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Abstract. Density-based clustering is closely associated with the two algorithms
DBSCAN and OPTICS. While the first finds clusters connected at a single density
threshold, the latter allows the extraction of a cluster hierarchy based on different
densities. Extraction methods for clusters from OPTICS rely on an intermediate
representation, known as the OPTICS plot. In this plot, which can be seen as
a density profile of the data set, valleys (areas of higher density) are associated
with clusters. Multiple methods for automatic detecting such valleys have been
proposed, but all of them tend to produce a particular artifact, where some point
is included in the cluster that may be far away from the remainder. In this article,
we will discuss this commonly seen artifact, and propose a simple but sound way
of removing the artifacts. At the same time, this change is minimally invasive,
and tries to keep the existing algorithms largely intact for future study.

1 Introduction

Cluster analysis is the task of discovering previously unknown structure in a data set,
and belongs to the “unsupervised learning” subdomain of data mining where no labeled
data is available yet. It can be used to infer an initial labeling of the data, but clustering
results tend to not be reliable enough to automate such use. But it can be used in explo-
rative data analysis to assist the user in discovering patterns that may lead to meaningful
labels after formalization. For example, a clustering might suggest three subtypes of a
disease to the user, and clinical verification may be able to confirm two of these three
subtypes with appropriate thresholds to differentiate them. Here, the clustering itself
does not need to produce “perfect” results, but it was used to find a hypothesis.

While clustering is considered an unsupervised task—it cannot learn from labels, in
contrast to classification—it is not entirely free of assumptions on the data. In hierarchi-
cal clustering, the key assumption is that nearby objects should be in the same cluster,
while far away objects belong to different clusters. Probably the most used clustering
method, k-means clustering [24, 25, 16], is based on the assumption that the data con-
sists of k groups, such that the sum of squared errors is minimized within clusters, and
maximized inbetween clusters. While this is useful in many applications such as image
quantization, it does not work very well when the clusters are of different shape and
density, or if there are too many outliers in the data set.

The key assumption of density-based clustering is that regions of similar density—
when connected to each other—should belong to the same cluster. For this, the semi-
nal algorithm DBSCAN [15, 33] introduced the concepts of “density reachability” and
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(a) Input data, with coastline
and administrative districts

(b) Best k-means clustering,
VRC criterion [11], k = 75

(c) Hierarchical density based
clustering with OPTICS

(d) OPTICS plot, with valleys that correspond to clusters

Fig. 1: Istanbul tweets data set

“density connectedness”, where clusters of DBSCAN are those objects, which form a
density connected component. DBSCAN required the specification of two parameters:
minPts and ε (plus the implicit parameter of a distance function) which together spec-
ify a minimum density requirement: points with more than minPts neighbors within a
radius ε are considered dense and called “core points”, and those neighbors are consid-
ered to be direct density-reachable from this seed points. The algorithm then computes
the transitive closure of this reachability relation. Where DBSCAN used a binary pred-
icate of density, OPTICS [6] only retains the minPts requirement: in OPTICS, a point
is dense at a radius r if it has at least minPts neighbors within this radius. OPTICS
is a greedy algorithm, which always processes the neighbors of the most dense points
first (by organizing points in a priority queue), and produces an ordering of the points
known as “cluster order”. The diagram placing objects on the x axis according to their
cluster order, and the density at which the point was reached on the y axis, is known
as the “OPTICS plot”. If a cluster exhibits a density clustering structure, this plot will
exhibit valleys corresponding to the clusters. If there is a hierarchy of clusters, there
may be smaller valleys inside larger valleys, as it can be seen in Fig.1d. Such plots are
easy to use for the researcher if the data set is not too large, and multiple algorithms
have been proposed to automatically extract clusters: along with OPTICS, the authors
proposed to detect valleys based on a minmum relative distance change of ξ [6]. In [29],
the authors order maxima of the OPTICS plot by their significance, and only use sig-
nificant maxima for splitting the data set. The main benefit of this approach is that it
produces a simpler and thus easier to use cluster hierarchy than the ξ method. An angle-
based extraction based on inflexion points was introduced in [8]. The main benefit of
this approach is that it takes a larger context into account, where the ξ method would
only look at the distances of two subsequent objects in the plot.
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In Fig. 1 we introduce our running example. This data set contains 10,000 coordi-
nates derived from real tweets in Istanbul. The raw coordinates can be seen in Fig.1a,
along with the coastline for illustration, and colored by administrative areas. Classic k-
means clustering can be seen in Fig.1b, with k=75 chosen by the Caliński-Harabasz cri-
terion [11] (but this heuristic did not yield a clear “best” k). A hierarchical density-based
clustering is shown in Fig.1c. This clustering does not partition all data points equally,
but it emphasizes region of higher density, possibly even nested. Many of these regions
correspond to neighborhood centers and shopping areas. Fig.1d shows the OPTICS plot
for this clustering.

