
Two Ontology Design Patterns toward Energy
Efficiency in Buildings

Iker Esnaola-Gonzalez1,2, Jesús Bermúdez2, Izaskun Fernández1, and Aitor
Arnaiz1

1 IK4-TEKNIKER, Iñaki Goenaga 5, 20600 Eibar, Spain
{iker.esnaola, izaskun.fernandez, aitor.arnaiz}@tekniker.es

2 University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, 20018
Donostia-San Sebastián, Spain

jesus.bermudez@ehu.eus

Abstract. Achieving an energy efficient operation of a building is not
a straightforward task. In this article, two Ontology Design Patterns
(ODP) are proposed, motivated by specific challenges that arise in this
domain, and with the intention to support data analysts towards this
goal. The two proposed ODPs are the AffectedBy ODP and the EEP
(Execution-Executor-Procedure) ODP, which is an extension of the first.
Both of them are intended to fill the gap that existing ontologies and
ODPs fail to address adequately. Furthermore, both ODPs are aligned to
an upper level ontology and some other related ontologies, which makes
them applicable to other domains and scenarios.

1 Introduction

Buildings and construction account for more than 35% of global energy use and
nearly 40% of energy-related CO2 emissions [1]. This is why efficient manage-
ment of building energy plays a vital role and is becoming the trend for a future
generation of buildings. Furthermore, since people spend more than 85% of their
time in buildings [2], feeling comfortable while staying indoors is a must. In
this context, the convergence of the Internet of Things’ (IoT) rapid spread and
the Knowledge Discovery in Databases (KDD) is expected to lead to significant
progress. A KDD process can be understood as a five step process to extract use-
ful knowledge from raw data and, in the energy efficiency field for buildings, they
have traditionally been employed for tasks such as energy consumption forecast-
ing [3]. However, having insufficient domain expertise can make data analysts
feel overwhelmed throughout this process, resorting to a trial-and-error approach
searching for variables and tasks to make accurate predictions. Consequently, the
KDD process becomes arduous and time-consuming.

The EEPSA (Energy Efficiency Prediction Semantic Assistant) process ad-
dresses this problem taking leverage of Semantic Technologies like ontologies,
ontology-driven rules and ontology-driven data access to guide data analysts
through the different KDD phases in a semi-automatic manner, towards the en-



hancement of the KDD process [4]. In this process, the EEPSA ontology3 plays
a vital role capturing the necessary knowledge, mainly related to buildings, sens-
ing and actuating devices, and their corresponding observations and actuations.
This knowledge, along with other relevant domain and expert knowledge for the
matter at hand, is captured in well-decoupled modules and represented in a form
that can support data analysts.

In this paper, two Ontology Design Patterns (ODP) are proposed: the Af-
fectedBy ODP and the Execution-Executor-Procedure (EEP) ODP, which is an
extension of the AffectedBy ODP. Both ODPs are motivated by specific chal-
lenges that arise in problems related to energy efficiency in buildings, and they
are defined with the intention to support data analysts throughout the KDD
process. These two ODPs form the core of the renewed version of the EEPSA
ontology. Furthermore, both ODPs are aligned to an upper level ontology and
some other related ontologies, which makes them applicable to other domains
and scenarios.

The rest of this paper is structured as follows. Section 2 introduces the related
work. Section 3 describes the two ODPs. Finally, the conclusions of this work
are presented in section 4.

2 Related Work

The energy efficiency in buildings domain spans concepts that overlap with the
IoT field such as spaces, devices, observations, procedures, properties, and units
of measurements to name a few. Some ontologies have considered these issues
in their universe of discourse. However, the intended broad scope of these on-
tologies, usually cause large and complex bodies of terminology, and sometimes
introduce too specific commitments that provoke a hard learning curve and hin-
der their reuse. An encouraging ontology design methodology to unlock these
problems is the pattern-based ontology design. An ODP is a modelling solution
to solve a recurrent ontology design problem [5]. Ideally, ODPs should be ex-
tendable but self-contained, minimize ontological commitments to foster reuse,
address one or more explicit requirements (such as use cases or competency ques-
tions), be associatable to an ontology unit test, be the representation of a core
notion in a domain of expertise, be alignable to other patterns, span more than
one application area or domain, address a single invariant instead of targeting
multiple reocurring issues at the same time, follow established modelling best
practices, and so forth [6]. Following, a quick review of ODP-based ontologies
related to sensing and actuating devices, and their context, is presented.

