
Evaluation of Configuration Knowledge
in Industrial Manufacturing

Joachim Baumeister1,2

1 denkbares GmbH, Friedrich-Bergius-Ring 15, D-97076 Würzburg
2 University of Würzburg, Am Hubland, D-97074 Würzburg

joachim.baumeister@denkbares.com

Abstract. Current industrial information systems maintain and process
immense amounts of knowledge to be used for the development, config-
uration, and production of artifacts. From a logical point of view these
elements process knowledge abozt the same concepts albeit existing in
different information systems. From a practical point of view, however,
the systems are only loosely coupled and only have little linkage. These
semantic gaps prevent a seamless analysis and evaluation of the entire
knowledge, which in practice, is of significant importance for produc-
tional success. In this paper, we propose a general high-level ontology
that integrates with the knowledge of the information systems and en-
ables the analysis and evaluation tasks. We describe the basic concepts
and properties of industrial knowledge and motivate a number of general
evaluation tasks.

Keywords: semantic technologies, ontologies, plant engineering, quality
assessment

1 Introduction

The manufacturing industry is currently moving fast from traditional manufac-
turing processes to digitalized processes. This transition also includes the full
representation of so-called digital twins of the manufactured artifacts. Digital
twins are the enablers for mass-customized products that deliver premium qual-
ity of single-slot products at the range and costs of mass production.

The representation and handling of these twins, however, typically ranges
over a wide range of industrial process systems within the IT landscape. The
different interfaces of these systems act as a barrier for the data sharing and
linkage and thus prevent a full digital handling of the process. These systems
also hold knowledge about configuration and manufacturing processes that need
to be shared between the systems. Today, often a manual transition between the
system borders is developed which is complex, error-prone, and time-consuming.
Also a full knowledge process is not possible due to the system borders. This
prevents...

– a consistent development semantics of the manufacturing knowledge; no se-
mantic gaps between system transitions,



– a simple and lossless connection to existing information infrastructures within
or outside the company, and

– a comprehensive and complete quality assessment of the knowledge (valida-
tion and verification).

Semantic technologies are a key enabler for archiving these goals [4]. They
already proved to be capable to interconnect broad landscapes of IT systems
by preserving the intended semantics of the delivered data. Semantic technolo-
gies, especially the use of standardized ontology languages, provide a declarative
semantics of the manufactured products and their features. Also the reasoning
about these products can be defined in a declarative and clear manner.

This paper will focus on the last issue described above, i.e., the quality as-
sessment of distributed knowledge. We present an ontology for describing the
typical artifacts of a producing company:

– products and their structure
– features and feature items of products
– relational knowledge for customization and configuration

Despite general approaches in knowledge-based configuration [5], the proposed
ontology introduces concepts and constraint types that are tailored to the use in
the manufacturing industry. That way, it is easy to understand and share between
manufacturing companies. We also contribute a shallow integration approach
that is able to process quality questions on the integrated and linked knowledge
base.

The remainder of the paper is organized as follows: We first introduce a
general ontology for configuration items, i.e., artifacts that are produced in in-
dustrial manufacturing. In Section 3 we briefly sketch, how different knowledge
bases from distributed knowledge bases can be integrated into the presented on-
tology. We show uses cases of analysis and evaluation in Section 4. The paper
concludes with a discussion of related and future work in Section 5.

2 Ontology for Configuration Items

A reusable ontology for industrial manufacturing needs to represent different
products, that are defined by feature values. Different types of knowledge con-
strain the combinatorics of features but also of products, see Figure 1. In more
detailed, the following key concepts need to be explicitly defined:

Product portfolio: A product portfolio includes all artifacts produced by a
manufacturer. These artifacts are named products and are typically orga-
nized in a hierarchy. Products itself run through a life cycle yielding different
product versions.

Features: A single product is characterized by distinct features. The collection
of features for a produced product is often called a configuration. These
features are sub-classified into different types, i.e., features with a numerical



Product Feature

Knowledge

has

constrainsconstrains

Fig. 1. Products have features; both are constrained by different types of knowledge.

feature value (e.g. length) versus features with discrete values (color). A
larger number of features is organized in a hierarchy, for instance, in order
to mark the origin or use of the feature. Typical origins of features within
a company are the sales department, engineering group, and the production
department.

