
Making a Case for Formal Relations over Ontology Patterns

Daniel P. Lupp, Leif Harald Karlsen, and Martin G. Skjæveland

Department of Informatics, University of Oslo
{danielup,leifhka,martige}@ifi.uio.no

Abstract. There have recently been multiple frameworks proposed to formalize
the definition and instantiation of recurring patterns for ontology construction and
maintenance. Such formal frameworks can also provide the means necessary for
discussing how such patterns can be related to one another, both syntactically and
semantically. This has the potential for organizing pattern libraries, robust handling
of maintenance tasks, such as redundancy removal, and defining heuristics for
what constitutes a “good” pattern. This short paper aims to provide a common
ground for discussions on formal relations between ontology patterns. We discuss
interesting relations with motivating examples as well as state open questions
concerning relations for optimizing the creation, instantiation, and maintenance of
ontology patterns.

1 Templating Framework for Ontology Patterns

Recently, multiple frameworks have been proposed for the creation and use of ontology
patterns [3,2]. This more formal approach enables the study of how patterns are related to
one another in ways that permit automatic analysis and repair. In order to adequately
discuss formally defined relationships between patterns, we employ the notion of a
templating mechanism for patterns using the following generic definitions: An (ontology)
pattern is a set of OWL axioms or RDF triples; a templating framework has the following
characteristics, where we consider the first three mandatory and the remaining optional:

1. identifiable patterns, called templates;
2. declaration of fixed and variable template parameters;
3. precise instantiation of templates;
4. support for nested template definitions, i.e., templates defined using other templates;
5. typed parameters;
6. cardinality for parameters, e.g,. optional and mandatory;
7. inherited semantics of the underlying language.

The discussion is motivated by our work with Reasonable Ontology Templates
(OTTR) [3,1] which implements these features. Figure 1 gives a schematic example of
an OTTR template, for more details we refer to [3]. The OTTR template framework has
been successfully verified for construction and maintenance tasks on Aibel’s large-scale
Material Master Data (MMD) ontology. There approximately 1000 templates were used
to represent the spreadsheet formats created and populated by the project to capture
the domain knowledge for generating an ontology of ca. 80,000 classes. Experimental
analysis of these templates based on simple relations has revealed a considerable potential



head, identifying template and parameters

SUBCLASSOF

name

(?sub : 1 class, ?super : 1 class

parameters with type and cardinality

) ::

body, representing the pattern

{TRIPLE(?sub, rdfs:subClassOf, ?super)

instance with fixed and variable arguments

} .

Fig. 1: Reasonable Ontology Templates (OTTR) exemplified.

for optimization of their design. We believe that a richer set of template relations is both
possible and required in order to gain a more fine-grained and effective characterization
of templates and template libraries.

In this paper we discuss the benefit and challenges of defining formal relations
between ontology templates and identify future directions of research in this area, with
an agnostic perspective as to which templating formalism is used. As such, the intention
is for the reader to quickly be able to translate the discussion and examples given into
the formalism of their choosing. Section 2 shows how simple relations may be used
to identify redundancies in a template library. Section 3 presents the possibilities and
potential for defining new relations over ontology templates.

2 Simple and Useful Template Relations

Using only the first four characteristics of a template framework given in Section 1, we
can define some basic relationships between templates:

directly depends S is said to directly depend on T if S contains an instance of T in its
definition.

depends depends is the transitive closure of directly depends.
dependency-overlaps S dependency-overlaps T if there exists a template upon which

both S and T directly depend.
overlaps S overlaps T if there exist template instances iS, iT in the definition of S and T

and substitutions ρ and η of the parameters of S and T resp. such that ρ(iS) = iT and
η(iT) = iS.

contains S contains T if there exists a substitution ρ of the parameters of T such that ρ
applied to the pattern of T is a subset of the pattern of S.

