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Abstract. Today a wealth of knowledge and data are distributed using
Semantic Web standards. Especially in the (bio)medical domain several
sources like the SNOMED CT, NCI, MedDRA, MeSH, ICD-10 ontolo-
gies, and many more are distributed in RDF and OWL. These can be
aligned and integrated in order to create one large medical Knowledge
Base. However, integrating different and largely heterogeneous sources
is far from trivial. First, although distributed in OWL many of the on-
tologies may not strictly follow the semantics of subClassOf as originally
intended for faceted search or use as thesauri. Second, even when they
do follow strict ontological guidelines, different ontologies may conceptu-
alise the same domain in radically different ways. Analysing and under-
standing these sources before integrating them is highly beneficial. Third,
monitoring and understanding how the structure of the Knowledge Base
changes (evolves) after the integration is also crucial since changes to
its structure may affect applications that are built on top of it. In the
current paper we report on our Knowledge Base construction pipeline
which is based on ontology integration. We focus on the various metrics,
techniques, and tools we have developed in order to assist in achieving
this large-scale integration task. Our work was motivated by the need
for a medical Knowledge Base to be used to support digital healthcare
services developed at Babylon Health. We present results on the metrics
used to analyse various sources and the results of running the pipeline
on several medical ontologies.

1 Introduction

Today a wealth of knowledge and data are distributed using Semantic Web tech-
nologies and standards. For example, the Linked Open Vocabularies effort [15]
contains more than 600 ontologies for various subjects like geography, multime-
dia, security, geometry, and more. Especially in the biomedical domain, a large
number of sources have been developed during the previous decades such as the



SNOMED CT3, NCI [4], MedDRA4, MeSH5 ontologies, and many more, while
BioPortal [10] is a repository of more than 600 biomedical ontologies. Identi-
fying the common entities between these vocabularies and integrating them [5]
is beneficial for building ontology-based applications as one could unify com-
plementary information that these vocabularies contain building a “complete”
Knowledge Base (KB). Such correspondences can be identified using ontology
matching (alignment) techniques [11].

However, identifying correspondences between ontologies is just the first step
towards performing the actual integration. Besides classes with their respective
labels, sources distributed in Semantic Web standards usually come with a class
hierarchy. Depending on the purpose for which ontologies were initially created
these hierarchies may exhibit significant incompatibilities. First, it is not uncom-
mon that sources are created with the intention to be used for supporting faceted
search or act as thesauri. In this case the semantics of subClassOf may not be
the intended subset relationship. Examples of such sources in the biomedical
domain are coding systems like Read Codes, MeSH, and ICD-10. Second, even
if the sources follow the strict semantics of RDF(S) and OWL and even if they
model the same domain they may still exhibit structural incompatibilities due
to the way they conceptualise the domain. For example, in the NCI ontology
proteins are declared to be disjoint from anatomical structures whereas in the
FMA ontology proteins are subclasses of anatomical structures. In this case a
naive integration can lead to many undesired logical consequences such as un-
satisfiable classes [7]. This may even be the case if an ontology Oe is designed
as an extension of another O simply because it is developed by a different in-
dependent community which decides to alter the structure of O. Last but not
least, various services built on top of the KB may also impose requirements on
the structure and properties of the KB. Consequently, there is a dire need to
develop methods that will help us analyse, monitor, and evaluate the content of
(large) Knowledge Bases [8, 18, 9].

A significant effort in creating a large medical KB recently started in Baby-
lon Health6 using ontology matching and integration [14]. This medical KB is
intended to support various services within Babylon like text annotation, un-
derstanding, reasoning, drug prescribing, clinical healthcare, and more. As a
critical domain the content of the KB needs to be consistent, accurate, and of
high quality, raising the need to monitor the evolution process closely. This is far
from trivial as some of the used sources are quite large and manual inspection
is impossible. Consequently, a set of metrics have been implemented to analyse
the content and structure of the KB and ensure integrity along various dimen-
sions. Some of these metrics are inspired by well-known logic-based measures
(including consistency and coherence) while others by services that depend on
the KB. For example, text annotation and Named Entity Disambiguation ser-

