating Mi lead to improvement (b) Overfitting on training data

Fig. 3: Learning curve on different validation folds

In Fig 3b we observe the first slight effect of overfitting as the score of Glstm and Gs
keeps fluctuating and overfit on training data after 40 epochs. To deal with such effect,
early stoping was also used for training the final model.

6 Conclusion

In this work we proposed a new approach to learn the dependency between maneuver
execution, namely to extract the information about driver behavior and style, and use it
to improve the performance of the prediction task in driver assistance systems. We im-
plement our approach using neural networks as building blocks and empirically evaluate
the model in a left-turn situation using on-road data. The results show that the model
is able to extract the driver impact from the past maneuver executions and can use it
improve the prediction quality by almost 10 % in terms of F1 score. We compared two
approaches for extracting driver’s information from maneuver execution, which make
use of statistical features and an LSTM layer. The LSTM model shows improvement
over a model that only uses statistical features and fully connected layers.
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