These relations can be used to identify redundancies in a set of templates. In [3],
two types of redundancies are considered: lack of reuse and uncaptured pattern. Lack
of reuse occurs when a template duplicates the pattern of another template rather than
instantiating it. This is exemplified by the two templates in Figure 2(a); BURGER1 contains
SUBOBJECTALLVALUESFROM (see (1) and (2)). The template BURGER2 in Figure 2(b) is
the result of fixing this redundancy (replacing (1) with (4)). Uncaptured pattern is
the case when multiple templates make use of a pattern which is not represented by
a template. This is illustrated by the two templates of Figure 2(b); these templates
dependency-overlap, as seen in (3)–(4) and (5)–(6). This is not an occurrence of lack of
reuse, as PIZZA cannot instantiate BURGER2 given they both use different fixed parameter
resources (e.g., hasCondiments (4) and hasTopping (6)). The uncaptured pattern may be
refactored out as a separate template; this is implemented by FOOD1 in Figure 2(c).



BURGER1(?Name : 1 class, ?Condiments : + class)

:: SUBCLASSOF(?Name, :Burger), OBJECTUNIONOF(_:b3, ?Condiments),

SUBCLASSOF(?Name, _:b2), OBJECTALLVALUESFROM(_:b2, :hasCondiment, _:b3). (1)

SUBOBJECTALLVALUESFROM(?x : 1 class, ?Property : 1 objectProperty, ?Range : 1 class)

:: SUBCLASSOF(?x, _:b1), OBJECTALLVALUESFROM(_:b1, ?Property, ?Range) . (2)

(a) Example of lack of reuse.

BURGER2(?Name : 1 class, ?Condiments : + class)

:: SUBCLASSOF(?Name, :Burger), OBJECTUNIONOF(_:b1, ?Condiments), (3)

SUBOBJECTALLVALUESFROM(?Name, :hasCondiment, _:b1). (4)

PIZZA(?Name : 1 class, ?Toppings : + class, ?Country : ? individual)

:: SUBCLASSOF(?Name, :NamedPizza), OBJECTUNIONOF(_:b1, ?Toppings), (5)

SUBOBJECTALLVALUESFROM(?Name, :hasTopping, _:b1), (6)

SUBOBJECTHASVALUE(?Name, :hasCountryOfOrigin, ?Country).

(b) Example of uncaptured pattern.

FOOD1(?Name : 1 class, ?Type : 1 class, ?Ex : + class, ?hasEx : 1 objProp)

:: SUBCLASSOF(?Name, ?:Type), OBJECTUNIONOF(_:b1, ?Ex),

SUBOBJECTALLVALUESFROM(?Name, ?:hasEx, _:b1).

(c) Captured pattern.

FOOD2(?Name : 1 class, ?Type : 1 class, ?Ex : + class, ?hasEx : 1 objProp, ?Country : ? individual)

:: SUBCLASSOF(?Name, ?:Type), OBJECTUNIONOF(_:b1, ?Ex),

SUBOBJECTALLVALUESFROM(?Name, ?:hasEx, _:b1),

SUBOBJECTHASVALUE(?Name, :hasCountryOfOrigin, ?Country).

(d) Captured pattern with optionals.

Fig. 2: Templates demonstrating different redundancies and suggested solutions.

In the analysis of the ∼1000 templates used for Aibel’s MMD ontology, ca. 55 million
potential redundancies were identified and 367 possibly superfluous templates found.
When deciding how to refactor the template library we used a manual approach, targeting
large templates that model specific domain facts. Fixing a single redundancy reduced the
total number of potential redundancies by more than 1.8 million. Although the analysis is
clearly useful and shows promising results, we believe these large figures show that one
has yet to find precise, effective means to characterize and repair template libraries.

3 Defining New Ontology Template Relations

The relations defined in the previous section use only a few of the basic characteristics
for a templating mechanism given in Section 1. The following is a non-exhaustive



list of building blocks for defining formal relations between templates using both the
characteristics of a templating framework and of the underlying language. The list is
presented along with a brief summary of what kind of functionality each provides and
typical examples of possible relations defined using these characteristics:

Syntax and semantics of framework These allow syntactic and semantic relations
such as containment, entailment, and consistency, e.g., two templates could be said
to be inconsistent if for any substitutions of their parameters the use of both in
conjunction yields an inconsistent ontology.

Parameters This allows for relations that take into consideration the number of parame-
ters, their types, and whether they are optional or not. For instance, one could say
that T strengthens the typing of S if T directly depends on S and additionally requires
a more specific type for at least one of its parameters.

Expansion This allows for relations over both unexpanded and expanded templates. For
example, expanded containment could be defined to hold between T and S if the
expansion of T contains the expansion of S.