Relational knowledge: The values of some features are dependent on the as-
signment of other feature values and/or product types. One example is the
calculation of a total product weight that is dependent on the single weights
of the included features. Another example is the prohibition of a distinct
feature value combination, e.g., a roof antenna for convertible cars.

In the following, we will describe these elements in a more formal manner. For
the definition of the manufacturing product ontology we used a derivation of the
SKOS ontology [10], which already defines a number of basic concepts for gen-
eral knowledge organization systems. We derive the class LinkedConcept from
skos:Concept to describe the linked characteristics of concepts between a num-
ber of information systems. Also, linked concepts have a property linkedSystem

pointing to the original information system and linkedId storing the original
identifier of the concepts.

2.1 Product Portfolio

The product portfolio organizes all produced artifacts of a manufacturer in a
loose hierarchical structure, see Figure 2. The class ProductPortfolio wraps
all products and is derived from skos:ConceptScheme. A distinct product acts
as a root of the portfolio using the property topConceptOf. The hierarchy of the
portfolio follows the composite pattern. It is created by instances of Product,
that itself can have successors of Product by using the property superProduct (a
derivation of skos:broader). There exists special types of Products to represent
the group of concrete products in model families and model lines (also known
as series).

The life cycle of products is modeled by different product versions. That way,
a ProductVersion instance is assigned to a concrete product to represent the
life cycle version of this product. Each product version has a start date and an
end date, that defines the validity of this version. Often, different model years



skos:ConceptScheme

ProductPortfolio

Product

topConceptOf

superProduct

ProductLine ProductFamily

LinkedConcept

skos:Concept
ProductVersion

hasProductVersion

follows

xs:date

validStart / 
validEnd

Fig. 2. Classes and properties of the generic product portfolio.

are represented by different product versions. Here, the particular calendar years
are the valid dates for the product versions.

2.2 Features, Assignments and Configurations

A product is characterized by its possible features. More precisely, a concrete
product version defines a collection of features, that are available in this version.
It is worth noticing, that all available features are described for a product and
that the combination of some features may be not possible in a concrete instance
(e.g., feature electric engine vs. gasoline engine in a automotive setting). Figure 3
shows that Feature instances are organized hierarchically by the superFeature

property, a derivation of skos:broader. Different types of features are charac-
terized by the value type it can be assigned to. We define NumericalFeature

storing numerical float values (e.g., length of a car)and ChoiceFeature having
a predefined list of possible choice values (e.g., color of a car). Consequently,
we introduce properties for assigned choice values to Features (possibleValue)
and initial values (initValue, sometimes used as defaults). For choice values
it is possible to state an order between the different values by the property
valueOrder, e.g., for a feature doors the ordered choices two, four, and five.

An assignment between a value and a feature is captured by the correspond-
ing class assignment, that provides the property hf (has feature) to reference
the feature instance and the property hfv (has feature value) to reference the
value. Please note, that the value class need to correspond to the assigned feature
class.

A concrete instantiation of a product is manifested by an instance of Config-
uration. Basically, a configuration stores a collection of features with concrete
values, i.e., Assignment instances. Please note, that the assignments need to ref-
erence to features of the same product version. Also, a Configuration instance



Feature

ChoiceFeature

superFeature

ProductVersion

possibleValue

hasVersionFeature

NumericalFeature

FeatureValue
xs:string

valueUnit

xs:double

initValue

Assignment
hfv

hf

Configurationxs:string
id

cais

Fig. 3. Classes and properties defining the features, an assignment to feature values,
and a configuration.

usually refers to an ID that distinguishes it from other configurations. Often,
this identifier is called serial number or machine number.

2.3 Relational Knowledge

The features of products are constrained by relational knowledge. As shown in
Figure 4, relational knowledge refers to a Condition instance, that defines the re-
quirements for the execution of this particular knowledge element. These require-
ments vary between the specializations of RelationalKnowledge: For instance,
the condition can state invalid combinations between features and their values
(InvalidValues). Furthermore, relational knowledge is used to derive specific
values of features based on the given condition; the derivation is possible for
choice features (SymbolicDeduction) and for numerical features (Calculation).
A SATConstraint defines a (often complex) condition, that need to be either pos-
itively or negatively satisfied. For a simplified analysis and exchange of relational
knowledge, all involved features are linked explicitly by the relation involved.
We also define sub-properties conditionedFeature and derivedFeature for,



Feature RelationalKnowledge Assignmentinvolved condition

Deduction Constraint

SymbolicDeduction NumericDeduction InvalidValues

ValidValues

SATConstraint

Fig. 4. Classes and properties defining the relational knowledge, mostly between fea-
ture values.

depending of the specific type of the relational knowledge, the features used in
the condition but also in the conclusion are linked by these properties.

