CEUR-WS.org/Vol-2191/paperd0.pdf

Minimally-Intrusive Augmentation
of Data Science Workflows

Andreas M. Wahl, Peter K. Schwab, and Richard Lenz

Lehrstuhl fiir Informatik 6 (Datenmanagement), FAU Erlangen-Niirnberg
{andreas.wahl,peter.schwab,richard.lenz}@fau.de

Abstract. Data scientists follow individually established workflows and
use customized tool chains to deal with complex data analysis scenarios.
Novel tools, which aim to support their work, must not disrupt these
proven technical environments and must integrate with their existing
tool chains in order to further enhance their productivity.

Augmenting data science workflows usually requires to explicitly load
data sources into additional tools where they are processed in isolation
and exported again for further usage. There is currently no evolvable
mechanism to augment data science workflows with additional function-
ality without mandatory workflow disruption.

To overcome this problem, we introduce a proxy driver for augmenting
data science workflows. Our driver provides proxies of Java Database
Connectivity (JDBC) objects and is easily evolvable through a plugin
system. Driver instances can be synced with a remote plugin repository.
Currently, two different driver plugins enable query-driven data ingestion
as well as query-driven data profiling.

1 Introduction

Data science workflows usually consist of multiple consecutive steps, including
data discovery, data exploration, data cleaning, model development, model eval-
uation and result visualization. Data scientists use specialized tools for each
of these steps to overcome different challenges. They assemble customized tool
chains, in which data sources are passed along between these tools. Augment-
ing such workflows currently requires integrating additional tools into these tool
chains, which can be time-consuming. However, many data science tools use stan-
dardized database mechanisms such as Java Database Connectivity (JDBC) or
Open Database Connectivity (ODBC) to connect to the underlying data sources.
Hence, we argue that the database driver is a suitable extension point to in-
troduce additional functionality into data science workflows without requiring
significant workflow disruption.

Contribution In this paper, we present the fundamentals of a JDBC driver for
augmenting data science workflows. We describe the overall driver architecture
and discuss evolvability as well as deployment aspects (Sec. 2). We illustrate the
benefits of our approach for data scientists by introducing two driver plugins
we have developed (Sec. 3). Our driver will soon be publicly available from
http://www.dormantdata.com.

2 Wahl et al.

2 Evolvable Database Driver

Our driver provides proxies for objects of the Connection, Statement and
ResultSet classes of the JDBC API and wraps the native driver of the respec-
tive data management system (Fig. 1). We use reflection techniques to augment
objects with additional logic at run time. This logic is encapsulated in plug-
ins, which are initialized when the proxy driver is loaded. Each plugin defines
which specific JDBC methods are intercepted and augmented. For each class,
the driver maintains a stack of plugins to enable complex augmentation. Plugins
are executed consecutively when calls to relevant JDBC methods are detected.
Evolvability Through our plugin system, JDBC objects can be augmented with
multiple layers of arbitrary logic. Plugins can define dependencies to other plu-
gins to enable the reuse of augmentation logic. To facilitate system evolvability,
local driver instances are synchronized with a remote plugin repository (Fig. 1).
Whenever the proxy driver is loaded, the repository is queried for updated ver-
sions of previously used plugins to initiate automatic updates. Users are notified
about new plugins to decide whether to incorporate them into their workflow.
Deployment Effort Our driver is compatible with existing tools that use
JDBC to connect to underlying data management systems. Migrating to our
driver is minimally-intrusive: Users deploy the driver binary to their machine
and point their analysis tool to this binary (Fig. 1). This is done by adding the
prefix jdbc:dormantdata: to the connection string of the native driver.

—
Local Plugin ||
Repo.

Proxy Driver
Proxy Proxy Proxy
Connection Statement ResultSet
Invocation Invocation Invocation
Handler Stack Handler Stack Handler Stack
Plugin 0 Plugin 0 Plugin 0
Pluginn Pluginn Pluginn
Native Native Native
Connection Statement ResultSet
Native Driver

]

Analysis Tools

51

——
——
Remote I
Plugin Repo.

Fig. 1. System Architecture
3 Driver Plugins

We have developed two plugins that provide useful functionality for data scien-
tists without interfering with established analysis tools and workflows.

3.1 Query-Driven Data Ingestion

The first plugin enables the automated ingestion of remote data sources refer-
enced in SQL queries. Data scientists can directly use the URL of data sources,
such as CSV files or HTML tables in the FROM-clauses of their queries. Our eval-
uation indicates that they can work more efficiently with our plugin, as they are
able to perform data preparation tasks directly in the context of their actual
queries without having to use external ETL tools [5].

Plugin Logic The plugin intercepts calls to methods that execute SQL state-
ments (Fig. 2). After logging an intercepted query, it is parsed to extract all
references to data sources. Whenever an unknown or outdated data source is
detected, it is downloaded from its respective URL, transformed and stored in
the data management system. The query is subsequently rewritten to reference
the stored copy of the remote data source.

