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Abstract. Handwriting recognition approaches usually use the seman-
tic context of the individual letters. This helps to achieve highly accurate
classification results. As it is less likely to detect semantically invalid let-
ters, these approaches imply an error correction. In most cases, this is a
beneficial side-effect but it makes the approaches not usable if these se-
mantic invalid letters should be detected, e.g., in the case of educational
software where spelling mistakes should be recognized.
For this purpose, we developed an advanced context-free handwriting
recognition which is based on multiple techniques from the field of deep
learning. We motivate the individual components of our approach and
show how the components can benefit from each other. In the experimen-
tal section, the behavior of our new approach is analyzed in detail and
the classification accuracy is compared between the different approaches.
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1 Introduction

Writing is a key skill for learning results at school and professional success [8].
Thereby, correct orthography is an important part. In school, it is often trained
by handwritten exercises as this can improve the orthography skills. Thus, hand-
writing is a crucial skill.

To realize educational software which supports the development of orthogra-
phy, especially for children with spelling problems [22], a well-working handwrit-
ing recognition is required. Usually, the objective of a handwriting recognition
is to be as accurate as possible. Therefore, the semantic context of the individ-
ual letters is used as this can improve the accuracy. For example, it might be
challenging to distinguish between the written letters u and v. But if the letters
are considered in their semantic context, the task may be easy: in the middle
of the word house, there is an u. So, if a handwriting recognition algorithm is
not able to determine whether there is an u or v in the middle of the word, the
algorithm can determine the letter by its context easily. Even a wrongly written
hovse would be recognized as house. In practice, this increases the accuracy of



handwriting recognition algorithms significantly and the implicit error correc-
tion is mostly a beneficial side-effect. But in the case of educational software for
children all errors must be detected to provide valuable assistance. Thus, in this
case, a usual handwriting recognition algorithm is not useable.

There are multiple ways of taking spelling mistakes into account. For exam-
ple, the software could display the error. As too much shown mistakes might
be demotivating, the software could also collect all errors and give a report to
a teacher who can individually support the child. Also, it is possible that the
educational software adapts to the child. All spelling mistakes can be classified,
e.g., there are errors with double consonants after a short vowel. If a child makes
a disproportionately high number of errors of a certain class, this class could
be more practiced. For all these ways taking spelling mistakes into account, a
handwriting recognition is required which does not use the semantic context.

Our paper is structured as follows. In the following, the foundation of the
paper is laid and the data set is introduced. Then, we present two different
perspectives to the data: a visual one and a movement oriented one. In Section 3,
we introduce our new approach of a context-free handwriting recognition which
combines both perspectives. In the experimental results, shown in Section 4, the
capabilities of our approach are presented and analyzed. Thereby, the capabilities
of the single perspectives are compared to our approach. In the last section,
conclusions are drawn.

1.1 Foundation

This work is based on a project in which the handwriting of elementary school
children was recorded to develop a new educational software for children to train
spelling skills. There are already software products to train spelling skills like
Gut1 [7] or Tintenklex [4] but to the best of our knowledge, none of them
includes a handwriting recognition, i.e., they are all using a keyboard input.

To develop a handwriting recognition for an educational software, 189 chil-
dren from the first to the fourth grade have done a handwriting task in four
elementary schools in the region of Hanover, Germany. In this task, each child
wrote the whole alphabet of small and capital letters and the German special
characters. Additionally, each child wrote complete words which contains all
possible letters. The words are selected from a list. There was no dictation and
the processing sequence was freely chosen. The handwriting was recorded on an
iPad Air using an Adonit Jot Pro stylus. Afterward, the individual letters have
been separated and two times classified by two research assistants.

These data have been used in [19] to develop a handwriting recognition using
a high-level representation. It is a nice approach but due to its poor classifica-
tion accuracy, it is not useable. In the experimental section of their paper, only
five capital letters are employed – the letters A, M, O, T, U. These letters are
correctly predicted in 74.7% of the cases. The limitation of five letters and a
classification error of more than 25% are not acceptable. The objective must be
to use all letters and to achieve a classification accuracy of significantly above
90%. Otherwise, the errors of the recognition will demotivate the children while



using it. Especially, correctly written words which are classified as an error are
frustrating. So, the recognition must work in the context of an educational soft-
ware and thereby, the focus must be put to the task of the educational software
and must not be put to errors of the handwriting recognition.