The DOLCE+DnS Ultralite (DUL4) ontology is a simplification of some
parts of the DOLCE Lite-Plus library and Descriptions and Situations ontology.
It is an upper-level ontology, and it defines general terms that are common
across different domains. Therefore, it supports a broad semantic interoperability

3 https://w3id.org/eepsa
4 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

https://w3id.org/eepsa
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl


among domain-specific ontologies by providing a common starting point for the
formulation of definitions.

The Semantic Sensor Network (SSN) ontology [7] was developed by the W3C
Semantic Sensor Networks Incubator Group (SSN-XG5) and described sensors,
observations and methods used for sensing among other concepts. It was aligned
with the DUL ontology and built around a central ODP called Stimulus-Sensor-
Observation [8] (SSO) describing the relationship between sensors, stimulus and
observations. The W3C Spatial Data on the Web Working Group (SDWWG6)
proposed an update of the SSN ontology7 that became a W3C recommendation.
The new version of the SSN ontology8 follows a horizontal and vertical modular-
ization architecture by including a lightweight but self-contained core ontology
called SOSA9 (Sensor, Observation, Sample, and Actuator) for its elementary
classes and properties. Furthermore, similar to the original SSO patterns, SOSA
acts as a central building block for the new SSN ontology. In line with the changes
implemented for the new SSN ontology, SOSA also avoids the direct DUL import
that previous version had, although an optional alignment can be achieved via
the SSN-DUL alignment module10.

The Actuation-Actuator-Effect11 (AAE) ODP intends to model the relation-
ship between an Actuator and the Effect it has on its environment through
Actuations. This pattern adapts the SSN ontology’s SSO ODP for actuators.
The new version of the SSN ontology covers the function of the AAE ODP for
actuators by expanding the SSO pattern in the SOSA ontology.

The SSN ontology does not provide enough constraints to the definitions of
classes and properties to guarantee a proper answer to a question like: what is
the feature of interest corresponding to a given property that has been observed
by a sensor? And neither to this other question: which sensors observe a given
property of a feature of interest? The patterns proposed in this paper solve these
problems.

The SmartEnv ontology, proposed as a representational model to assist the
development process of smart environments, is a network of 8 different ODPs [9].
These ODPs are used to modularize the proposed solution, while at the same
time avoiding strong dependencies between the modules to manage the represen-
tational complexity of the ontology. The SmartEnv relies on the SSN ontology
without introducing enough constraints to solve the aforementioned weaknesses
of the SSN ontology.

The SEAS Ontology[10] is an ontology designed as a set of simple core ODPs
that can be instantiated for multiple engineering related verticals. It is planned

5 https://www.w3.org/2005/Incubator/ssn/
6 http://www.opengeospatial.org/projects/groups/sdwwg
7 https://www.w3.org/TR/vocab-ssn/
8 http://www.w3.org/ns/ssn/
9 http://www.w3.org/ns/sosa/

10 http://www.w3.org/ns/ssn/dul
11 http://ontologydesignpatterns.org/wiki/Submissions:

Actuation-Actuator-Effect

https://www.w3.org/2005/Incubator/ssn/
http://www.opengeospatial.org/projects/groups/sdwwg
https://www.w3.org/TR/vocab-ssn/
http://www.w3.org/ns/ssn/
http://www.w3.org/ns/sosa/
http://www.w3.org/ns/ssn/dul
http://ontologydesignpatterns.org/wiki/Submissions:Actuation-Actuator-Effect
http://ontologydesignpatterns.org/wiki/Submissions:Actuation-Actuator-Effect


to be added to the SAREF (Smart Appliances REFerence) ontology12, which
is expected to ease its adoption and extension by industrial stakeholders, while
ensuring easy maintenance of its quality, coherence, and modularity [11]. The
SEAS Feature of Interest ontology13, is one of the modules that forms the SEAS
ontology, and defines features of interest (seas:FeatureOfInterest) and proper-
ties (seas:Property). The Procedure Execution ontology14 (PEP) defines pro-
cedure executors that implement procedure methods, and generate procedure
execution activities. Furthermore, PEP defines an ODP as a generalization of
SOSA’s sensor-procedure-observation and actuator-procedure-actuation models.
The patterns proposed in this paper are a reengineering of the PEP and the Fea-
tureOfInterest ontologies and, additionally, an integration of them into a single
ODP.

The Observation15 ODP aims at representing observations of things, under a
set of parameters. This set of parameters may include the place where the obser-
vation was made, the time when it was made, and any other feature concerning
the specific thing being observed.