3 https://www.snomed.org/
4 https://www.meddra.org/
5 https://meshb.nlm.nih.gov/
6 https://www.babylonhealth.com/
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vices require that the KB exhibits a low level of “ambiguity” in order to be as
easy as possible to associate classes (IRIs) from the KB to words in user text.
The collected statistics are inspected in order to determine if the integration
was successful or the pipeline needs to re-run with different parameters. The
metrics are also used to assist us in analysing candidate source for integration
by assessing their structural compatibility with the current KB. Some of these
metrics have been presented previously in the literature, however, some are novel
or provide refinements of previous metrics in order to adapt them to our case.

In the current paper we present our ontology integration pipeline with em-
phasis on the evaluation and analysis steps presenting the metrics we have imple-
mented. We have used these to analyse the structure of many well-known medical
sources and we report on the results. Next, we report statistics about using the
pipeline to integrate many popular medical ontologies like SNOMED CT, NCI,
and FMA. To the best of our knowledge the full versions of these ontologies have
never been actually integrated (unified) before; only smaller fragments of them
have been aligned7 and, the computed mappings were never used to actually
merge them. Finally, we developed a highly optimised logical difference analysis
tool to analyse the Australian and Canadian country extensions with respect to
the base SNOMED CT international version and by its use some discrepancies
were found in the Australian extension.

2 Ontologies and Ontology Matching

For brevity, throughout the paper we will mostly use Description Logic notation.
However, sometimes we will also use a triple notation, e.g., instead of A v B we
may write 〈A rdfs:subClassOf B〉 and instead of A v ∃R.B we may write 〈A R B〉.
For a set of real numbers S we use ⊕S to denote the sum of its elements. For p an
ontology prefix and C some class if we wish to quantify the ontology in which C
appears we use the notation p:C. Hence, for distinct IRI prefixes p1 6= p2, p1:C
and p2:C denote distinct classes. For an ontology O we use Sig(O) to denote
the set of class names that appear in O. Given an ontology O we assume that
each class C in O has at least one triple of the form 〈C skos:prefLabel v〉 and
zero or more triples of the form 〈C skos:altLabel vi〉. For a given class C function
pref(C) returns the string value v in the triple 〈C skos:prefLabel v〉. An ontology
is called coherent if every C ∈ Sig(O) \ {⊥} is satisfiable.

In the literature, the notion of a Knowledge Base is almost identical to that
of an ontology, i.e., a set of axioms describing the entities of a domain. In the
following, we loosely use the term “Knowledge Base” (KB) to mean a possibly
large ontology that has been created by integrating various other ontologies but,
formally we assume a KB is an OWL ontology.

Ontology matching (or ontology alignment) is the process of discovering cor-
respondences (mappings) between the entities of two ontologies O1 and O2. To
represent mappings we use the formulation presented in [7]. That is, a mapping

7 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017/results/
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between O1 and O2 is a 4-tuple of the form 〈C,D, ρ, n〉, where C ∈ Sig(O1)
D ∈ Sig(O2), ρ ∈ {≡,w,v} is the mapping type, and n ∈ (0, 1] is the confidence
value of the mapping. Moreover, we interpret mappings as DL axioms—that
is, 〈C,D, ρ, n〉 can be seen as the axiom C ρ D where the confidence degree
is attached as an annotation. Hence, for a mapping 〈C,D, ρ, n〉 when we write
O ∪ {〈C,D, ρ〉} we mean O ∪ {C ρ D} while for a set of mappings M, O ∪M
denotes the set O ∪ {m | m ∈ M}. When not relevant and for simplicity we
will often omit ρ and n and simply write 〈C,D〉. A matcher is an algorithm that
takes as input two ontologies and returns a set of mappings.

3 Building Large Knowledge Bases

In this section we briefly present the ontology matching and integration pipeline
we designed for building a large KB [14] mostly through illustrative examples.