For the ontological representation of conditions of relational knowledge and
the representation of deductive knowledge in particular, we refer to the rule
language SWRL [8]. Albeit the syntax of SWRL is not easy to comprehend
for untrained users, it provides a common standard for representing equations
and conditions. In the context of our work, however, we focus on the shallow
representation of conditioned features and derived features, since this knowledge
is easy to interchange between systems and is sufficient to answer a number of
analysis and evaluation questions.

3 Linking Distributed Knowledge

Based on the general ontology defined in the previous section, we give an example
of a meaningful syncing strategy for an industrial use case. As we motivated in
the introduction, the knowledge of a producing company is typically dispersed
over a number of information systems. For the analysis of the summed knowledge
base, the knowledge elements of the particular systems need to be synced and
linked.

In an exemplary situation, a company runs a product data management sys-
tem (PDM) in the engineering department, a customer relations and pricing
system in the sales department (CRM/CPQ), and a service information sys-
tem (SIS) in the after sales department. Also an enterprise resource planing
system (ERP) is connected for managing the master data of the company. The
knowledge included in these systems considers the same products, features, and
interrelations.

Figure 5 shows the proposed approach, where the local knowledge bases are
linked with an integration ontology to be used for all analysis and evaluation



Analysis Evaluation

Dad Smells Verifikation Validation
concept unfpreflebels
conceptswleg.peLabds Ig
concepts notusedinknaledge noteovend
concepts walnidderlabels

unlinked

T

t
1

Yoo HE
Wo 4

X

6 o oo
Abb
Hof

PDM

Integration Ontology

sync

SIS

CRM / CPQ

ERP

sync

sync

sync

sync

Fig. 5. Linking knowledge of existing information systems with an integration knowl-
edge base.

tasks. In a canonical mapping scheme we represent all elements in the inte-
gration ontology, but introduce distinct instances for the elements with local
namespaces in each system. For example, a specific product p referenced in all
information systems, we also introduce three corresponding instances erp:p,
pdm:p, cpq:p, and sis:p of Product. The identity semantics between all p in-
stances is represented by the sub-properties of skos:mappingRelation, such as
skos:exactMatch [10]. In consequence, we arrive at one integration ontology
and one ontology for each connected information system.

This procedure may produce redundant instances at first sight, but allows for
a independent development and use of the different information systems and the
simple combination of different knowledge versions of each information system.

It is worth noticing, that the integration ontology does not include and map
the entire depth of the knowledge bases it is linked to, but integrates only that
levels of knowledge that are used in the evaluation task. In consequence, knowl-
edge included in the integration ontology can be used for analysis but may be
not executable as in the original system.

4 Use Case: Analysis and Automated Verification

In most cases, the installed information systems provide mechanisms to maintain,
analyze, and evaluate the knowledge included in their systems (local evaluation).
In a distributed scenario, however, the analysis and verification of the combined
knowledge represented by all systems is not possible (global evaluation). This
combined consideration of knowledge is made difficult because of the different
semantics and missing general interfaces of the particular information systems.
With the proposed ontology, a shallow analysis and verification of the knowledge
becomes feasible for a wide range of participating information systems. We show



some examples that motivate that even the shallow investigation of the combined
knowledge is valuable for maintaining a steady health state of the knowledge.

In the context of analysis and evaluation of knowledge cases we distin-
guish verification and validation tasks [6]. The validation of knowledge basically
considers the correct output of the system for reasonable inputs and—in our
scenario—requires the deep semantics of all participating knowledge systems.
The verification of knowledge investigates the correct construction of knowledge
with respect to possible anomalies. Here, a shallow analysis of the linked knowl-
edge bases is possible and valuable for the development and maintenance of the
entire system. Corresponding to the anomalies star classification, e.g., described
in [2], we distinguish circularity, redundancy, inconsistency, and deficiency of
knowledge. In the following, we discuss a selection of verification methods that
are simple to implement, but valuable for supporting the distributed develop-
ment. We focus on the introduction of a number of deficiencies, i.e., bad smells [3]
in the design of the ontology.