The remainder of this article is structured as follows: In Section 2, we examine re-
lated work. Then we introduce the basics of OPTICS in Section 3 and cluster extraction
from OPTICS plots in Section 3.3. Then we will discuss the extraction problem ef-
fecting all methods based solely on the OPTICS plot, as well as introducing a simple
remedy for this problem in Section 4. Finally, we will demonstrate the differences on
some example data sets in Section 5, and conclude the article in Section 6.

2 Related Work

DBSCAN [15] is the most widely known density based clustering method. In essence,
the algorithm finds all connected components in a data set which are connected at a
given density threshold given by a maximum distance ε and the minimum number of
points minPts contained within this radius. The approach has been generalized to allow
other concepts of neighborhoods as well as other notions of what constitutes are cluster
core point [28]. In [33], the authors revisit DBSCAN after 20 years, provide an abstract
form, discuss the runtime in more detail, the algorithms limitations and provide some
suggestions on parameter choices (in particular, how to recognize and avoid parame-
ters). In OPTICS [6] the approach was modified to produce a hierarchy of clusters by
keeping the minPts parameter, but varying the radius. Objects that satisfy the density
requirement at a smaller radius connect earlier and thus form a lower level of the hierar-
chy. OPTICS however only produces an order of points, from which the clusters either
need to be extracted using visual inspection [6], the ξ method [6], using significant
maxima [29] or inflexion points [8]. The relationship of OPTICS plots to dendrograms
(as known from hierarchical agglomerative clustering) has been discussed in [29].

Outside of clustering, the concepts of DBSCAN and OPTICS also were used for
outlier detection algorithms such as the local outlier factor LOF [10] and the closely
related OPTICS-OF outlier factor [9]. The concept of density-based clustering was also
inspiration for the algorithms DenClue [20] and DenClue 2 [19], which employ grid-
based strategies to discover modes in the density distribution. Both belong to the wider
family of mode-seeking algorithms such as mean-shift clustering orignating in image
analysis and statistical density estimation [17, 14]. The algorithm DeLiClu [3] employs
an R*-tree [7] to improve scalability, by performing a nearest-neighbor self-join on
the tree. This can greatly reduce the number of distance computations, but increases
the implementation complexity and makes the algorithm harder to optimize. It also
removes the need to set the ε parameter of OPTICS, as the join will automatically stop
when everything is connected, without computing all pairwise distances.
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1 SeedList← empty priority queue
2 ClusterOrder← empty list
3 repeat
4 if SeedList.empty() then
5 if no unprocessed points then stop
6 (r, o)← (∞, next unprocessed point) // get unprocessed point

7 else (r, o)← SeedList.deleteMin() // next point from seed list
8 N ← RANGEQUERY(o, dist, ε) // get neighborhood
9 ClusterOrder.add( (r, o,CoreDist(o,N)) ) // add to cluster order

10 Mark o as processed
11 if p is Core then foreach n ∈N do // explore neighborhood
12 if n is processed then continue
13 p← ReachDist(n← o) // compute reachability
14 if n ∈ SeedList then SeedList.decreaseKey( (p, n) ) // update
15 else SeedList.insert( (p, n) ) // insert

Algorithm 1: OPTICS Clustering Algorithm [6]

FastOPTICS [30, 31] approximates the results of OPTICS using 1-dimensional ran-
dom projections, suitable for Euclidean space. The concepts of OPTICS were trans-
ferred to subspace clustering in the algorithms HiSC [2] and DiSH [1], for correlation
clustering in HiCO [4], and to uncertain data in FOPTICS [22]. HDBSCAN* [12] is a
revisited version of DBSCAN, where the concept of border points was removed, which
yields a cleaner theoretical formulation of the algorithm, even closer connected to graph
theory. In [13] the authors propose a general extraction strategy for hierarchical clusters
that works well with HDBSCAN*, assuming that the hierarchy essentially corresponds
to a minimum spanning tree. HDBSCAN* can be accelerated using dual-tree joins [26].