Example 1. Consider an ontology-based application that uses the SNOMED
CT ontology Osnmd as a KB. Although SNOMED CT is a large and well-
engineered ontology some relevant medical information may be missing. For ex-
ample, for the disease “Ewing Sarcoma” SNOMED CT only contains the axiom
snmd:EwingSarcoma v snmd:Sarcoma and no relations to signs or symptoms. In
contrast, the NCI ontology Onci contains the following axiom about this disease:

nci:EwingSarcoma v ∃nci:mayHaveSymptom.nci:Fever

We can use ontology matching to establish links between the related entities
in Osnmd and Onci and then integrate them in order to enrich our KB. More
precisely, using a matching algorithm we can identify the following mappings:

m1 = 〈snmd:EwingSarcoma, nci:EwingSarcoma,≡〉
m2 = 〈snmd:Fever, nci:Fever,≡〉

and hence replace our KB with O′snmd := Osnmd ∪ Onci ∪ {m1,m2}. Then, O′snmd

contains the knowledge that “Ewing sarcoma may have fever as a symptom”. ♦

However, it is well known that due to differences in the structure of the two on-
tologies, the integration may introduce undesired consequences like unsatisfiable
classes [7] or new subClassOf relations to the initial KB [5].

Example 2. Consider again the SNOMED CT and NCI ontologies. Both contain
classes for the notion of “soft tissue disorder” and “epicondylitis”. Hence, it is
reasonable for a matching algorithm to compute the following mappings:

m1 = 〈snmd:SoftTissueDisorder, nci:SoftTissueDisorder,≡〉
m2 = 〈snmd:Epicondylitis, nci:Epicondylitis,≡〉

However, in NCI we have Onci |= nci:Epicondylitis v nci:SoftTissueDisorder while
in SNOMED CT Osnmd 6|= snmd:Epicondylitis v snmd:SoftTissueDisorder. Hence,
for the integrated ontology KBint := Osnmd ∪ Onci ∪ {m1,m2} we will have:

KBint |= snmd:Epicondylitis v snmd:SoftTissueDisorder
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Algorithm 1 KnowledgeBaseConstruction(KB,O,Config)

Input: The current KB KB, a new ontology O and a configuration Config.

1: O = saturate(O)
2: Mappings := ∅
3: for all matcher : Config.Align.Matchers do
4: for all 〈C,D, ρ, n〉 ∈ matcher(KB,O) do
5: Mappings := Mappings ∪ {〈C,D, ρ, n,matcher〉}
6: end for
7: end for
8: Mf := ∅
9: w = ⊕{matcher.w | matcher ∈ Config.Align.Matchers}

10: for all 〈C,D, ρ, , 〉 ∈ Mappings such that no 〈C,D, ρ, n〉 exists in Mf do
11: n := ⊕{ni ×matcher.w | 〈C,D, ρ, ni,matcher〉 ∈ M}/w
12: if n ≥ Config.Align.thr then
13: Mf :=Mf ∪ {〈C,D, ρ, n〉}
14: end if
15: end for
16: 〈O′,Mf 〉 := postProcess(KB,O,Mf ,Config)
17: ModelKB := analyse(KB)
18: ModelKB′ := analyse(KB ∪ O′ ∪Mf )
19: DiffModel := diff(ModelKB,ModelKB′)
20: Report := produceReport(DiffModel,Config.Expectations)
21: return KB ∪ O′ ∪Mf

introducing a relation between classes of Osnmd that did not originally hold.
To repair this issue the typical approach followed in literature removes some

of the computed mappings, i.e., either m1 or m2 [7, 5, 12]. But removing map-
pings will cause the KB to contain two different classes for the same real world
entity with a large overlap in their labels. An alternative approach studied in
depth in [14] removes axioms from the new ontology. In this example, we can
compute KBint

2 := KBint
1 \ {nci:Epicondylitis v nci:SoftTissueDisorder} and hence

KBint
2 6|= snmd:Epicondylitis v snmd:SoftTissueDisorder as desired. ♦

In addition, various services that are built on top of the KB may impose
other types of requirements on the KB and integrating sources may negatively
impact them.