1.2 Data Set

In this section, we introduce the employed data set. It contains 34 627 samples
which are not equally distributed. The frequency results from the occurrence
while writing. Thus, there are more small than capital letters in the data set.
The most frequent letter is the small e which occurs 4205 times. It is followed
by the small n, 2596 times, and the small r, 1518 times. The median occurrence
of a letter is 336 times and even the least frequent one occurs 179 times. It is
the capital special character Ü. Overall, there are 59 different letters: 26 capital
and 26 small letters, capital and small special characters (the umlauts: ä, ö, ü),
and another special character (eszett: ß). As shown in Figure 1, the letters in the
data set are written in different writing styles. The figure presents six different
ways to write a small t. Additionally, there is a large variation in the letters as
they are written by children.

Fig. 1. Example of six written small letters t visualizing different writing styles

The data set includes a chronological sequence for each written letter. For
each time step, the x- and y-position of the pen which is used for the writing
are given. Additionally, a flag is set if the pen is lifted. Based on this data,
the letter should be classified. Thereby, it is interesting that the data can be
interpreted as visual images. As the children grasp the written letters visually,
this approach is obvious. Additionally, the data can be interpreted as a writing
movement. We present both interpretations in the next section and show the
advantages and disadvantages of them. Then, in our new approach, we employ
both interpretations at the same time to combine their advantages.

2 Applying One Perspective to the Data

In this section, we show two interpretations of the data. In both cases, we employ
methods from the field of deep learning to classify the written letters. In the
first perspective, the data are interpreted as visual images. These images can
be classified by a Convolutional Neural Network (CNN) [13, 14]. The second



perspective is taking the writing movement into account. As the movement is a
time series, a Long Short-Term Memory Network (LSTM) [9, 11] is well suited
to classify letters based on this perspective.

Deep Visual Approach In our deep visual approach, the data are interpreted as
visual images. This is the most obvious perspective, as the children grasp their
written letters visually. Based on the data, we create images with a resolution
of 296 × 220 pixels. As fine structures are not relevant for the classification, the
image sizes are reduced by the factor 4.

We choose a CNN for the classification task. CNNs have been very successful
in the last years [18]. They are deep neural networks applying a structure of
neurons which is inspired by the human visual cortex [1]. Therefore, they are
well suited to classify images. The structure of our approach applying a CNN is
very straight-forward. It is shown in Figure 2. The data are interpreted from the
visual perspective resulting to xvisual. One pattern xvisual contains a brightness
information for each entry of a matrix with the size of 296 × 220 representing the
pixels. The pattern is handed to the CNN which classifies it. The classification
result is y.

Fig. 2. Structure of our deep visual approach

The used CNN employs a classical structure [12]. The first layer is a con-
volutional layer employing 32 filters with the size of 3 × 3 pixels. It is followed
by a max pooling layer which downsamples the data. We employ a 2 × 2 down-
sampling, i.e., the data height and width are reduced by the factor 2. Then, the
combination of a convolutional layer and a max pooling layer is repeated but
now, the convolutional layer employs 64 filters. The extracted features from the
convolutional and a max pooling layers are handed to a dense layer. As acti-
vation function, we employ the ReLU function [16] for all the described layers.
To avoid overfitting, a dropout layer [21] is used. Finally, an output layer with
59 neurons determines the classification results for the 59 different letters. The
output layer uses the softmax function [2].

Deep Movement Approach Our second approach is to interpret the data as a
movement. This means movement vectors are determined based on the movement
of the pen. Multiple vectors yield a complete letter. Each child has its own
writing speed which is not relevant for the classification. Thus, all letters are
normalized to a size of 32 movement vectors. As the vectors can have different
length, the relative speed while writing a letter is taken into account. Besides
∆x and ∆y values which describe the movement, there is a binary information
for each vector. This information indicates whether the pen is lifted or not.