The IoT Application Profile (IoT-AP) ontology, is an ontology for represent-
ing and modelling the knowledge within the domain of the IoT [12]. The ontology
is designed re-using ODPs such as the aforementioned Observation ODP. It fo-
cuses in observations, but it also covers sensors that make those observations,
values of those observations and observation collections. However, this ontology
suffers from similar weaknesses to those previously commented about the SSN
ontology. This is basically due to the lack of proper constraints on property
definitions.

The ODP repository16 collects and makes ODPs available on the web, allow-
ing users to download, propose, and discuss them. Some of the mentioned ODPs
are hosted in this repository.

3 Motivation and Pattern Overview

The EEPSA ontology supports data analysts that are not experts in the energy
efficiency in tertiary buildings domain, towards the creation of enhanced pre-
dictive models. For that purpose, the ontology not only needs to contain both
domain knowledge and expert knowledge, but also needs to represent it in a way
that can be leveraged to guide data analysts throughout the KDD process.

In energy efficiency problems related to tertiary buildings domain, two re-
current modelling challenges arise. The first one is related to modelling variables
that may affect an indoor condition such as indoor temperature or occupancy.
The second one is related to modelling the variables measured within a building
and the systems to measure them. The definition of ODPs for these problems

12 https://w3id.org/saref
13 https://ci.mines-stetienne.fr/seas/FeatureOfInterestOntology
14 https://ci.mines-stetienne.fr/pep/
15 http://ontologydesignpatterns.org/wiki/Submissions:Observation
16 http://www.ontologydesignpatterns.org

https://ci.mines-stetienne.fr/seas/FeatureOfInterestOntology
https://ci.mines-stetienne.fr/pep/
http://ontologydesignpatterns.org/wiki/Submissions:Observation
http://www.ontologydesignpatterns.org


would be beneficial and could ideally act as building blocks to be reused in case
someone else faces these same modelling challenges.

3.1 AffectedBy

In the first phase of a typical KDD process, known as the Data Selection phase,
the EEPSA process supports data analysts selecting datasets and subset of vari-
ables or data samples that are relevant for the matter at hand. Taking into
account that data analysts may not be experts in the energy efficiency in ter-
tiary buildings domain, they may feel overwhelmed during this task, due to their
lack of expertise in choosing the adequate variables. Therefore, they would ben-
efit from a resource that supports the discovery of relevant variables that affect
the environment of a given space or another feature of interest. Any of these
variables will be represented as properties or qualities of a feature of interest.

For example, let us consider the LR03 lecture room as a feature of interest: a
lecture room located on the ground floor of a building, and with a large window
that overlooks the road that passes near the building. Some properties of LR03
are: the area of the lecture room, the number of seats available or the quality
of comfort at any given time. The quality of comfort in this lecture room is
affected by the room temperature and the nearby outdoor noise. In turn, the
temperature of LR03 is affected by the number of people present in the lecture
room, the humidity of the lecture room, and the intensity of solar radiation
received through the room window. Regarding the impact of outdoor noise, it
is affected by the sound insulation factor of the room. Lastly, the received solar
radiation is affected by the azimuth (i.e. orientation) of the lecture room window.

The following competency questions must be considered:

– CQ1: What are the properties/qualities of a feature of interest?
– CQ2: What are the properties/qualities that affect a given property of a

feature of interest?
– CQ3: Which feature of interest does a given property/quality belongs to?

The SSN Ontology contains a building block that may be useful for this
matter. However, an inadequacy was spotted. The ssn:Property class is textu-
ally defined as “a quality of an entity. An aspect of an entity that is intrinsic
to and cannot exist without the entity”. This definition is made basically, ac-
cording to the definition of the dul:Quality class. In fact, it is declared17 that
ssn:Property rdfs:subClassOf dul:Quality. Furthermore, the ssn:Property class
is linked to the ssn:FeatureOfInterest class with the ssn:isPropertyOf object
property. Nevertheless, this object property is not functional, meaning that the
ssn:isPropertyOf property can have more than one value for the same individual,
so the following triples can be found in a ssn-annotated triple set:

:temperature rdf:type ssn:Property.

:temperature ssn:isPropertyOf :lr03.

17 https://www.w3.org/TR/vocab-ssn

https://www.w3.org/TR/vocab-ssn


:lr03 rdf:type ssn:FeatureOfInterest.

:temperature ssn:isPropertyOf :lr07.

:lr07 rdf:type ssn:FeatureOfInterest.

:lr03 owl:differentFrom :lr07.

