
The Relationship of DBSCAN to
Matrix Factorization and Spectral Clustering

Erich Schubert1, Sibylle Hess2, and Katharina Morik2

1 Heidelberg University, Germany
schubert@informatik.uni-heidelberg.de

2 TU Dortmund, Germany
{sibylle.hess,katharina.morik}@tu-dortmund.de

Abstract. DBSCAN is a popular approach for density-based clustering. In this
short “work in progress” paper, we want to present an interpretation of DBSCAN
as a matrix factorization problem, which introduces a theoretical connection (but
not an equivalence) between DBSCAN and Spectral Clustering (SC).
While this does not yield a faster algorithm for DBSCAN, establishing this rela-
tionship is a step towards a more unified view of clustering, by identifying further
relationships between some of the most popular clustering algorithms.

1 Introduction

The concept of density-based clustering was popularized by the seminal algorithm
DBSCAN [5, 8, 9] and has sparked the development of a wide array of density-based
clustering methods such as OPTICS [1], LSDBC [2], and HDBSCAN* [3].

The core idea of DBSCAN is the notion of density-connected sets of points, illus-
trated in Fig. 1. As in kernel density estimation, we interpret the data as samples drawn
from a probability density function (pdf). In this example, we use a model composed of
three Gaussian distributions. In Fig. 1a we plot the density contour lines, while Fig. 1b
visualizes the pdf, and a cut at a density of 0.4, which yields two clusters (“islands”) in
this plot. If we increased the density threshold to 0.6, the larger cluster would split into
two clusters, at 0.8 the smaller cluster would disappear.

1

1

0.8

0.8

0.8

0.6

0.6

0.60.6

0
.6

0
.4

0.4

0.4

0.4

0.4

0.4
0.
4

0.4

0.2

0.
2

0
.2

0.
2

0.2

0.2

0
.2

0.
2

0.2

0.2

0.
2

0
.2

0.
2

0.2

0.2

0
.2

0.
2

0.2

0
.4

0.4

0.4

0.4

0.4

0.4
0.
4

0.4

(a) Contour plot
(b) Density model with level set

Fig. 1: Density level set model

2 Erich Schubert, Sibylle Hess, and Katharina Morik

The DBSCAN algorithm is a database oriented technique to find such clusters,
formulated around the concept of ε-radius queries (corresponding to using a uniform
kernel of radius ε for density estimation). The algorithm begins at any unprocessed
data point, and as long as the current point satisfies a density criterion (e.g., it has at
least minPts neighbors), all the points neighbors are added to the same cluster. The
algorithm then continues by expanding the cluster at each dense neighbor point. Once
all expansions have been performed, the cluster is complete, and the algorithm can
continue at any other unprocessed point to find another cluster. Non-dense points are
either “noise”, or “border” points, details of which can be found in [5, 8, 9].

With data index structures, a database system may be able to accelerate the ε-radius
queries, and thus the algorithm. Without acceleration, the complexity of DBSCAN is
that of computing all pairwise distances, i.e., O(n2) run-time. DBSCAN however does
not need to store the entire distance matrix, and only usesO(n) memory for object labels,
a seed list of unprocessed objects, and the neighbors of a single object at a time.

Spectral clustering (SC) is based on the idea of finding the best normalized cut of
the adjacency matrix [6]. Given the symmetric adjacency weight matrix W ∈ Rn×n
of n data points xi, the normalized cut objective aims at finding a partition into k sets
(clusters) C1 . . . Ck solving the following optimization problem:

min
C1,...,Ck

∑k

s=1

∑
i∈Cs

∑
j /∈Cs

Wij∑
i∈Cs

∑
j∈DB Wij

which is the cost of cutting all the edges between different clusters, normalized by the
total edge weight of each cluster. Like many clustering problems, this is NP-hard to solve
exactly. Spectral clustering is based on a relaxed version of this optimization problem [6].

To find the clustering solution, we need to find the smallest eigenvalues and eigen-
vectors of the graph Laplacian. Eigenvectors to a zero eigenvalue indicate connected
components (which obviously indicate optimal graph cuts, with zero cut edges). But
for spectral clustering it is common to use k additional eigenvectors (corresponding
to the k smallest eigenvalues) as a projection of the data (also referred to as “spectral
embedding”), then SC uses k-means on this projection instead of the original data. For
establishing the relationship to DBSCAN, we will use only these optimum cuts with
zero cut edges, and do not need to consider the issues with k-means clustering here.

Different versions of the graph Laplacian exist, such as the unnormalized L=D−W
(where D is the diagonal containing the weight sums of each point), the normalized sym-
metric Lsym =D−1/2LD−1/2 = I −D−1/2WD−1/2 [7]; and the normalized random-
walk Lrw =D−1L= I −D−1W [10]. The normalized versions aim at creating more
balanced clusters with respect to the edge weight, by normalizing the weights according
to the node degrees.