Fig. 3. Example of three capital letters A visualizing the movement while writing them

Figure 3 shows three letters interpreted as movement. The dots in the figure
represent the start and end points of the movement vectors. The colors of the
lines visualize the direction of the movement. The sequence starts with dark
purple and ends with light yellow. Dashed red lines present movements in which
the pen is lifted. Considering the left letter A in the figure, the movement is well
recognizable. It starts from the bottom left, goes up, and then to the bottom
right. The pen is lifted and finally, a horizontal line from the left to the right
is drawn. This description includes much more information than just an image
of the letter A. This information might be helpful for the classification task.
However, the motion vectors are also challenging since the children grasp their
written letters visually and do not focus on a clear movement. Especially, if the
pen is lifted to redraw parts of a letter, this might be challenging to classify.
Considering the middle letter in Figure 3, it can be observed that after the
letter was finished, the child extended the bottom left part of the capital A.
Visually, this makes sense and makes it easier to recognize the letter but the
motion vectors become more complex due to this extension. The same applies to
the right letter of the figure where the top center part of the letter is reworked.

As the movement perspective delivers a chronological sequence, a Recurrent
Neural Network (RNN) [10] is well suited to classify the data. In the field of
RNNs, LSTMs are very powerful [6]. In contrast to classical RNNs, LSTMs
include an additional short-time memory and due to their special structure, they
can keep values in their short-time memory for a long time [9]. For this reason,
they are called Long Short-Time Memory Networks. Our approach to applying
an LSTM is very straight-forward. It is shown in Figure 4. The data is interpreted

Fig. 4. Structure of our deep movement approach

from the movement perspective resulting in xmovement. One pattern xmovement

consists of the 32 movement vectors and the binary information per vector which
indicates whether the pen is lifted. The pattern is handed over to the LSTM
which classifies it. The classification result is y. The employed LSTM includes



1024 cells, followed by a dropout and an output layer. The output layer uses
the softmax function. The other layers employ the ReLU function as activation
function.

3 Multi-Stage Deep Context-Free
Handwriting Recognition

In this section, we introduce our new approach. It works context-free, thus, it
can be used in educational software as described in Section 1. The idea behind
our approach is to combine the advantages of the deep visual and the deep
movement approach. For this propose, we employ both approaches and connect
their outputs to a Deep Neural Network (DNN) [5] using dense layers. This
makes it a multi-stage approach. We denote our multi-stage deep context-free
handwriting recognition as C−HR.

Structure of C−HR The structure of our approach is shown in Figure 5. Like the
structures in the previous section, it is very straight-forward. The figure shows
how the deep visual and deep movement approach are combined. In contrast to
the approaches employing only one perspective, the outputs of the CNN and
LSTM are not used directly. The outputs are handed over to a DNN and the
DNN determines the classification result y. Thereby, the CNN and LSTM are
configured as described in Section 2. As DNN, we employ two dense layers with
1024 neurons per layer. Both layers employ the ReLU function. These layers
are followed by a dropout layer and an output layer which uses the softmax
activation function.

Fig. 5. Structure of C−HR

The task of the DNN is to classify a letter based on the information from
the CNN and LSTM. To provide the DNN detailed information, the CNN and
LSTM are applied without the activation function in their output layer. This is
due to the fact that the activation function is the softmax function which scales
the output values to a range from 0 to 1. The original range is lost which can
offer valuable information. By removing the activation function, this information
is kept.



Benefits of Combining As described in Section 2, interpreting letters as move-
ment vectors has advantages and disadvantages compared to the visual interpre-
tation of the data. By using both perspectives combined by a DNN, our approach
is able to use the strength of both approaches. For example in preliminary exper-
iments, it turned out that the small letters h and n can be better distinguished
by employing the visual perspective. This makes sense as the motion for both
letters is very similar. In both cases, it is a line down followed by a curve. To
distinguish the letters, the length of the line is crucial which can be recognized
best by visually examining it. A different example are the small letters c and l.
They could look very similar if they are written unclearly. Also, the movement
is similar but as the upper part of the letter c is a curve and of the letter l is a
line, the motion vectors are slightly different. Additionally, the curve is usually
written a bit slower than the line. In preliminary experiments, it turned out that
the differences between the movement vectors and the writing speed are easier
to detect as the visual differences.

4 Experimental Results

In this section, the experimental results are presented. For the experiments, we
employ three different variants of the data set. The first variant only consists of
the capital letters A, M, O, T, U. We denote this variant as amotu. It includes
1473 patterns. In the second variant, all small letters are contained. It consists
of 24 810 patterns and we denote it as small. The last variant which we call full
includes all 59 different letters, i.e., all 26 capital and small letters, capital and
small special characters (the umlauts: ä, ö, ü), and another special character
(eszett: ß). This variant includes 34 627 patterns.

