
Transfer of Knowledge for Surrogate Model
Selection in Cost-Aware Optimization

Zbyněk Pitra1,2, Jakub Repický1,3, and Martin Holeňa1

1 Institute of Computer Science, Academy of Sciences of the Czech Republic
{pitra, repicky, holena}@cs.cas.cz

2 Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague
3 Faculty of Mathematics and Physics, Charles University in Prague

1 Introduction

Surrogate model selection is an active-learning approach to cost-aware contin-
uous black-box optimization in domains where the evaluation of the black-box
objective function is expensive, e. g., obtained experimentally or resulting from
comprehensive simulations. Active reusing of knowledge represented by landscape
properties of the objective function accross different tasks can provide additional
information for more reliable decisions in terms of a suitable surrogate model
and a suitable setting of its hyperparameters. However, research into using met-
alearing [13] and especially Exploratory Landscape Analysis (ELA) [14] in this
context is only starting [20]. Our goal is to develop a learning system capable to
recommend a surrogate model on the basis of the knowledge obtained in previous
black-box optimization tasks.

In this paper, we provide a first step necessary to construct a learning system
applying knowledge from previous tasks to a new one: a study of the applicability
of ELA to two important kinds of surrogate models – Gaussian processes (GP) [18]
and ensembles of regression trees (random forests, RF) [3,4,6]. Results using the
noiseless benchmarks of the Comparing-Continuous-Optimisers (COCO) platform
[9] in the expensive scenario, where at most 50D evaluations are available, are
analysed for statistical dependences between model performance and a broad
variety of landscape features.

2 Exploratory Analysis of Fitness Landscapes

In order to achive our goal, the relationships between data properties and
surrogate model performances has to be analysed in detail first. Second, the
investigated relationships will be used to design a system capable to transfer
knowledge about relationships from processed tasks to new ones.

The surrogate model selection problem is analogous to the algorithm selection
problem (ASP) formulated in [19] and it aims at selecting the most suitable
surrogate model for a specific optimization task. Considering ASP, ELA [14] aims
at characterizing the landscape of an investigated function and deriving rules how
those characteristics influence the performance of the optimization algorithm.
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We analyze relationships between the mean-squared error (MSE) of 29 dif-
ferent settings of GP or RF described in Appendix A.1 and 79 out of 91 ELA
features (see also Appendix A.1) which didn’t yield constant over 24 noiseless
benchmark functions from the COCO framework [9] in dimensions D = {2, 5, 10}
and their 15 instances4 for any of the tested GP or RF settings. The datasets
consisting of 50D points for each instance per function were generated by a
random improved Latin Hypercube design [1] covering the input space [−5, 5]D.
The overall predictive performance of the surrogate models was tested through
5-fold cross-validation on the generated datasets.

As a first step, we performed a simple correlation analysis using the Spear-
man correlation coefficient between the MSE of the considered models and the
investigated ELA features. However, no single ELA feature was found to be
discriminative for surrogate model performance, although a few features were
positively (or negatively) correlated with all considered models, which indicates
the landscape to be difficult (or easy) for fitting any of them.

As a second step, a classification tree representing a multivariate statistical
analysis was built using the obtained results. The resulting tree is depicted in
Figure 1. 79 ELA features were classified into 29 classes according to which of the
29 considered settings of GP and RF achieved the lowest MSE for the respective
combination of dimension and function among all evaluated settings. Features
describing the global structure of the objective function landscape were detected
as most distinctive (f12, f15, f61, f62, f64, f70, and f71). Global structure of the
landscape can possibly influence the performance of a particular model. Very
interesting is the discovered importance of basic features such as dimension (f1) or
extreme values of the objective function (f3). In addition, skewness (f35) and the
kurtosis (f36) also had influence on surrogate model selection. The last mentioned
observations may suggest that even a set of simple features can provide valuable
information about the model suitability.

3 Discussion

The results suggest that clear relationships between the performance of the 29
compared settings of GP and RF models and the considered features are not easy
to derive. Features describing global properties of the landscape are very useful
in case of selection of the surrogate model and its settings. On the other hand,
simple features can also provide important knowledge useful for future decisions.

The intended direction for our future research is to apply the obtained
knowledge to select a suitable surrogate model for previously unseen data in
designing a metalearning system. Another important research direction is to
investigate the impact of the sampling strategy in the input space to the resulting
landscape features and their relationship with the perfomance of the considered
models and their various settings.

4 Function instances are defined by transformations (translations, rotations, and shifts)
of both the search space and function values.
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A Appendix

A.1 Experimental setup

The GP regression model in gpml implementation5 was employed using 9 different
covariance functions, listed in Table 1, and constant mean µ(x) = mean(y), where
y are the outputs of the training set. The hyperparameters were optimized with
MATLAB’s fmincon using 5 optimization trials, except for the additive covariance
function kADD, which was optimized with only 3 trials due to its relatively high
complexity. The rest of initial values for hyperparameters, together with their
bounds are reported Table 2. The initial values for repeated optimization trials
were sampled.