According to the aforementioned ssn:Property ’s class textual definition, in-
dividual :temperature is intrinsic to and cannot exist without the existence of
individual :lr03. However, the triples shown contradict such definition (i.e., :tem-
perature is a quality of different entities). Probably, designers of the SSN ontol-
ogy would advise against this practice and, in fact, example “B.3 apartment
134”18 uses the URI <apartment/134/electricConsumption> for referring to an
individual that represents the electrical consumption of the apartment #134.
However, the identification of the feature of interest (i.e., apartment #134) of
this property is embedded in the URI and this is not enough for machine inter-
pretation. Of course, two different rooms may have the same temperature value
(e.g. 15◦C) but such circumstance would be represented as a property value of
each different temperature instances. Moreover, a suitable hierarchy of Property
subclasses may be desirable. A class Temperature would be a subclass of class
Property. Therefore, it could be possible to ask for all the features of interest
that have a temperature quality.

The issue mentioned above is tackled in the SEAS Feature of Interest ontol-
ogy, where an ODP to describe features of interest and their properties is defined.
In this pattern, the seas:isPropertyOf object property links a seas:Property to
a seas:FeatureOfInterest, and it is declared as subproperty of ssn:isPropertyOf.
However, seas:isPropertyOf is functional. Therefore, it represents more faithfully
the textual definition of ssn:Property.

Furthermore, the SEAS Feature of Interest ontology also defines the seas:de-
rivesFrom object property which links a seas:Property to another seas:Property
it derives from. This object property is defined as a symmetric property, which
means that the property has itself as inverse. However, this constraint is un-
necessary and sometimes even inappropriate. For instance, the temperature of
individual :lr03 may derive from the occupancy of the room, but the occupancy
does not necessarily derive from the temperature of the room.

In addition, the SEAS Feature of Interest ontology contains a textual com-
ment that, although relevant, it is not materialized as an axiom:

seas:hasProperty <seas:hasProperty ◦ seas:derivesFrom

The AffectedBy ODP is inspired by the identified SSN ontology and SEAS
Feature of Interest ontology weaknesses. It defines the building block shown in
Figure 1, that consists of two classes: aff:FeatureOfInterest and aff:Quality, and
three properties: aff:hasQuality, aff:belongsTo, and aff:affectedBy.

18 https://www.w3.org/TR/vocab-ssn/#apartment-134

https://www.w3.org/TR/vocab-ssn/#apartment-134


Fig. 1. The AffectedBy ODP.

The property aff:affectedBy (released from the symmetric constraint) is de-
fined in the AffectedBy ODP to replace the role of the property seas:derivesFrom.
It can be asserted that seas:derivesFrom is a subproperty of aff:affectedBy. The
class aff:FeatureOfInterest is equivalent to seas:FeatureOfInterest, and the class
seas:Property is equivalent to aff:Quality. Moreover, seas:hasProperty is subprop-
erty of aff:hasQuality, and seas:isPropertyOf is subproperty of aff:belongsTo.
Furthermore, aff:belongsTo is defined to be functional and it is the inverse of
aff:hasQuality, to support the notion that a quality is intrinsic to the feature of
interest (i.e., an entity) to which it belongs (according to the conceptualization
in DUL); and it is also asserted that every quality belongs to a feature of inter-
est, i.e.,

aff:Quality rdfs:subClassOf aff:belongsTo some aff:FeatureOfInterest).

Finally, the following property chain axiom is asserted:

aff:hasQuality ◦ aff:affectedBy rdfs:subPropertyOf aff:hasQuality

Even though the ODP is motivated by the energy efficiency in buildings
problem, it is applicable to similar problems from different domains. Therefore,
the AffectedBy ODP is aligned with the DUL ontology. Moreover, the AffectedBy
ODP is also aligned to the SSN Ontology and the SEAS Feature of Interest
ontology. The alignments with these three ontologies are kept in separate files19.

19 https://github.com/iesnaola/AffectedBy/tree/master/alignments

https://github.com/iesnaola/AffectedBy/tree/master/alignments


Likewise, the HTML documentation of the ODP is available20 via LODE (Live
OWL Documentation Environment [13]) and in the ODP repository21.

Application. The instantiation of the AffectedBy ODP for the aforementioned
LR03 lecture room is shown in Figure 2. For the sake of simplicity, the rdf:type
relationships are not shown.

Fig. 2. The AffectedBy implementation in the LR03 Lecture Room.

With respect to this example, the following competency questions can be
applied and answered:

– (CQ2): What are the properties that affect the property :lr03Comfort?
SPARQL query: SELECT ?x WHERE {:lr03Comfort aff:affectedBy ?x.}
Answer: :lr03Temperature, :lr03OutdoorNoise.