Example 3. Assume that our SNOMED CT-based KB is used to support medical
text annotation and Named Entity Disambiguation services. These take a user
text like “I have a severe pain in my head” and annotate it with classes from
the KB. More precisely, words “severe”, “pain”, and “head” would be associated
with the respective classes in the SNOMED CT ontology assigning meaning to
the text. For example, the word “severe” would be associated to the SNOMED
CT class Severe.

Assume now that NCI is integrated with SNOMED CT. NCI contains class
SevereAdverseEvent with an alternative (synonymous) label “severe”. Conse-
quently, after the integration there are two different classes that can be associated
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with the word “severe”. The choice of which class to use may have significant
impact on the application and the interoperability of services. ♦

Our ontology integration approach is given in Algorithm 1. The algorithm ac-
cepts as input the current KB KB, a new ontology O which will be used to enrich
KB and a configuration Config, which is used to tune and change various param-
eters like thresholds and weights. In brief, the algorithm first saturates the input
ontology using an OWL reasoner such as HermiT [3] as well as additional custom
saturation rules. As the KB is loaded to a triple-store for scalable SPARQL query
answering this step is meant to improve the completeness of SPARQL query an-
swering [13]. Subsequently, it applies a set of matchers in order to compute a set
of mappings between KB and O, it aggregates them using a different weight for
each matcher (matcher.w), and finally removes those mappings that fall below a
certain threshold (Config.Align.thr). As mentioned previously, newly introduced
subClassOf relations between symbols of the current KB are eliminated and this
is performed in method postProcess. This method is quite involved and details
can be found in [14].

In the current paper we focus on the final analysis step of our integration
pipeline. After the matching and mapping post-processing, a set of analysers
are applied. These analysers compute various metrics on the given KBs and
populate two models on which a diff operation is applied. These differences are
then compared against “expectations” that are set before starting the pipeline.
For example, if we integrate an ontology which is rich in alternative labels then
we expect that such types of axioms in the initial KB increase by a proportional
amount. The various statistics and metrics that are used in function analyse are
presented in detail in the next section.

4 Analysing Knowledge Bases

We have grouped the metrics we are using into two categories. The first one
contains metrics that characterise the integrity of the KB, that is, the “correct-
ness” of its content according to either well-known notions or service induced
properties. The second category includes metrics about the actual content of
the KB like assessing its completeness. Many of these metrics are inspired by
work on ontology and knowledge base evaluation [16, 9, 2] or Linked Data qual-
ity analysis [18]; some are adapted or extended to fit our use case or are newly
proposed.

4.1 KB Integrity

Integrity can be measured using standard logic-based notions but also additional
application specific metrics are relevant to our use case. In the following we
present in detail the metrics we have defined grouping them in various sub-
categories.
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KB Coherence Perhaps one of the most fundamental properties of every KB
is that it is coherent—that is, it does not contain unsatisfiable classes. Formally,
for KB our KB and A any class in KB we should have KB 6|= A v ⊥. This check
can be performed using existing OWL reasoners. Unfortunately, when we are
dealing with large KBs possibly containing billions of statements, such checks are
at-least time-consuming if at all possible. Consequently, our coherence checking
algorithms are based on approximate methods and techniques inspired by the
DL-Lite language [1]. More precisely, the function analyse internally computes
the following set:

{C ∈ KB | KB |=rdfs C v A uB where A uB v ⊥ ∈ KB}

where |=rdfs denotes the entailment relation under the RDFS-semantics. This
check is implemented by the following SPARQL query:

select ?a ?b ?s where {
?s rdfs:subClassOf ?a ; rdfs:subClassOf ?b .
{ select ?a ?b where { ?a owl:disjointWith ?b . } }

} group by ?a ?b ?s
order by ?a

Entailment Invariability Metrics related to entailment invariability capture
the aspects discussed in Example 2. Although such changes are eliminated by
function postProcess this dimension is still analysed in order to ensure that
everything worked as desired in the pipeline. The amount of entailment changes
between the original and a new ontology can be captured by the notion of logical
difference [6].

Definition 1. Let Σ be a signature and let O and O′ be two OWL 2 ontologies.
The Σ-deductive difference between O and O′ (denoted diffΣ(O,O′)) is defined
as the set of axioms α satisfying: (i) Sig(α) ⊆ Σ, (ii) O 6|= α, and (iii) O′ |= α.