Minimally-Intrusive Augmentation of Data Science Workflows 3

Intercept Log Parse Extract Data
Query Query Query Source References

Data Source
unknown or
outdated?

Execute
Query

Rewrite
Query

Download Store Data
Data Source Source

Fig. 2. Query-Driven Data Ingestion: Plugin Logic

3.2 Query-Driven Data Profiling

Through a second plugin, we provide support for analyzing query results in the
context of previous queries of the respective session [12]. We therefore integrate
data profiling algorithms into query processing. Among others, these algorithms
can derive basic statistics about the query results, find unique column combina-
tions and discover different types of constraints valid for the query results. The
plugin provides aggregated visualizations of the profiling results of the respective
session as well as measures to rank results according to their usefulness. This
allows data scientists to conduct targeted data exploration in the context of their
actual queries as well as plausibility assessment of intermediate query results.

Plugin Logic The plugin intercepts calls to methods that execute statements
and retrieve result rows from the underlying data management system. Parallel
to query processing, result rows are streamed to a remote server to avoid impact
of computationally expensive profiling on normal query processing. Result rows
are fed into an instance of the Metanome data profiling system [10]. We exe-
cute multiple data profiling algorithms on the result rows in parallel to generate
a selection of different data profiles. After ranking the data profiles according
to their deviation from the profiles of previous queries, the plugin launches a
companion dashboard next to the analysis tool from which queries are formu-
lated. The current query is displayed (Fig. 3; a), along with a visualization of
the previous query flow (Fig. 3; b). Branches indicate output schema changes.
Data scientists can freely choose which previous queries are used as reference
points during analysis. A query history (Fig. 3; c) allows inspecting previous
profiling results and visualizations. Suitable visualizations for the historic and
current results of each profiling algorithm are displayed (Fig. 3; d-i).

4 State of the Art

In contrast to our approach, the technique of using a proxy driver has previ-
ously only been used to add non-functional aspects to existing data manage-
ment systems and not for data science workflow augmentation. Among others,
these aspects include virtual clustering [4], transparent multi-tenancy [8], caching
techniques [7], virtual data integration [6] and security mechanisms [9]. System
evolvabilty is not addressed by previous efforts.

There are several publicly available implementations of JDBC proxy drivers.
In contrast to our work, they either do not support all relevant parts of the API
(e.g. [1]) or target specific purposes such as logging (e.g. [3]) or virtual clustering
(e.g. [2]). These implementations do also not address system evolvability.

4

5

Wahl et al.

Fig. 3. Query-Driven Data Profiling: Companion Dashboard (Screenshot) [12]

Conclusion and Future Work

Our JDBC proxy driver provides a minimally-intrusive way to augment data sci-
ence workflows with additional functionality. The currently implemented driver
plugins support data scientists with integrating and exploring unfamiliar data
sources. Our driver can also be a valuable tool for other researchers who are
monitoring existing data science workflows.

We are currently extending our work by developing additional driver plugins.

These will provide functionality from existing research projects (cf. Sec. 4) as well
as novel context-sensitive auto-completion for SQL queries based on knowledge
mined from existing query logs (cf. [11]).

References

A

10.
11.

12.

DSProxy, https://github.com/dapphub/ds-proxy, accessed: 2018-05-29
HA-JDBC, http://ha-jdbc.org/, accessed: 2018-05-29

P6Spy, https://github.com/p6spy/pbspy, accessed: 2018-05-29

Cecchet et al.: C-JDBC: Flexible Database Clustering Middleware. In: ATEC ’04
Haller: Tsunami - Anfrage-getriebene Anbindung von Datenquellen an ein Daten-
managementsystem. In: INFORMATIK’17 (2017)

Lawrence: Integration and virtualization of relational sql and nosql systems includ-
ing mysql and mongodb. In: CSCT’14 (2014)

Lawrence et al.: Next Generation JDBC Database Drivers for Performance, Trans-
parent Caching, Load Balancing, and Scale-out. In: SAC ’17 (2017)

Ma et al.: A Transparent Data Middleware in Support of Multi-tenancy. In:
NWeSP’11 (2011)

Mitropoulos, Spinellis: SDriver: Location-Specific Signatures Prevent SQL Injec-
tion Attacks. Computers and Security 28 (2009)

Papenbrock et al.: Data Profiling with Metanome. PVLDB 8(12) (Aug 2015)
Wahl et al.: Query-Driven Knowledge-Sharing for Data Integration and Collabo-
rative Data Science. In: ADBIS’17 (2017)

Wabhl et al.: Query-Driven Data Profiling with OCEANProfile. In: BIRTE’18 (2018)