For all experimental results, we employ a 10-point cross-validation using a
stratified k-folds cross-validator [17]. This provides folds which are preserving
the percentage of samples for each class. The neural networks are trained using
a keep probability of 0.5 for the dropout layers. They are trained until no more
improvements are achieved. Thereby, each component gets the same amount
of time. Thus, the deep visual approach which is relatively easy to compute
gets more learning epochs. For amotu, we train about 270 epochs for the deep
visual approach, 80 epochs for the deep movement approach, and 65 epochs for
the multi-stage approach. For small and full, the training time is quintupled.
During the training, a batch size of 100 patterns is used. To train C−HR, first,
the CNN and LSTM are trained. Then, the DNN which connects the CNN and
LSTM is trained. Thereby, the weights of the CNN and LSTM are fixed.

Comparison of Classification Accuracy In the first experiment, we compare the
classification accuracy of C−HR to the result from [19]. As introduced in Sec-
tion 1.1, [19] has used a high-level representation to classify the data. There-
fore, we denote this approach as HLR. Additionally, we show results of decision
trees (DTs) [20] and the more advanced approach of random forest (RF) [3]
which is employing multiple DTs. Both approaches are using the visual per-
spective. We select DTs as their performance can be adjusted by their maximal



depth. This makes it possible to configure a DT with a similar performance to
HLR for comparison. The two employed DTs are configured with (1) a maximal
depth of 5, leading to similar results as HLR for amotu, and (2) none maximal
depth, showing the best possible results for a DT. RF is employing 100 DTs
with none maximal depth.

Table 1. Comparison of the classification accuracy

Data HLR DT5 DT∞ RF∞100 C−HR

amotu .747 .734 ± .034 .806 ± .039 .950 ± .019 .989± .008
small - .438 ± .019 .724 ± .027 .889 ± .021 .978± .008
full - .328 ± .019 .589 ± .028 .811 ± .022 .964± .009

Table 1 shows the results. In the table, the mean accuracies of the 10 folds
of the cross-validation and the matching standard deviations are presented. It
can be observed that C−HR clearly outperforms all other approaches. Thereby,
it is remarkable that the classification accuracy decreases only a little while
increasing the number of letters – from 0.989 for five letters to 0.964 for all
59 letters. The results of the DTs and RF show how the classification accuracy
can significantly decrease if the problem is getting more complex due to more
letters. Essential is the result of employing all letters. For this task, C−HR only
makes 3.6% prediction errors. Compared to the previous approach, this is a huge
improvement.

HLR has only been applied to amotu and performs similarly to a DT with a
max depth of 5. Obviously, each approach scales differently. However, the results
indicate that an approach which is able to predict amotu with a classification
accuracy of less than 0.75 will likely predict all letter with an accuracy of signif-
icantly less than 0.5. Even an approach which is able to achieve a score of 0.95
for amotu is just slightly above 0.8 for all letters. Thus, a word with five letters
is recognized correctly in less than one-third of the cases (0.85 < 1/3) by this
approach.

Individual Components of C−HR Now, we show the results of the components
of C−HR, i.e., the performance by the deep visual approach, by the deep move-
ment approach, and by C−HR. This indicates the contributions of the individual
components of C−HR. We emphasize this point for two examples at the end of
this section.

Table 2 presents the classification accuracies. For amotu, the visual approach
works very well. This makes sense as the letters A, M, O, T, U are visually
significantly different. For both other data sets, the movement approach performs
better than the visual one. This indicates that the additional information due to
the movement perspective is beneficial. In all cases, C−HR is very close to the



Table 2. Comparison of the accuracy of the individual components of C−HR

Data Visual Movement C−HR

amotu .991± .007 .986 ± .011 .989 ± .008
small .962 ± .011 .975 ± .007 .978± .008
full .920 ± .013 .948 ± .011 .964± .009

best approach or it is the best. It seems the more complex the data gets, the
higher are the benefits from the two perspectives.