4.1 Bad Smell: Uneven Twins

We observe two matching features f1 and f2 in different models. Both features
have defined values

f1 ∈ M1 ∧ dom(f1) = {v1,1, v1,2, . . . , v1,n} and

f2 ∈ M2 ∧ dom(f2) = {v2,1, v2,2, . . . , v2,m} .

The features are defined to be exact matches of each other, i.e., exactMatch(f1, f2).
We report an design anomaly (bad smell), when there exists a feature value

v ∈ dom(f1) that has no value v′ ∈ dom(f2) with an exact match. That way,
both features are to be defined to be exact matches (twins) but define values that
are not known in the counter feature. A common reason for such a anomaly is a
missing match relation, that was not defined by the knowledge engineers. Some-
times, however, the change of the semantics of values without the broadcasting
to the other information systems are a further reason.

The following SPARQL statement shows a possible query for identifying un-
even twins f1 and f2.

SELECT ?f1 ?f1_value ?model

WHERE { ?f1 a co:Feature ;

co:possibleValue ?f1_value ;

co:inModel ?model .

MINUS { ?f2 a co:Feature ;

co:possibleValue ?f2_value .

?f1 skos:exactMatch ?f2 .

?f1_value skos:exactMatch ?f2_value .

FILTER (?f1 != ?f2) }

}



4.2 Bad Smell: Knowledge Twins

We define relational knowledge in different models that derive feature values for
the same features with same or intersecting feature sets in the condition, i.e.,

k1 : {a1, . . . , an} → {b1, . . . , bm} ∧ k2 : {c1, . . . , cp} → {d1, . . . , dq} ,

where ai, bi, ci, di are assignments f = v of values v to features f . Two sets of
assignments A1, A2 are intersecting, when there exists at least one assignment
in each set, that have matching features and feature values, i.e.,

for (f1 = v1) ∈ A1, (f2 = v2) ∈ A2 : exactMatch(f1, f2) ∧ exactMatch(v1, v2)

Please notice, that the property exactMatch is reflexive and thus a feature also
has an exact match to itself.

We observe a knowledge twin, when there exists an intersection between the
sets of assignments in the condition and an intersection between the sets of the
knowledge action, i.e.,

{a1, . . . , an} ∩ {c1, . . . , cp} 6= {} ∧ {b1, . . . , bm} ∩ {d1, . . . , dq} 6= {}

The following SPARQL statement shows a simplified query for detecting knowl-
edge twins k1 and k2 in different knowledge models, here the sales model and
the engineering model.

SELECT ?k1 ?k2

WHERE { ?k1 a co:RelationalKnowledge ;

co:conditionedFeature ?f1con ;

co:derivingFeature ?f1der ;

co:inModel sam:salesModel .

?k2 a co:RelationalKnowledge ;

co:conditionedFeature ?f2con ;

co:derivingFeature ?f2der ;

co:inModel enm:engineeringModel .

FILTER (?k1 != ?k2)

FILTER EXISTS {

?f1con skos:exactMatch ?f2con .

?f1der skos:exactMatch ?f2der . }

}

4.3 Incompatible Concept Matching

A (semantically) identical feature exists in two different information systems
and is matched, i.e., f1 ∈ M1 ∧ f2 ∈ M2 : exactMatch(f1, f2). Due to a design
decision the type of the feature in M1 is modified but this is not broadcasted to
the other information system.

For example, the feature fuel tank is a choice feature in the sales system with
only two possible values 40 liters and 80 liters. Since the engineering depart-
ment needs to compute with the actual capacity of the tank, they change the



feature class from symbolic to numerical. The exact match relation still exists.
In consequence, we arrive at an incompatible concept matching.

The following SPARQL queries for a feature f1 that has an exact match to
a feature f2 with class f2Type that is different from all classes of f1Type.

SELECT ?f1

WHERE { ?f1 a co:Feature ;

skos:exactMatch/rdf:type ?f2Type ;

MINUS { ?f1 a ?f2Type . }

}

4.4 Bad Smell: Same Surface

There exist two features f1, f2 that have similar names, but there exists no
matching relation between them. This simply smell is a indicator for incomplete
knowledge, typically occurring for new elements in the (distributed) knowledge
base.

The following SPARQL statement implements a simplified version of this
smell, where we query for features f1 and f2 that have an identical label. A
more refined query would look for similar strings.

SELECT ?f1 ?f2

WHERE { ?f1 a co:Feature ;

rdfs:label ?f1Label .

?f2 a co:Feature ;

rdfs:label ?f1Label .