Metrics Characteristics such as the template’s arity (the number of parameters), width
(the size of its pattern) and depth (the height of its expansion tree).

Syntax and semantics of used vocabulary It is useful to distinguish between templates
that are completely generic (all parameters are variable) and those that use a specific
vocabulary, be it a “logical” vocabulary like RDF or OWL or a more special purpose
vocabulary. As for semantic relations such as consistency, these can be set to consider
or ignore the semantics of “external” ontologies.

These building blocks give many possibilities for characterizing templates and
template libraries. We are particularly interested in identifying relations that are useful
for structuring template libraries for maintenance tasks, such as redundancy removal,
and that make it easier for the user to find the relevant template for the modeling task at
hand. In addition, finding heuristics with which libraries can be optimized according to
specific metrics, which may vary from case to case, could be a valuable asset. Ideally, the
relations and heuristics should be efficiently computable and be easily understood by
the user. Finding these requires more theoretical and empirical study. We conclude this
section by demonstrating some of the challenges of such studies.

When defining relations using the above building blocks, one should proceed with
caution as some of them are incredibly powerful. For instance, allowing parameters
to be optional provides more possibilities for discovering candidates for uncaptured
patterns, as demonstrated in Figure 2: Consider the PIZZA and BURGER2 templates from
Figure 2(b). Without allowing optional parameters, a suitable template that describes the
uncaptured pattern can be seen in Figure 2(c). With optionals, however, the BURGER2
and PIZZA templates can be generalized into a single template by declaring ?Country
as an optional parameter, seen in Figure 2(d). Optionals thus provide a lot of useful
functionality; however, in general they allow for any set of templates to be summarized
into a single template. As this is likely counter-productive in most circumstances, it
would be important to identify heuristics for when optionals should or should not be used
when defining templates for uncaptured patterns.

Other complex relationships can occur during the fixing of lack of reuse or uncaptured
pattern. An example that illustrates this is shown in Figure 3, where fixing one instance



X1

T1 X2

T2 T3

T4
Y

T1 T2 T3

X1

Y

T1 X2

T2 T3

T4

Fig. 3: A complex case of lack of reuse. Templates are schematically represented by
trees where an edge represents a direct dependency. On the left, there is a lack of reuse
between the templates X2 and Y, which, if fixed (by replacing T2 and T3 in Y with X2),
introduces a new lack of reuse between Y and X1. Fixing also this redundancy (replacing
T1 and X2 in X1 with Y ) results in the configuration of templates seen on the right.

of lack of reuse in Y introduces a new lack of reuse in X1. This indicates a more complex
form of lack of reuse between X1 and Y in the original library, but also, more generally,
that repairing redundancies is an iterative process. This type of composition of relations
opens the door to new types of complex relationships. Furthermore, if the template
definitions have type and cardinality restrictions set on the parameters, finding possible
optimizations or redundancies becomes even more involved: for instance, if parameter
types are too strict then the possible reuse of these templates is reduced.

4 Conclusion and Future Work

In this paper, we introduce an abstract templating framework and the building blocks
with which formal relations over ontology patterns and templates may be defined. We
give examples of formal relations that have a demonstrable benefit to template library
maintenance (by removing redundancy) as well as provide useful functionality for tools
geared towards template creation, documentation, and discovery.

The framework, relations and building blocks described in this paper serve primarily
as a basis for discussion. We believe it important to identify (1) what functionality we
desire for improved usability and in maintenance and creation tools, (2) what relations
these require, and (3) what properties aside from the aforementioned building blocks a
templating framework should support.

References
1. H. Forssell, D. P. Lupp, M. G. Skjæveland, and E. Thorstensen. Reasonable macros for ontology

construction and maintenance. In Proc. of 30th DL Workshop, 2017.
2. B. Krieg-Brückner and T. Mossakowski. Generic ontologies and generic ontology design

patterns. In Proc. of the 8th Workshop on Ontology Design and Patterns, 2017.
3. M. G. Skjæveland, D. P. Lupp, L. H. Karlsen, and H. Forssell. Practical ontology pattern

instantiation, discovery, and maintanence with reasonable ontology templates. Accepted for
ISWC 2018 research track, 2018.


	 Making a Case for Formal Relations over Ontology Patterns 