Two examples of letters which benefit from the two perspectives are the
small b and the small l. The small letter b is correctly classified by the visual
approach with an accuracy of 98.0%. The movement approach only achieves
86.2%. For the small letter l, the accuracies are reversed. The visual approach
achieves 87.9% while the movement approach classified the letter with an accu-
racy of 95.5%. To make this more clear, Figure 6 presents four letters which are
correctly classified by C−HR. The left two letters are a small b. It is correctly
labeled using the visual approach. The movement approach classifies both letters
as a small t. The right two letters are a small l. It is also correctly labeled by
C−HR The visual approach classifies both letters as a capital I.

Fig. 6. Example of four letters which are correctly labeled by only one approach

Sensitivity and Specificity of Letters To further analyze the performance of our
approach, we present the sensitivity and specificity of each letter. For a specific
letter, the sensitivity indicates the probability to correctly classify this letter. The
specificity indicates the probability to be correctly not classified by applying a
different letter. For example, if a small letter a is written. A high sensitivity for
the letter a shows that there is a high chance to correctly predict this letter.
A high specificity for the letter b indicates that there is a high chance that the
written letter is correctly not labeled as a b.

Table 3 presents the results. We employ the first fold of the cross-validation.
As shown in the legend of the table which is located in the lower right part,
there are five different colors from light vanilla to red. Red stands for relatively
many errors. The lighter the color gets, the fewer errors are made and if there



Table 3. Sensitivity and specificity analysis

a b c d e f g h i j k l m n o p q r s t u v w x y z

Sensitivity
Specificity

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Sensitivity
Specificity

ä ö ü Ä Ö Ü ß Legend

Sensitivity i0 i1 i2 i3 i4 i5
Specificity

is no color, there are no errors. For the sensitivity, the thresholds for the inter-
vals i0, . . . , i5 are 80%, 85%, 90%, 95%, 100% and for the specificity, they are
99.80%, 99.85%, 99.90%, 99.95%, 100%. The thresholds for the specificity are
much higher as an unknown letter is classified as one letter and it is not classified
as the 58 other letters.

All results are close to the thresholds, except the sensitivity of the capital P
which is often wrongly classified as a small p. Only in 16.1% of the cases, the
letter is correctly classified. This makes sense as without using the context, it
is very hard to distinguish between the letters p and P. This points out that
there is potential for improvements, e.g., it might be an approach to add relative
height information to our approach. Thereby, we need to keep in mind that our
approach stays completely semantic context-free.

To visualize the problems with p, Figure 7 shows four letters: on the left side,
two capital letters P and the right side, two small letters p. All letters are labeled
as p. The figure indicates that the distinction between the small and capital p
is very challenging without additional information. Besides the problems with
the capital P which is often classified as the small p, the table visualizes other
noticeable findings. For example, the sensitivity of the capital I is relatively low,
leading to a relatively low specificity of the small l. Also, the capital B and
the special character ß can be written very similarly. This can be seen in the
sensitivity of the special character ß and the specificity of the capital B.

Overall, the results of the sensitivity and specificity are satisfactory. Multiple
letters are recognized perfectly and a lot of letters are within the first interval.
The letters within the last interval point to opportunities to improve our ap-
proach.



Fig. 7. Examples of four small and capital letters p

5 Conclusions

Handwriting is a crucial skill and is important for success at school. This in-
cludes correct orthography. To realize educational software which supports the
development of orthography, a context-free handwriting recognition is required.
In contrast to usually used recognitions, a context-free handwriting recognition
does not imply a correction of misspelled words which makes it possible to detect
all writing errors. This is essential for educational software.

In our work, we developed a context-free handwriting recognition which is
based on multiple techniques from the field of deep learning. It interprets the
data from two perspectives: a visual one and a movement oriented one. The visual
perspective is realized as a CNN and the movement perspective as an LSTM.
Both perspectives are combined by a DNN. In the experimental results, our new
approach can show its superior classification ability compared to the previous
approach. It turned out that the visual and movement approach can benefit
from each other, especially if the data set contains many letters. Additionally,
our results show that it is very challenging to distinguish between capital and
small letters in some cases, e.g., in the case of the letter p.

In our future work, we are going to tackle the potentials for further improve-
ments, e.g., the implementation of a semantic-free support to better distinguish
between small and capital letters. Also, an analysis of the data like in [15] could
lead to further findings.
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