– (CQ2): What are the properties that affect the property :lr03Temperature?
SPARQL query: SELECT ?x WHERE {:lr03Temperature aff:affectedBy ?x.}
Answer: :lr03Occupancy, :lr03Humidity, :lr03SolarRadiation.

– (CQ1): What are the properties of the feature of interest :lr03 ?
SPARQL query: SELECT ?x WHERE {:lr03 aff:hasQuality ?x.}
Answer: :lr03Area, :lr03NumSeats :lr03Comfort, :lr03Temperature, :lr03Out-
doorNoise, :lr03Occupancy, :lr03Humidity, :lr03SolarRadiation, :lr03Sound-
Insulation, :lr03WindowAzimuth.
(After inferences provided by the axiom aff:hasQuality ◦ aff:affectedBy
rdfs:subPropertyOf aff:hasQuality).

– (CQ3): Which feature of interest does the property :lr03SolarRadiation be-
longs to?
SPARQL query: SELECT ?x WHERE {:lr03SolarRadiation aff:belongsTo

20 https://w3id.org/affectedBy
21 http://ontologydesignpatterns.org/wiki/Submissions:AffectedBy

https://w3id.org/affectedBy
http://ontologydesignpatterns.org/wiki/Submissions:AffectedBy


?x.}
Answer: :lr03.
(After inferences provided by the axioms aff:hasQuality ◦ aff:affectedBy
rdfs:subPropertyOf aff:hasQuality and aff:belongsTo inverseOf
aff:hasQuality).

3.2 Execution-Executor-Procedure (EEP)

An interesting information for data analysts could be: which are the sensors/ac-
tuators deployed in the space where the energy efficiency is aimed? And even
more: which are the capabilities of those sensors/actuators? Moreover, knowing
this information would let data analysts make further queries to discover sensors
or actuators that observe or act on a given property of a space. More specifically,
the CQs considered are the following:

– CQ1: What are the observations/actuations performed by a given procedure?
– CQ2: What are the observations/actuations performed by a given sensor/ac-

tuator?
– CQ3: What are the procedures implemented by a given sensor/actuator?
– CQ4: What are the features of interest on a given observation/actuation?
– CQ5: What are the properties/qualities sensed/actuated by a given obser-

vations/actuations?
– CQ6: What are the features of interest of a given sensor/actuator?
– CQ7: What are the properties/qualities sensed/actuated by a given execu-

tor?

For each competency question CQn, we can consider a twin competency ques-
tion CQni which consists on rephrasing the question in the opposite direction.
For instance, CQ1i is defined as “What is the procedure used in a given ob-
servation/actuation?”. In terms of a SPARQL query, it means that the query
variable is moved from the subject position to the object position, or the other
way round, of the triple pattern.

These questions have been tackled by the SSN ontology with SOSA’s Obser-
vation-Sensor-Procedure pattern, and by the SAN ontology with the AAE pat-
tern. However, in their current state, they cannot properly fulfil the discovery
of sensors and actuators because no property has been defined that directly
links sensors or actuators to features of interest, and moreover, compositions of
properties that link them through the Observation or Actuation class, are not
sufficiently constrained to satisfy the aforementioned competency questions. For
instance, the following set of ssn-annotated triples is not enough to answer the
question: which is the sensor that observes the temperature of :lr07?

:sensor1 sosa:madeObservation :obs1;

sosa:observes :temperature.

:temperature ssn:isPropertyOf :lr03.

:obs1 sosa:hasFeatureOfInterest :lr03.



:sensor2 sosa:madeObservation :obs2;

sosa:observes :temperature.

:temperature ssn:isPropertyOf :lr07.

:obs2 sosa:hasFeatureOfInterest :lr07.

:sensor1 sosa:madeObservation :obs3;

sosa:observes :humidity.

:humidity ssn:isPropertyOf :lr07.

:obs3 sosa:hasFeatureOfInterest :lr07.

In order to fill this gap, the Execution-Executor-Procedure (EEP) ODP pre-
sented in this paper represents executions (e.g., events such as observations or
actuations) made by executors (e.g., systems such as sensors or actuators) that
implement procedures to carry out their goals. Executions and executors are
taken over features of interest and their intrinsic properties or qualities.