3 OPTICS Clustering

We will now first briefly review the core ideas of OPTICS clustering. The first idea is the
notion of density reachability, defining at which distance two neighbors are connected.
Clusters are then connected components of this reachability.

3.1 Reachability Model of OPTICS

OPTICS [6] uses the concept of “reachability distance” for constructing clusters. This
distance correspondy closely to the ε radius parameter of DBSCAN, and can be seen as
an inverse density estimate: all points within a cluster are “density connected” with at
least this density. Reachability is the maximum of two factors, the first being the actual
distance of the two points, and the second being the core-distance of the origin point.
In OPTICS [6], the core-distance was defined as

core-distε,minPts(o) :=

{
UNDEFINED if |{x | d(x, o)≤ εmax }|<minPts

minPts -dist(o) otherwise

where minPts-dist is the distance to the minPts nearest neighbor. In the following, we
will omit the εmax parameter and the associated UNDEFINED case from the original
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definitions for brevity.1 Furthermore, we can simply use infinity∞ instead of a special
UNDEFINED value. If εmax is chosen large enough, this case does not occur, and we
can substitute minPts -dist for the core-distance.

We can then define the reachability of a point p from a point o as:2

reachability(p←o) :=max{dist(o, p),minPts -dist(o)}

Reachability, while originally called “reachability distance” is not a distance as defined
in mathematics, because it is not symmetric. This asymmetry is often causing confusion,
and we thus will only refer to it simply as “reachability” here. Intuitively, this value is
the minimum distance threshold ε that we need to choose, to make p density-reachable
from o and thus part of the same DBSCAN cluster. OPTICS is based on the same idea
of clusters being connected components based on a reachability threshold.

The use of core distances prevents (for large enough minPts) the undesirable chain-
ing effect known as “single-link effect” that affects hierarchical clustering, in particular
on noisy data. For practical purposes, minPts must thus be chosen not too small, but
values such as minPts=5 may be sufficient for small 2-dimensional data sets with little
noise. The suggestions in [33] for choosing minPts in DBSCAN may be applicable.

3.2 Algorithmic Aspects of OPTICS

The OPTICS agorithm is an efficient algorithm to approximate the density clustering
structure given by the reachability distance introduced above. It uses a greedy approach
to find dense areas: it always processes the point with the currently lowest known reach-
ability next (intuitively, the point with the highest expected density), removes it from
the candidates and adds it to the output list, then updates the reachability of its yet
unprocessed neighbors if (and only if) it decreased.

The output of OPTICS is an ordering of the database along with the reachability of
each object, but not clusters in the traditional sense of data partitions. Instead, differ-
ent visual and automatic methods can be used to extract clusters from this order. The
cluster order is not fully deterministic because points with the same distance may be
processed in any order. Thus, different runs may yield different results that nevertheless
correspond to a highly similar cluster structure.

A key design aspect of the OPTICS algorithm is its efficiency if the database can
accelerate radius queries. If the database can answer such queries for the given data
set, distance function, and radius εmax within log n time on average, then the run-time
of OPTICS can be n log n instead of O(n2), making it suitable for large data sets.3

For too large radius εmax , or “malicious” data sets, such run-times can usually not be
guaranteed (c.f., [33]), so the worst-case run-time supposedly remains O(n2). In many
practical applications, speedups of this magnitude can be observed empirically with
indexes such as the k-d-tree and R*-tree [7].

1 The εmax parameter serves the purpose of allowing index acceleration, but does not contribute
to the theoretical clustering model. Ideally, εmax is chosen to not affect the result, practically
we want to use the smallest εmax that still gives satisfactory results for best efficiency.