The eigenvectors of the Laplacian are usually found based on singular value de-
composition (SVD), approximated with power iterations, but could also be solved via
nonnegative matrix factorization (NMF) [4]. The complexity of the factorization is
O(n3), although in some cases on sparse graphs we can obtain speedups to O(n2). This
makes SC one of the slower popular clustering techniques, and makes it difficult to scale
this approach to large data sets.

The Relationship of DBSCAN to Matrix Factorization and Spectral Clustering 3

2 DBSCAN as Matrix Factorization

While the original DBSCAN algorithm is a database oriented technique, we can also
interpret it as a graph algorithm. We first consider only so-called “core” points C ⊆ DB,
on which we will get a stronger result. In the standard DBSCAN setup, core points
are exactly those points that have at least minPts neighbors within a distance of ε, i.e.,
points x with the binary predicate core(x) := |RangeQuery(DB, dist, x, ε)| ≥ minPts.
In the following, we use the symbol C := {x ∈ DB | core(x)} to denote the subset
containing only core points. The core point graph then is defined by the edges

ecore(xi, xj) :=1 if dist(xi, xj)≤ ε ∧ core(xi)∧ core(xj)
and 0 otherwise. We use a numeric representation of the edges, rather than a set notation,
because of the normalization and matrix notations used in spectral clustering.

Clusters in DBSCAN correspond to connected components in C. To reconstruct
the full clustering on DB, we assign points x ∈ DB \C to a cluster if they are within
distance ε of at least one core point in the cluster; otherwise it is labeled as “noise”. This
assignment of “border” points is not necessarily unique (c.f., [5, 9]), but it is not very
common that a point is neighbor to two different clusters and not a core point itself.

Connected components arise in spectral clustering when factoring the graph Lapla-
cian, as eigenvectors with an eigenvalue of 0. Each connected component is a cut with
cost 0, and thus an optimal cluster (the k-means step in spectral clustering is only nec-
essary to find further substructures). But the connected components of ecore are exactly
the DBSCAN cluster cores, and hence we get the DBSCAN results except for noise
and border points. If we next consider the full DBSCAN clusters, the possibility that a
border point connects two clusters however becomes problematic. The full reachability
graph of DBSCAN is (note the ∨ – it is sufficient if one of the points is core):

esymmetric(xi, xj) :=1 if dist(xi, xj)≤ ε ∧
(
core(xi)∨ core(xj)

)
Spectral Clustering (SC) is based on the notion of minimum cuts. In the situation

where a border point connects two clusters, this will usually yield a minimum cut, i.e.,
spectral clustering will choose the desired cluster split.

In the logic of DBSCAN, the graph is however not symmetric. Only from core points
we can reach neighbors, and this is also reflected in later methods such as OPTICS. From
this point of view, the following edge definition is more appropriate:

easymmetric(xi→ xj) :=1 if dist(xi, xj)≤ ε ∧ core(xi)
If we use, e.g., power iterations to approximate the eigenvectors of the Laplacian,

we do not run into major problems even for a non-symmetric matrix (an exact solution
may in the worst case involve complex eigenvalues and eigenvectors because of the
asymmetry; but it is easy to see that the random-walk interpretation of power iterations
means we can find clusters as sets that are closed under random walks). Non-core
nodes xj are simply “dead ends” in a random walk. Non-core points that are reachable
from more than one cluster will be non-zero in more than one eigenvector. Formally, this
means the vectors no longer are orthogonal, but for the purpose of clustering this is not
problematic. Intuitively, an eigenvector of this matrix is a set of points such that when
following all edges, we obtain the same set (A ·x= x). Finding the eigenvectors is, of
course, a matrix factorization.

4 Erich Schubert, Sibylle Hess, and Katharina Morik

3 Spectral Density-Based Clustering

This edge graph we use here is a subtle variation of a common graph used in spectral
clustering: the ε-neighborhood graph [6] places an edge whenever two points have a
distance of at most ε. Here, based on DBSCAN, we modify this with a minimum density
requirement, by omitting edges where the points are not “dense”.

It is easy to see that most of the graph will be identical – in particular the graph
restricted to the cluster core. As the differences are fairly subtle, we cannot expect
this approach to produce very different results except that we do get more completely
disconnected points (in particular for larger values of minPts). For users of spectral
clustering, this small modification may be worth exploring.

While the ε-neighbor graph is usually unweighted, alternatives such as the kNN
graph are often weighted by their distance. Here, we can incorporate ideas from OPTICS
clustering (a hierarchical extension of DBSCAN, that no longer needs a fixed ε threshold).
The key notion of OPTICS is the (asymmetric!) reachability, which can be defined as

reachability(xi→xj) :=max{dist(xi, xj),minPts -dist(xi)}
where minPts -dist is the distance to the minPts nearest neighbor. However, for spectral
clustering we need a similarity and not a distance matrix, and we thus need to also
choose an appropriate transform, e.g., the Gaussian similarity of bandwidth σ:

s(xi→ xj) :=
1√

2πσ2
exp− | reachability(xi→xj)|2

2σ2 .

We expect this to yield an interesting hybrid method: Because the minPts-nearest
neighbors all have the same weight, the approach will behave more like unweighted
spectral clustering on “dense” structures, and more like the kNN graph on sparse points.
In particular for larger values of minPts, this introduces a smoothing property previously
found beneficial in OPTICS. Yet, the difference may often be too small to have a
measurable impact on common evaluation metrics.