The EEP ODP is an adaptation of the PEP ontology from the SEAS ontol-
ogy which, in turn, is a generalization of the Observation-Sensor-Procedure and
Actuation-Actuator-Procedure patterns used in the SOSA and SSN ontologies.
The EEP ODP imports the AffectedBy ODP that involves classes for features
of interest and their intrinsic properties/qualities. Furthermore, from the Affect-
edBy ODP, the EEP ODP imports the notion that a property/quality is intrinsic
to the feature of interest that it belongs to (i.e., according to the definition of
the class Quality in the DUL ontology).

Apart from the two classes (i.e., aff:FeatureOfInterest and aff:Quality) im-
ported from the AffectedBy ODP, the EEP ODP consists of three more classes:
eep:Execution, eep:Executor, and eep:Procedure (see Figure 3). An individual of
eep:Execution is an action related to a property of a feature of interest, pro-
duced by an agent by performing a procedure. An individual of eep:Executor
is an agent capable of performing tasks by following procedures. An individ-
ual of eep:Procedure is a description of some actions to be executed by agents.
The class eep:Execution and their three functional object properties eep:madeBy,
eep:usedProcedure, and eep:onQuality, form the backbone of the ODP. The prop-
erty eep:madeBy links an execution to the agent that performs the action; the
property eep:usedProcedure links an execution to the procedure that describes
the task to be performed; and the property eep:onQuality links an execution
to the quality/property concerned by the execution. Therefore, an execution
jointly with their three object values of the three aforementioned properties
can be considered as a n-ary relationship. Note that every quality belongs to a
unique feature of interest, so a feature of interest is also involved in the n-ary
relationship.

The remaining object properties are: eep:implements, linking executors to
procedures; eep:hasFeatureOfInterest, linking executions to features of interest;
eep:forQuality, linking executors to qualities; and eep:forFeatureOfInterest, link-
ing executors to features of interest. Note that an executor can implement dif-
ferent procedures corresponding to different executions performed by the same
executor. Analogously, an executor may be committed to different properties and
features of interest. These four properties are defined in terms of the functional



Fig. 3. The Execution-Executor-Procedure (EEP) ODP.

object properties using the following property chain axioms:

inverse(eep:madeBy) ◦ eep:usedProcedure rdfs:subPropertyOf eep:implements.

eep:onQuality ◦ eep:belongsTo rdfs:subPropertyOf eep:hasFeatureOfInterest.

inverse(eep:madeBy) ◦ eep:onQuality rdfs:subPropertyOf eep:forQuality.

eep:forQuality ◦ eep:belongsTo rdfs:subPropertyOf eep:forFeatureOfInterest.

Axioms included in the EEP ODP provide inferences that allow to answer
the formulated CQs properly, solving the previously referred weaknesses of the
sosa/ssn ontologies. Note that only triples about the four functional object prop-
erties eep:madeBy, eep:usedProcedure, eep:onQuality, and aff:belongsTo, need to
be asserted, and the remaining triples are inferred by the property axioms.

Likewise the AffectedBy ODP, the EEP ODP is motivated by the energy
efficiency in buildings problem but it is applicable to different domains. It is
aligned with the DUL ontology, the SSN Ontology, and the PEP ontology. The
alignments with these three ontologies are kept in separate files22. Furthermore,
the HTML documentation of the ODP is available23 via LODE and in the ODP
repository24.

22 https://github.com/iesnaola/EEP/tree/master/alignments
23 https://w3id.org/eep
24 http://ontologydesignpatterns.org/wiki/Submissions:EEP

https://github.com/iesnaola/EEP/tree/master/alignments
https://w3id.org/eep
http://ontologydesignpatterns.org/wiki/Submissions:EEP


Application. The EEP ODP is instantiated in a farm scenario where poultry
are reared. In this case, a sensor :sensor36 deployed in the farm individual
:farm is in charge of measuring both farm’s temperature and humidity (i.e.,
:farmTemperature and :farmHumidity). Furthermore, this sensor implements a
monitoring procedure (:monitoringProc) to make two observations :obs13 and
:obs14. Figure 4 shows this instantiation.

Fig. 4. The Execution-Executor-Procedure (EEP) ODP implementation in a farm.

With respect to this example, the following competency questions can be
applied and answered:

– (CQ1): What are the executions performed by procedure :monitoringProc?
SPARQL query: SELECT ?x WHERE {?x eep:usedProcedure :monitoring-
Proc.}
Answer: :obs13, :obs14.

– (CQ2): What are the observations performed by sensor :sensor36 ?
SPARQL query: SELECT ?x WHERE {?x eep:madeBy :sensor36.}
Answer: :obs13, :obs14.