2 The definition in [6] had to handle the UNDEFINED case specially, we simply use∞.
3 We avoid the O notation here, because indexes usually can not guaranteeO(logn) query time.
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OPTICS uses a priority queue for processing points. Initially the queue is empty,
and if a maximum distance εmax is used, it may become empty again. If empty, an
unprocessed point is chosen at random with a reachability of ∞. OPTICS polls one
point o at a time from this priority queue, adds it to the cluster order with its current
reachability, marks it as visited, and searches its neighborhood: For every neighbor p of
o that has not yet been visited, reachability(p←o) is computed, and the priority queue
is updated, unless it already contains a better reachability for p.

The approach used by OPTICS bears similarities with Prim’s algorithm [27] for
computing the minimum spanning tree; except that for efficiency OPTICS only consid-
ers edges with a maximum length of εmax ; and the output is a linear order instead of a
spanning tree. Intuitively, OPTICS builds the cluster order by always adding the point
next which is best reachable from all previous points (and drawing one at random, if no
point is reachable or there is no previous point).

3.3 Cluster Extraction from OPTICS Plots

Density-based clusters correspond to “valleys” in OPTICS plots as seen in Fig.1d, but
the formal definition of a valley turns out to be more difficult than expected.

OPTICS [6] defined the notion of ξ-steep points if the reachability of two successive
points in the cluster order differs by a factor of more than 1−ξ. Downward steep points
are candidates for the beginning of a cluster, and upward steep points are candidates for
the end. The exact definitions of ξ-clusters involves handling of additional constraints,
such as ensuring a minimum cluster size and taking the minimum in-between value into
account for inferring the hierarchical structure. Details on this can be found in [6].

This extraction method operates only on the OPTICS plot only, not on the original
data: it identifies subsequences that exhibit a steep gradient, and then selects the corre-
sponding subsequence of the cluster order. It works as desired, and often would select
those areas a human expert would select base on visual inspection of the OPTICS plot.

When running this algorithm on larger data sets, certain artifacts have been observed
when inspecting the cluster in detail. This becomes most obvious when drawing the
convex hulls of cluster of geographical points, as seen in Fig. 2a for Tweet locations
in the Bosporus region (Fig. 2c and 2d are close-ups; lines are the convex hulls of the
cluster points): some clusters have a spike extending from them that does not appear to
be correct. Closer inspection revealed that these are always the last few objects within
a cluster, and this problem can be provoked on a much smaller data set.

4 Using Predecessor Information for Improved Cluster Extraction

The implementation of OPTICS in ELKI [5] includes additional information in the data
structures, useful for visualizing the clustering process of OPTICS: it not only tracks the
reachability distance, but also the predecessor that had the smallest reachability. This
was added to ELKI for the DiSH algorithm [1], an OPTICS variant for finding subspace
cluster hierarchies. While DiSH used this information to compare the “subspace pref-
erence” of a point to its predecessor, it turned out that this is exactly the information
needed for resolving ambiguity of wheter a point at the end of a valley still belongs to
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(a) ξ clusters without correction (b) ξ clusters with correction

(c) Details of artifacts
(left: uncorrected / right: corrected)

(d) Details of artifacts
(left: uncorrected / right: corrected)

Fig. 2: OPTICS without and with the proposed filtering

Data: o(i): Object at position i
Data: r(i): Reachability at position i
Data: p(i): Predecessor of object at position i
Data: s: Start position of cluster within cluster order
Data: e: End position of cluster within cluster order (inclusive)

1 while s < e do
2 if r(s)> r(e) then return (s, e) ; // Rest must be consistent
3 for i= s to e− 1 do // Search for predecessor
4 if o(i) = p(e) then return (s, e) ; // Found - consistent

5 e← e− 1 ; // Not found, shrink cluster

6 return null ; // Completely inconsistent

Algorithm 2: Cluster refinement algorithm, to postprocess each cluster (s, e).

the cluster or not: if its predecessor is included in the cluster then the ambiguous point
is also part of the cluster, but if the predecessor is in a parent cluster, the point should
be part of the parent (or a subsequent cluster in the plot).