The RF models were tested using the full-factorial desing on the ensemble
method, splitting method, and error gain function. In addition, the number of
trees ntree, the number of points Nt, and the number of dimensions used for
training the individual tree nD were sampled from the values in Table 3. Thus,
the RF experimental part sampled RF models from 1600 different settings. MSE
(errMSE), variance of predicted y-values (errvar), and nearest-neighbor entropy
estimator [2] (errNN) were employed as error gain functions (err). In bagged
RF, cross-validation pruning [3] was utilized to optimize the tree structure. In
addition, the following five regression models were used in leaves: constant, linear,
linear with interactions, quadratic without interactions, and full quadratic. The
model providing the best fit according to the MSE loss function was always
selected for the relevant leaf and appropriate data. In boosted RF, the maximum
tree depth was set to 8, in accordance with [6].

Considering decision tree settings regardless the ensemble method, the five
splitting methods from the following algoritms were employed: CART [3], SE-
CRET [7], OC1 [15], SUPPORT [5], and a method from [10] (PAIR). The re-
maining decision tree parameters have been taken identical to settings from [17].

The 91 calculated landscape features were from the following 11 ELA feature
sets [11,12]: y-Distribution, Levelset, Meta-Model, CM-Angle, CM-Gradient Ho-
mogeneity, CM-Convexity, NBC, Dispersion, Information Content, Basic, and
PCA. Feature sets requiring additional evaluations of the objective function
(Convexity, Local Search, and Curvature) and cell-mapping feature sets with
high computational or memory requirements in higher dimension (GCM, Barrier
Trees, and Linear Model) were omitted. All landscape features were calculated
using default settings from [12].

5 http://www.gaussianprocess.org/gpml/code/matlab/doc/
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Table 1. Experimental settings of GP covariances: d – metric d(xp,xq), P – isotropic
distance measure P = l−2ID, x̃p, x̃q – inputs augmented by a bias unit, k(i)

(
x(i)
p ,x(i)

q

)

– one-dimensional kSE, R ⊆ {1, . . . , D} – set of selected degrees of interactions. kSE and
kRQ were used in both isotropic and automatic relevance determination (ARD) versions
(kARD

SE , kARD
RQ ).

name kernel

squared-exponential kSE(d;σf , l) = σ2
f exp

(
− d2

2l2

)

k
ν= 1

2
Matérn(d;σf , l) = σ2

f exp
(
− d
l

)

Matérn family k
ν= 3

2
Matérn(d;σf , l) = σ2

f

(
1 +

√
3d
l

)
exp
(
−
√

3d
l

)

k
ν= 5

2
Matérn(d;σf , l) = σ2

f

(
1 +

√
5d
l

+ 5d2

3l2

)
exp
(
−
√

5d
l

)

rational quadratic kRQ(d;σf , l) = σ2
f

(
1 + d2

2l2α

)−α

neural network [16] kNN(xp,xq) = σ2
f arcsin

(
2x̃T

p P x̃q√
(1+2x̃T

p P x̃p)(1+2x̃T
q P x̃q)

)

additive [8] kADD(xp,xq, R) =∑
r∈R σ

(r)
f

∑
1≤i1<i2<···<ir≤D

(∏r

d=1 k
(id)
(

x(id)
p ,x(id)

q

))

Table 2. Experimental settings of GP. σn and l apply to all covariances. σf applies
to all except the kADD, in which σ(r)

f scales each degree r ∈ R, R = {1, 2, 3, 5, 7, 10} ∩
{1, . . . , D} of interaction separately. σ(r)

f and its upper bound were initialized propor-
tionally to

(
D
r

)
.

GP hyperparam initial value constrains
σn 1e−2 [1e−3, 1e1]
l std(X) [1e−2, 1e2]
σf

std(y)√
2 [1e−2, 1e6]

Table 3. Experimental settings of RF: ntree – number of trees in RF, Nt, nD – number
of tree points and dimensions, N – number of RF points, D – input space dimension,
errGrad – gradient error gain. Split methods and error gain functions err are tested
using full-factorial design, ntree, Nt, and nD are sampled.

RF param bagging boosting
err {errMSE, errvar, errNN} errGrad
split {CART, SECRET, OC1, SUPPORT, PAIR}
ntree {64, 128, 256, 512, 1024}
Nt d{0.25, 0.5, 0.75, 1} ·Ne
nD d{0.25, 0.5, 0.75, 1} ·De
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f1 basic.dim
f3 basic.objective_min
f12 cm_angle.y_best2worst_std
f15 cm_convexity.convex_soft
f31 dispersion.ratio_mean_25
f35 ela_distribution.skewness
f36 ela_distribution.kurtosis
f50 ela_levelset.mmce_lda_50
f61 ela_metamodel.lin_w_interact_adj_r2
f62 ela_metamodel.quad_simple_adj_r2
f64 ela_metamodel.quad_w_interact_adj_r2
f70 nearest_better.nb_std_ratio
f71 nearest_better.nb_mean_ratio
f78 pca.pca_pc1_cov_init

Figure 1. Classification tree demonstrating the influence of ELA features on model
suitability. Light blue: Gaussian processes. Light pink: Random forests. The RF mod-
els use the notation RFensemble method

∣∣split method
error gain , where bag = bagging, gb = gra-

dient boosting, and Grad = gradient error gain. The GP models use the notation
GP
∣∣ covariance functionARD , where ARD = automatic relevance determination (scaling

in each dimension separetely).
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