– (CQ3): Which are the procedures implemented by the sensor :sensor36 ?
SPARQL query: SELECT ?x WHERE {:sensor36 eep:implements ?x.}
Answer: ::monitoringProc
(After inferences provided by the axiom inverse(eep:madeBy) ◦ eep:used-
Procedure rdfs:subPropertyOf eep:implements).



– (CQ4i): What are the executions on the feature of interest :farm?
SPARQL query: SELECT ?x WHERE {?x eep:hasFeatureOfInterest :farm.}
Answer: :obs13, :obs14.
(After inferences provided by the axioms eep:onQuality ◦ eep:belongsTo
rdfs:subPropertyOf eep:hasFeatureOfInterest and aff:belongsTo inverseOf
aff:hasQuality).

– (CQ5): What are the qualities observed by the observation :obs13 ?
SPARQL query: SELECT ?x WHERE {:obs13 eep:onQuality ?x.}
Answer: :farmTemperature.

– (CQ6i): What are the executors that observe/act on the feature of interest
:farm?
SPARQL query: SELECT ?x WHERE {?x eep:forFeatureOfInterest :farm.}
Answer: :sensor36.
(After inferences provided by the axioms eep:forQuality ◦
eep:belongsTo rdfs:subPropertyOf eep:forFeatureOfInterest and
inverse(eep:madeBy) ◦ eep:onQuality rdfs:subPropertyOf eep:forQuality).

– (CQ7): What are the qualities observed by sensor :sensor36 ?
SPARQL query: SELECT ?x WHERE {:sensor36 eep:forQuality ?x.}
Answer: :farmTemperature, :farmHumidity.
(After inferences provided by the axiom inverse(eep:madeBy) ◦ eep:onQuality
rdfs:subPropertyOf eep:forQuality).

The EEP ODP presented in this paper left out the temporal context, which
undoubtedly is a relevant issue. In fact, EEP can be easily extended by importing
different conceptualizations of such temporal aspect. For instance, a simple solu-
tion is to define a property like :atTime linking eep:Execution to :TimeInterval
(like in IoT-AP ontology, or similarly in Fiesta-IoT ontology [14]), and addition-
ally to include some other property like sosa:resultTime linking eep:Execution
to xsd:dateTime in order to differentiate the temporal entity that applies to the
execution from the instant the execution was completed (as it is made in SOSA
ontology). Moreover, a more complex conceptualization may be necessary in a
scenario where executions are also features of interest and time is a quality of
these executions, then :Time may be a subclass of aff:Quality (similarly to what
is done in SAREF ontology). Otherwise, features of interest and their properties
may need to be qualified by time-related properties; for instance, state duration
of a feature of interest or change frequency of a property during a temporal
context (as it is proposed in the SEAS Time Ontology25). In summary, EEP is
ready to incorporate the preferred solution adopted by the EEP user.

25 https://ci.mines-stetienne.fr/seas/TimeOntology



4 Conclusions and Future Work

In this paper we presented two ODPs: the AffectedBy ODP and the EEP (Execu-
tion-Executor-Procedure) ODP, which is an extension of the first. Both of them
are expected to solve recurrent design problems that arise in energy efficiency
problems for buildings and that are not adequately addressed by existing on-
tologies and ODPs. Both ODPs are aligned with related ontologies which make
them applicable to similar problems in different domains, and are stored in the
ODP repository.

In future work, both ODPs are expected to be the base for building ontology
modules. Namely, they are planned to be the foundation for the reengineering
of the measurements4EEPSA ontology module (an adapted extraction of the
m3-lite26 and QUDT27 ontologies) responsible for containing measurements and
device related knowledge, and a new ontology module containing expert knowl-
edge in the energetic field.

Furthermore, these ODPs will be used in KDD processes with other goals that
differ from attempting an energy efficient management of a building. Namely,
they are expected to support the energy production forecasting of a Photovoltaic
(PV) system as well as the management of Demand-Response strategies.

Acknowledgement

Part of the presented work received funding from FEDER/TIN2016-78011-C4-
2-R. This work was conducted using the Protégé resource, which is supported
by grant GM10331601 from the National Institute of General Medical Sciences
of the United States National Institutes of Health.

References

1. T. Abergel, B. Dean and J. Dulac, Towards a zero-emission, efficient, and re-
silient buildings and construction sector. Global Status Report 2017, Technical Re-
port, 2017. ISBN 978-92-807-3686-1. http://www.worldgbc.org/sites/default/
files/UNEP%20188_GABC_en%20%28web%29.pdf.