Algorithm 2 gives the pseudocode of this surprisingly simple refinement algorithm,
which can be integrated easily into the ξ cluster extraction or other methods for ex-
tracting clusters from OPTICS plots. (The artifact is not specific to ξ clusters, but these
artifacts will occur in any method based on valleys in the cluster order.) The prede-
cessor of the last (by cluster order) element in the cluster is searched in the cluster. If
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B C I

Fig. 3: Predecessors in the OPTICS plot.

it is found, the algorithm terminates, but if the predecessor is not found, then the last
element is discarded and the algorithm continues. Because of the priority heap used in
OPTICS, all points with a reachability less than the first point must have their prede-
cessor in the cluster, so most points will cause successful termination. The necessary
predecessor information can trivially be gathered while computing the OPTICS plot,
and needs only O(n) additional memory for storing the predecessors. Since we only
have to look at a few elements at the end of each cluster, the runtime impact of this
refinement is negligible compared to the cost of finding the neighbors.

Fig.2a visualizes the clusters without this algorithm, and Fig.2b after post-processing
the clusters, with hardly visible differences. We indicate two (but not all) differences
with arrows, and show these regions in more detail in Fig.2c and Fig.2d.

4.1 Theoretical Support for this Correction

This correction technique is well supported by theory if we realize that the OPTICS plot
is a linearized version of a spanning tree. If there exist multiple subtrees in the data,
only one subtree can immediately follow in the OPTICS cluster order. After the first
subtree, there will be some object which is the first of the next subtree. This object will
necessarily have a higher reachability than the first object of the first subtree (because
of the priority queue). The converse is, however, not true, and we cannot rely on the
reachability alone. Instead, we need to consider the predecessor of the point.

Fig. 3 illustrates this principle. Points C to I consitute a valley. But because the
predecessor of I is B, and B is not part of the valley, it is not part of the cluster (the
reachability in the plot is reachability(I←B), and the reachability of I from any point
between B and I is at least as much).

Line 2 is a simple shortcut to avoid having to search the predecessor: When the point
s was added to the cluster order, it must have been the point with minimum reachability
(because of the priority queue). If r(s)>r(e), this implies that some predecessor of e
in the cluster order between s and e must have caused the reachability of e to decrease
to this value r(e), and therefore this predecessor must be in the cluster. Note that for
r(s)≤r(e) it is no longer guaranteed that r(e) decreased after s was added. In such
cases, we employ the linear search in Line 3. We could avoid this search by storing the
cluster order position of each element with additional O(n) memory, but the search has
very low constant factors, and is not invoked very often.

While the proposed technique is an easy and effective modification of the exist-
ing cluster extraction techniques—and should be integrated to improve the results—it
raises the question whether the linearization of the spanning tree into the cluster or-
der is appropriate in the first place. Instead, it may be reasonable to use a spanning
directly instead of the processing order used by OPTICS. In fact, the recently proposed
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method HDBSCAN does exactly this: constructing a density based spanning tree of the
data, and extracting clusters from this tree; unfortunately at the cost of increasing the
complexity of the published algorithm to O(n2).

The observation that OPTICS plots relate to dendrograms is not completely new: In
[29], the authors discuss how to convert an OPTICS cluster order into a dendrogram,
or a dendrogram into a cluster order, but without realizing the role of the predecessor,
and how this can be used here. And while OPTICS plots are a key contribution of the
method, the roots of this visualization can be traced back to Ward [35], who used arrows
of different length to indicate the clustering structure. Other early examples include sky-
line plots [36], the diagrams used by Johnson [21], and the “linear representations” of
clusters in the book by Hartigan [18]. Icicle plots [23] closely resemble the OPTICS
plot, but the main contribution claimed is to use the object labels for printing instead of
blocks. These early methods will only scale to a few objects, as they usually require two
characters or lines per object. The authors argue that these plots are easier to read off
than the dendrograms more commonly used with hierarchical clustering. We believe we
are the first to point out the close relationship between these icicle/skyscraper plots and
OPTICS reachability plots. It is worth noting that the older plots plotted the separation
distance inbetween of two points, whereas OPTICS reachability plots use the reacha-
bility distance of a point. In fact, the reachability is better interpreted as the separation
from the points’ predecessor(s), i.e., the cophenetic distance [34].