This notion can be used as follows: given the initial KB KB, a new ontol-
ogy O and a set of mappings Mf computed between them, we ideally want
that diffΣ(KB,KB ∪ O ∪Mf ) = ∅ where Σ = Sig(KB). Computing logical dif-
ferences between expressive, let alone large KBs, is very challenging if possible
at all. Nevertheless, a highly optimised system, called LDiff-FAME has been
implemented within the scope of this project as an adaptation of our system
FAME [20, 19]. These systems are based on the notion of uniform interpolation
which is similar to logical difference but LDiff-FAME is highly optimised to scale
over large ontologies. As is shown in the evaluation section LDiff-FAME was able
to compute logical differences between SNOMED CT versions.

LDiff-FAME has not yet been applied to the full scale of our integrated
KB. Instead we used the approximate version of the above definition introduced
in [12] and the difference is only computed with respect to axioms of the form
A v B. In addition to that, we also look for differences in axioms of the form
A v ∃R.A. Such axioms imply a form of self-loop loop, e.g., saying that Leg v
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∃partOf.Leg, which we also want to exclude from occurring in our KB. In contrast
to [12], however, we do allow for new entailments of the form A v ∃R.B for
B 6= A. Actually such new knowledge is desired as it implied the enrichment
of our KB with new relations (see also Example 1). Like before, the above set
is computed using SPARQL queries over triple-stores and no OWL reasoner is
used.

Graph-based Invariability The above metrics are based on well-defined no-
tions from logics. In addition to those, a number of graph-based metrics can be
identified to further analyse ontologies and comprehend their structural proper-
ties. The metrics currently implemented are the following:

1. Path lengths: The maximum and average path length of the subClassOf
hierarchy are computed using a depth-first algorithm.

2. Tangledness: This notion was introduced in [2] as a way to quantify the
multi-hierarchical nature of classes in an ontology, that is, how often a class
has more than one parents (a fork) compared to the total number of classes
in the ontology. Building on this we have defined our version of tangledness
which measures the fork-rejoin points of each class–that is, how many times
a class has more than two parents and what is their least common subsumer.
Instead of counting how many times a node has more than one parent nor-
malised with the cardinality of the graph [2] we also quantify the joins of
these forks. First we define the set of least-common-subsumers (lcs) of two
classes A and B as:

lcs(A,B) := {C | KB |= A v C,B v C and for every D s.t.

KB |= A v D,B v D we have KB |= C v D}.

Now for every class in the KB we define the following:

tang(A,KB) := {E ∈ KB | {A v C1, A v C2} ⊆ KB, C1 6= C2

and E ∈ lcs(C1, C2)}.

As we will see in Section 5 these sets can help us understand the multi-
hierarchical nature of data sources and assess their internal structure. A
SPARQL query computing the above set is:

select ?s ?d1 ?d2 ?anc where {
?s sesame:directSubClassOf ?d1 ; sesame:directSubClassOf ?d2.
filter (?d1 ! = ?d2).
?d1 rdfs:subClassOf ?anc . ?d2 rdfs:subClassOf ?anc .
filter not exists { ?d1 rdfs:subClassOf ?anc2 .

?d2 rdfs:subClassOf ?anc2 . ?anc2 rdfs:subClassOf ?anc . }
}

In addition, we have defined the sum of fork-rejoin points that occur on the
descendants of a class. This number can help us identify parts of the KB in
which large structural changes occurred after the integration.

tang↓(A,KB) := Σ{]tang(C,KB) | KB |= C v A}.

8



Label integrity/ambiguity As motivated by Example 3 we wish to avoid
having distinct classes sharing labels. Obviously this is impossible in general
as language is inherently ambiguous. For example, SNOMED CT alone already
contains several classes that have overlapping labels, e.g., two classes with label
“foot”, one for the unit of measurement and one for the body part. One could
use the “types” of these classes8 to disambiguate, however, this is still a hard
problem for text annotation services. For this reason we have developed methods
to measure and eliminate duplication as much as possible. Let C ⊆ Sig(KB) be
a set of types in KB. For every C ∈ C we define the following set:

amb-lab(C,KB) := {` | A 6= B exist s.t. KB |= {A v C,B v C}, and

{〈A skos:label `〉, 〈B skos:label `〉} ⊆ KB }.