2. N.E. Klepeis, W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer,
J.V. Behar, S.C. Hern and W.H. Engelmann, The National Human Activity Pat-
tern Survey (NHAPS): a resource for assessing exposure to environmental pollu-
tants, Journal of Exposure Science and Environmental Epidemiology 11(3) (2001),
231.

3. A.S. Ahmad, M.Y. Hassan, M.P. Abdullah, H.A. Rahman, F. Hussin, H. Abdullah
and R. Saidur, A review on applications of ANN and SVM for building electrical
energy consumption forecasting, Renewable and Sustainable Energy Reviews 33
(2014), 102–109, ISSN 1364-0321. doi:https://doi.org/10.1016/j.rser.2014.01.069.
http://www.sciencedirect.com/science/article/pii/S1364032114000914.

26 http://ontology.fiesta-iot.eu/ontologyDocs/m3-lite.owl
27 http://www.qudt.org

http://www.worldgbc.org/sites/default/files/UNEP%20188_GABC_en%20%28web%29.pdf
http://www.worldgbc.org/sites/default/files/UNEP%20188_GABC_en%20%28web%29.pdf
http://www.sciencedirect.com/science/article/pii/S1364032114000914


4. I. Esnaola-Gonzalez, J. Bermúdez, I. Fernandez and A. Arnaiz, Semantic Prediction
Assistant Approach applied to Energy Efficiency in Tertiary Buildings, Semantic
Web (to appear). http://www.semantic-web-journal.net/.

5. A. Gangemi and V. Presutti, Ontology Design Patterns, in Handbook on Ontologies,
S. Staab and R. Studer, eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009,
pp. 221–243. ISBN ISBN 978-3-540-92673-3. doi:10.1007/978-3-540-92673-3 10.

6. P. Hitzler, A. Gangemi and K. Janowicz, Ontology Engineering with Ontology De-
sign Patterns: Foundations and Applications, Vol. 25, IOS Press, 2016.

7. M. Compton, P. Barnaghi, L. Bermudez, R. Garćıa-Castro, O. Corcho, S. Cox,
J. Graybeal, M. Hauswirth, C. Henson and A. Herzog, The SSN ontol-
ogy of the W3C semantic sensor network incubator group, Web Semantics:
Science, Services and Agents on the World Wide Web 17 (2012), 25–32.
doi:https://doi.org/10.1016/j.websem.2012.05.003.

8. K. Janowicz and M. Compton, The Stimulus-Sensor-Observation Ontology Design
Pattern and its Integration into the Semantic Sensor Network Ontology., in: SSN,
2010.

9. M. Alirezaie, K. Hammar and E. Blomqvist, SmartEnv as a Network of Ontology
Patterns, Semantic Web (to appear). http://www.semantic-web-journal.net/.

10. M. Lefranois, Planned ETSI SAREF Extensions based on the W3C&OGC
SOSA/SSN-compatible SEAS Ontology Patterns, in: Workshop on Semantic In-
teroperability and Standardization in the IoT, SIS-IoT, 2017, p. 11.

11. L. Daniele, F. den Hartog and J. Roes, Created in close interaction with
the industry: the smart appliances reference (SAREF) ontology, in: Interna-
tional Workshop Formal Ontologies Meet Industries, Springer, 2015, pp. 100–112.
doi:https://doi.org/10.1007/978-3-319-21545-7 9.

12. A. Gangemi, R. Lillo, G. Lodi and A.G. Nuzzolese, A pattern-based ontology
for the Internet of Things, Proceedings of the 8th Workshop on Ontology Design
and Patterns (WOP 2017) 2043 (2017), ISSN 1613-0073. http://ceur-ws.org/
Vol-2043/paper-11.pdf.

13. S. Peroni, D. Shotton and F. Vitali, The Live OWL Documentation Environ-
ment: a tool for the automatic generation of ontology documentation, in: In-
ternational Conference on Knowledge Engineering and Knowledge Management,
Springer, 2012, pp. 398–412.

14. R. Agarwal, D.G. Fernandez, T. Elsaleh, A. Gyrard, J. Lanza, L. Sanchez, N. Geor-
gantas and V. Issarny, Unified IoT Ontology to Enable Interoperability and Fed-
eration of Testbeds, in: 3rd IEEE World Forum on Internet of Things, 2016.
doi:10.1109/WF-IoT.2016.7845470.

http://www.semantic-web-journal.net/
http://www.semantic-web-journal.net/
http://ceur-ws.org/Vol-2043/paper-11.pdf
http://ceur-ws.org/Vol-2043/paper-11.pdf

	Two Ontology Design Patterns toward Energy Efficiency in Buildings