So while we should rather define OPTICS clusters as subtrees of the implicit span-
ning tree, rather than further using the current visual approach based on the cluster
order and plot. But as mentioned before this ultimately leads to the HDBSCAN* [12]
algorithm. In this paper, we rather discuss a small modification to OPTICS cluster ex-
traction, that can easily be added to an existing implementation.

5 Experiments

We continue with the running example using Tweets in Istanbul introduced in Section 3.
Fig. 2 shows the clusters without and with the proposed modification. In Table 1 we
show the change in density caused by our filtering approach. While it would be possible
for a cluster to disappear because of filtering (if it shrinks below the minimum cluster
size), this did not occur here. Out of 70 clusters (hierarchical, including the top level
cluster containing everything), only 7 clusters were modified, and a total of 11 points
were assigned to the parent cluster instead. With most evaluation measures such as
the adjusted Rand index (ARI), normalized mutual information (NMI), but also most
internal measures, this change would only make a negligible difference, as only 0.11%
of points have changed the cluster assignment.

Therefore, we evaluate the change in cluster area instead. For each cluster, we com-
pute the convex hull, and compute the polygon area using the Shoelace formula. As we
can see in Table 1, removing a single misassigned point reduced the area of the poly-
gon up to 80%. For comparison, we give the maximum and the average area reduction
possible by removing a single cluster member. As we can see, the filtered clusters are
much less affected by random removal. We also include the four non-modified clusters
with the largest possible area reduction as comparison. While we can see that while
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Table 1: Change in cluster area by removing points.
points filtered unfiltered

Clu.# before change area reduced max rnd area max rnd
#18 313 -4 3.09 -30.6% -5.8% -0.1% 4.46 -28.4% -0.1%
#27 137 -1 0.79 -49.2% -8.0% -0.2% 1.56 -49.2% -0.5%
#49 119 -1 1.23 -12.4% -4.7% -0.1% 1.40 -12.4% -0.2%
#50 179 -1 2.23 -61.4% -7.6% -0.1% 5.78 -61.4% -0.4%
#56 271 -1 7.43 -43.0% -1.3% -0.0% 13.04 -43.0% -0.2%
#64 53 -2 1.04 -32.8% -6.0% -0.4% 1.54 -30.4% -0.9%
#65 58 -1 1.27 -80.1% -5.8% -0.2% 6.37 -80.1% -1.5%
#31 59 0 0.15 -13.4% -0.6%
#43 94 0 1.71 -14.0% -0.3%
#51 51 0 0.08 -17.2% -0.9%
#68 81 0 6.03 -12.9% -0.4%

these have a larger area reduction than cluster #49, they are also smaller, and we can
thus expect the area to depend more on the individual points. This also shows in the
larger area reduction when removing a random point. But most importantly, our ap-
proach is well supported by theory, as opposed to a heuristic threshold-based cluster
pruning. Furthermore, cluster #51 is already unusually small, with just 0.077 km2: the
Sinan Erdem Dome, the tiny orange cluster embedded in the larger cluster (which is
cluster #50, corresponding to Ataköy, Bakırköy) in the bottom right of Fig.2c.

6 Conclusions

In this paper, we improve OPTICS clustering by storing the predecessor of each point,
and taking this information into account during cluster extraction. The changes to the
resulting clustering is small, usually just 0-2 samples per cluster. Because of this, this
difference easily goes unnoticed when just looking at clustering evaluation measures
such as the adjusted Rand index (ARI), or normalized mutual information (NMI). How-
ever because these points do not fit the resulting clusters well, they have a major im-
pact on the volume of the cluster. This can easily be seen when using the convex hull
on geographic data. The same effect however exists in other distances and in high-
dimensional data as well. The proposed improvement is well supported by theory, as
it prunes points based on the spanning tree used implicitly by OPTICS. Because the
necessary improvements require only O(n) additional memory and neglibile run-time,
they should be used by default, and have in an earlier variant already been integrated
in the open-source ELKI [32] data mining framework since version 0.7.0 as well as the
dbscan R package since version 1.0-0. This article explains the theoretical foundation
of this beneficial filtering technique.
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