The following SPARQL query computes the above set:

select ?l where {
?s1 rdfs:subClassOf : C ; skos:prefLabel|skos:altLabel ?l .
?s2 rdfs:subClassOf : C ; skos:prefLabel|skos:altLabel ?l .
filter (?s1 ! = ?s2)

}

Moreover, we also define amb-lab(KB) = ΣC∈C]amb-lab(C,KB).
As we will show in the evaluation section, single ontologies may come with

a significant amount of ambiguity due to the “loose” way ontology authors may
use synonyms and alternative labels. To reduce ambiguity we have developed a
set of heuristics which can be used in the integration pipeline. Some of these
heuristics are the following:

– If ` appears as a preferred label in one class and as an alternative in the
other then delete the latter.

– If ` appears in two classes one of which is a super-class of the other and the
label in the sub-class is not its preferred label, then delete the label from the
sub-class.

– If ` appears in two classes that have a common direct super-class (i.e., in
two sibling classes), then delete the label from both of them and create an
intermediate parent containing this label.

Clearly, these heuristics do not completely eliminate ambiguity as there are more
combinations not covered by them.

4.2 KB Completeness Assessment

The completeness or coverage that a knowledge base provides to the underlying
domain is another relevant notion for which metrics have been defined in the

8 By “types” we mean top-level classes which are commonly used to group classes into
categories, e.g., the type of Leg is BodyPart and that of Malaria is Disease; types are
defined by the KB engineer.
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literature [16, 9]. Quantifying completeness is in general impossible since to do
so one would need to know what is all possible knowledge to which the content
of the KB should be compared. Hence, at best we can analyse the content of the
KB and assess by manual inspection and consulting domain experts what type
of content the KB is missing.

For some relation R ∈ Sig(KB) let dom(R) := {C | 〈R rdfs:domain C〉 ∈ KB}
and ran(R) := {D | 〈R rdfs:range D〉 ∈ KB}. Our function analyse computes the
following sets:

1. Relation usage:

usage(R) := ]{〈A R B〉 ∈ KB | KB |= {A v C,B v D},
C ∈ dom(R), D ∈ dom(R)}

usage(C,R) := ]{〈A R B〉 ∈ KB | KB |= {A v C,B v D}, D ∈ ran(R)}

The above measures are quite similar to the metric freq(R,C) defined in [9]
but here we only count triples that fall within the “specified” use of the
relation R—that is, within its defined domain and range. However, in a large
ontology integration project and due to the scale of the alignment problem,
relations may start to “connect” classes whose types fall outside the domain
and ranges of the relation. We call this issue drift and measure it according
to the following sets where 〈A R B〉 ∈ KB:

drifto(R) := ]{〈A R B〉 | KB |= A v C for some C ∈ dom(R), and

KB 6|= B v D for all D ∈ ran(R)}
drifts(R) := ]{〈A R B〉 | KB |= B v D for some D ∈ ran(R) and

KB 6|= A v C for all C ∈ dom(R)}
driftso(R) := ]{〈A R B〉 | KB 6|= A v C,KB 6|= B v D for all

C ∈ dom(R) and D ∈ ran(R)}

Next for a relation R with domain C ∈ dom(R) we measure the percentage
of classes of this type that have this relation associated with them:

extension(C,R) :=
]{A | A v C ∧ usage(A,R) > 0}

]{A | A v C}

The above metric can also be used for data type properties like skos:definition
to measure how many classes in the ontology have associated definitions. In
this case we have extension(owl:Thing, skos:definition). A similar metric in [9]
is the normalised frequency.