FILTER (?f1 != ?f2)

FILTER NOT EXISTS { ?f1 skos:exactMatch ?f2 }

}

5 Conclusions

For the production of industrial artifacts typically a number of interacting in-
formation systems are used. These information systems show a large overlap of
concepts they are storing and working with. Nevertheless, these concepts are in
principle not linked or matched to each other. This especially makes is difficult
when evaluation of the distributed knowledge comes into place.

We introduced a simple ontology for the description of industrial produc-
tion artifacts. The ontology covers the product world, features, and versions of
artifacts as well as a shallow interpretation of configuration knowledge. In con-
sequence, we introduced some evaluation methods to motivate the general use
of the ontology.

In the literature, we see a couple of approaches for describing industrial pro-
duction knowledge in a semantic manner. For example, Badra et al. [1] introduce
an ontology for the representation of configuration knowledge and show a use
case for Renault automotive. In comparison, they did not cover the issue of



knowledge distributed over a couple of information systems. In Soinien et al. [9]
a configuration ontology is described. An elaborate model for the representation
of industrial production is introduced, as above, the distribution of knowledge is
not covered. The Volkswagen Vehicle Ontology [7] gives a description of features
and components of the Volkswagen group. From the perspective of this paper,
it focuses on the representation of the sales model, but does not explicitly define
knowledge distributed over different information systems.

In the future, we are planing to extend the ontology description with respect
to possible relational knowledge. Most importantly, the ontology needs to be
mapped to existing information systems already in use in a typical industrial
setting, i.e., ERP and CRM systems such as SAP and Salesforce. Also, we plan
to define and implement an extended catalog of evaluation methods tailored to
investigation of distributed knowledge bases.

References

1. Badra, F., Servant, F.P., Passant, A.: A semantic web representation of a prod-
uct range specification based on constraint satisfaction problem in the automotive
industry. In: Proceedings of the 1st International Workshop on Ontology and Se-
mantic Web for Manufacturing. pp. 37–50. Heraklion, Crete, Greece (2011)

2. Baumeister, J., Seipel, D.: Verification and refactoring of ontologies with rules.
In: EKAW’06: Proceedings of the 15th International Conference on Knowl-
edge Engineering and Knowledge Management, LNAI 4248. pp. 82–95. Springer,
Berlin (2006), http://ki.informatik.uni-wuerzburg.de/papers/baumeister/

2006/EKAW06_baumeisterSWRL.pdf

3. Baumeister, J., Seipel, D.: Anomalies in ontologies with rules. Web Semantics:
Science, Services and Agents on the World Wide Web 8(1), 55–68 (2010), http:
//dx.doi.org/10.1016/j.websem.2009.12.003

4. Coskun, G., Streibel, O., Paschke, A., Schäfermeier, R., Heese, R., Luczak-Rösch,
M., Oldakowski, R.: Towards a corporate semantic web. In: International Confer-
ence on Semantic Systems (I-SEMANTICS ’09). pp. 602–610. Graz, Austria (2009)

5. Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J.: Knowledge-based Configuration:
From Research to Business Cases. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1 edn. (2014)

6. Gómez-Pérez, A.: Evaluation of ontologies. International Journal of Intelligent Sys-
tems 16(3), 391–409 (2001)

7. Hepp, M.: http://www.volkswagen.co.uk/vocabularies/vvo/ns (volkswagen vehi-
cles ontology)

8. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language - Combining OWL and RuleML, W3C
Member Submission . http://www.w3.org/Submission/SWRL/ (May 2004)

9. Soininen, T., Juha Tiihonen, T.M., Sulonen, R.: Towards a general ontology of
configuration. Artificial Intelligence for Engineering Design, Analysis and Manu-
facturing 12, 357–372 (1998)

10. W3C: SKOS Simple Knowledge Organization System reference: http://www.w3.
org/TR/skos-reference (August 2009)

http://ki.informatik.uni-wuerzburg.de/papers/baumeister/2006/EKAW06_baumeisterSWRL.pdf
http://ki.informatik.uni-wuerzburg.de/papers/baumeister/2006/EKAW06_baumeisterSWRL.pdf
http://dx.doi.org/10.1016/j.websem.2009.12.003
http://dx.doi.org/10.1016/j.websem.2009.12.003
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/skos-reference
http://www.w3.org/TR/skos-reference

	Evaluation of Configuration Knowledge in Industrial Manufacturing