4 Complexity

Finding the edge graph, unfortunately, is already as expensive as running the original
DBSCAN or OPTICS algorithms. Since these run in worst-case O(n2), we cannot
expect any of above variations to outperform the original methods. In fact, just storing
the edge graph will consume more memory than either DBSCAN or OPTICS even when
using a sparse matrix, and thus the original algorithms remain the preferred choice.

If we intend to use spectral clustering, we can however incorporate the density-
based ideas from DBSCAN and OPTICS more easily. When using the DBSCAN-graph
in spectral clustering, it is a good idea to build a separate edge graph only for each
DBSCAN cluster. We can then easily run spectral clustering only on each connected
component separately, which is more efficient. Furthermore, the construction of the
similarity graph can then be accelerated using a database index.

With the reachability-graph in spectral clustering, we will not as obviously get such
computational benefits. Experience in OPTICS shows that it may be worth truncating
the neighbors at a certain threshold, and the use of the exponential function in the
Gaussian similarity also yields a similarity that drops off quickly to effectively zero.

The Relationship of DBSCAN to Matrix Factorization and Spectral Clustering 5

When ignoring neighbors outside of a εmax radius, OPTICS can be index accelerated.
We can employ the same technique in spectral clustering, by choosing an εmax query
radius that is, e.g., εmax = 5σ, where the density has already reduced by a factor of
3.7 · 10−6. This will produce a more sparse graph, which may be faster to compute.

5 Conclusions

In this short paper, we established a connection (not an equivalence) between density-
based DBSCAN clustering, matrix factorization, and spectral clustering: the clusters
found by DBSCAN correspond (except for border and noise points) to optimal cuts of
the neighborhood graph of the core points only, and hence, to spectral clusters.

While this does not yield a faster clustering algorithm – computing the graph is
as expensive as running DBSCAN – the theoretical relationship of these methods is
interesting. In future work, we plan to study consequences of applying other factorization
strategies onto this matrix to improve DBSCAN results, but also to integrate the notion
of density into that of spectral clustering. We would like to investigate the feasibility of
doing the opposite connection: reformulate spectral clustering in a DBSCAN-like way
in order to find more efficient, potentially index accelerated, algorithms to accelerate the
rather expensive spectral clustering algorithms without storing the large graph explicitly.

Bibliography

[1] M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander. “OPTICS: Ordering Points
To Identify the Clustering Structure”. In: ACM SIGMOD. 1999, pp. 49–60.

[2] E. Biçici and D. Yuret. “Locally Scaled Density Based Clustering”. In: ICANNGA.
2007, pp. 739–748.

[3] R. J.G. B. Campello, D. Moulavi, and J. Sander. “Density-Based Clustering Based
on Hierarchical Density Estimates”. In: PAKDD. 2013, pp. 160–172.

[4] C. H. Q. Ding and X. He. “On the Equivalence of Nonnegative Matrix Factoriza-
tion and Spectral Clustering”. In: SIAM SDM. 2005, pp. 606–610.

[5] M. Ester, H. Kriegel, J. Sander, and X. Xu. “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”. In: ACM KDD.
1996, pp. 226–231.

[6] U. von Luxburg. “A tutorial on spectral clustering”. In: Statistics and Computing
17.4 (2007), pp. 395–416.

[7] A. Y. Ng, M. I. Jordan, and Y. Weiss. “On Spectral Clustering: Analysis and an
algorithm”. In: NIPS. 2001, pp. 849–856.

[8] J. Sander, M. Ester, H. Kriegel, and X. Xu. “Density-Based Clustering in Spatial
Databases: The Algorithm GDBSCAN and Its Applications”. In: Data Min. Knowl.
Discov. 2.2 (1998), pp. 169–194.

[9] E. Schubert, J. Sander, M. Ester, H. Kriegel, and X. Xu. “DBSCAN Revisited,
Revisited: Why and How You Should (Still) Use DBSCAN”. In: ACM TODS 42.3
(2017), 19:1–19:21.

[10] J. Shi and J. Malik. “Normalized Cuts and Image Segmentation”. In: IEEE TPAMI
22.8 (2000), pp. 888–905.

http://dx.doi.org/10.1145/304182.304187
http://dx.doi.org/10.1145/304182.304187
http://dx.doi.org/10.1007/978-3-540-71618-1_82
http://dx.doi.org/10.1007/978-3-642-37456-2_14
http://dx.doi.org/10.1007/978-3-642-37456-2_14
http://dx.doi.org/10.1137/1.9781611972757.70
http://dx.doi.org/10.1137/1.9781611972757.70
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1023/A:1009745219419
http://dx.doi.org/10.1023/A:1009745219419
http://dx.doi.org/10.1145/3068335
http://dx.doi.org/10.1145/3068335
http://dx.doi.org/10.1109/34.868688

	The Relationship of DBSCAN to Matrix Factorization and Spectral Clustering