2. Class undefinedness: For a class A we define its level of “undefinedness”
as the set of relations that should be defined for this class according to its
specified domains.

undef(A) := {R ∈ KB | KB |= A v C for some C ∈ dom(R) and

KB 6|= 〈A R B〉 for every B}

10



Fig. 1. KB and Class inspection

4.3 Metric Inspection and KB Verification

After all metrics are extracted, a diff operation is performed on several of them
(line 19, Algorithm 1) in order to provide an intuition about the delta in the
content and integrity of the KB. In addition to the above metrics a diff is also per-
formed on every class of the KB to compute its change of labels, properties, and
ancestors. Many of these diffs are compared against pre-set “expectations”, the
violation of which can raise errors or warnings depending on how critical a metric
is. For example, coherence is a strong requirement hence if after integration the
new KB is not coherent an error is raised and the set of unsatisfiable concepts
are put in the report. Other expectations can be that the number of triples for
some subset of properties should increase. For example, if the new ontology is
rich in “has symptom” relations then we expect that “completeness” with re-
spect to this relation increases. Another example is the length of subClassOf
paths which should not increase significantly. More formally, for KB,O,Mf the
sets computed up to line 16 in Algorithm 1, we should have:

depth(KB ∪O ∪Mf ) ≤ depth(KB) + w × depth(O)

for some w ∈ (0, 1].
To further assist in inspecting the content of the KB a graphical tool has

been developed at Babylon in which the diffs can be visualised; Figure 1 depicts
a screen-shot. Users can navigate the KB hierarchy and click on concepts to view
their diff with respect to the previous KB version. New information resulting
from the integration is highlighted with different colours (e.g., green for new
ancestors). A weighted formula on the diff of each class is also computed in
order to assess the most “changed” classes in the KB and select a subset of
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Table 1. Statistics about the KB after each integration/enrichment iteration.

SNOMED CT NCI MesSH MedDRA CTV3 ICD-10 Read2 FMA

count(tang) 118 120 12 529 7 950 8 248 10 092 0 0 0
avg(tang) 2.0 1.26 1.2 1.0 1.14 0 0 0
avg(tang↓) 27.0 1.9 0.8 0.3 0.33 0 0 0
max(tang) 32 11 8 1 9 0 0 0
amb-lab(KB) 1 072 4 873 0 5 24 960 708 1 139 261

them for doctor-based verification [17]. Fine tuning the formula and developing
a doctor-based verification methodology is currently under further investigation.

5 Evaluation

Algorithm 1 has been fully implemented in a highly modular and configurable
pipeline and used to build a large medical KB at Babylon Health. Several medical
sources have been considered. As mentioned, determining whether two sources
can be integrated “smoothly”, monitoring the whole process at such a large scale,
and fine tuning the parameters of the pipeline is not trivial. Initially, we used
the tangledness and label ambiguity metrics to analyse the following popular
medical data sources: SNOMED CT, NCI, MeDRA, MeSH, ICD-10, Read2,
CTV3 (a successor of Read2), and FMA. The results are depicted in Table 1
where count(tang) = ]{A | tang(A) > 0}.

As can be seen SNOMED CT is a highly multi-hierarchical ontology followed
by NCI and to some extent also MeSH although out of the almost 8K classes
that had a fork-rejoin in MeSH the rejoin point was owl:Thing. In MedDRA all
forks have owl:Thing as a least-common-subsumer while in ICD-10 and Read2
there are no forks, a confirmation that all these sources are classification systems.
Interestingly, also the FMA ontology does not contain any forks. This ontology
models the human anatomy and perhaps is reasonable to assume that some body
part is not classified as two different things at the same time. Note that CTV3 is
a successor of Read2 and apparently a more ontological approach was followed.
Regarding ambiguity we note that NCI exhibits a high degree of ambiguity.
After closer inspection we concluded that the alternative labels in NCI do not
represent synonyms but are used in a loose way to indicate similar terms (see
also Example 3).

Based on the above results we selected SNOMED CT as our seed ontology
and used Algorithm 1 to build a medical KB. On top of SNOMED CT we
have so far integrated NCI (which contains 130K classes and 143K subClassOf
axioms), CHV (which contains 57K classes and 0 subClassOf axioms) and FMA
(which contains 104K classes and 255K subClassOf axioms). CHV is a flat list of
layman terms of medical concepts from which we only integrated label (synonym)
information; hence CHV was also not included in the previous analysis. Due to
the high ambiguity in NCI its alternative labels were given lower weight in the
matching process. Statistics about the KBs that we created after each integration
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Table 2. Statistics about the KB after each integration/enrichment iteration.

SNOMED CT +NCI +CHV +FMA

Classes 340 995 429 241 429 241 524 837
Properties 93 124 124 219
SubClassOf Axioms 511 656 617 542 617 542 713 313
ObjPropAssertions 526 146 664 742 664 742 962 190
DataPropAssertions 543 416 946 801 1 043 874 1 211 459
LDiff ∅ ∅ ∅ ∅
Ambiguity 1 072 5 768 9 207 9 811
Ambiguity-Repaired 180 1 266 1 892 2 078

step are depicted in Table 2. As can be seen our postProcess method ensures
that no new subClassOf axioms are introduced between the symbols of the seed
ontology (LDiff row) something that does not happen when using other ontology
matching frameworks (see also Evaluation in [14]). Moreover, our heuristics do
reduce ambiguity significantly and a doctor-based evaluation showed that they
are about 95% correct.

In addition to the above statistics we have also applied our completeness as-
sessment metrics after each integration step to monitor how the content changes.
These metrics helped in at least the following cases:

– NCI is rich in skos:definition hence our expectations were that the number of
such triples would significantly increase in the KB. The first integration of
NCI was rejected since there was no increase due to an implementation bug.

– Integration of NCI introduced a range drift on property partOf whose range
is BodyParts. This was because the NCI “part of” property was declared
to be a sub-property of this property while the range of the NCI relation
is either BodyPart or Substance. Consequently, the sub-property axiom was
removed.

– As expected the integration of CHV introduced many alternative labels to
existing classes in the KB while that of FMA many partOf relations between
body parts. Moreover, the integration of NCI introduced many hasFinding
relations between diseases and symptoms.

We have also considered the Canadian and Australian extensions of SNOMED
CT, denoted by Ocasnmd and Oausnmd, respectively. These extensions add more labels,
country specific concepts, and provide additional local variations and customi-
sations relevant to healthcare communities of these countries. Ideally we should
have diffΣ(Osnmd,O∗snmd) = ∅ for ∗ ∈ {au, ca} and Σ = Sig(Osnmd). If this is the
case then these can be “safely” integrated into the existing KB. Note that no
alignment is required as the country extensions reuse the IRIs of SNOMED CT
and any new IRI is a new classes not in SNOMED CT.

We used LDiff-FAME to compute the above sets obtaining the following re-
sults: for ∗ = ca the above set is indeed empty and the Canadian extension
simply enriches SNOMED CT with additional labels and classes without affect-
ing its structure; this is not the case for the Australian extension in which case
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there are 67 strongest inferred axioms in the above set. One example is a class
subsumption A v B ∈ Osnmd which inOausnmd is B v A. How to properly deal with
Australian SNOMED CT remains part of future work. SNOMED International
was made aware of these cases.

6 Conclusions

We have presented a framework for large KB construction and engineering which
is based on ontology integration. The framework has been used to build a large
medical Knowledge Graph by integrating the popular and well-known ontologies
SNOMED CT, NCI, FMA as well as labels from the CHV vocabulary. To the
best of our knowledge, no ontology integration at this scale has been performed
in the past; all previous matching efforts have used much smaller versions of them
and the computed mappings were never actually used to merge the ontologies.

To help us decide which sources to use and how to configure our integration
pipeline a set of analysers were implemented. They were used at the end of each
pipeline run in order to evaluate the integration process and assess the quality
of the final enriched KB. To further assist in the verification process a graphical
user interface was also built.

We have presented our results in applying several of these metrics on well-
known medical data sources that are currently under investigation at Babylon.
However, our results showed interesting properties about them like ambiguity
of their labels and multi-hierarchical nature of their structure. The metrics and
verification mechanism assisted in fixing several errors in the pipeline, assessing
the success of the integration and fine tuning it. Finally, the LDiff-FAME sys-
tem helped determine that the Australian extension of SNOMED CT is not a
conservative extension.
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