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Abstract. A major challenge in Product Lifecycle Management (PLM) is
the exchange of product data across lifecycle phases, information systems,
and parties as data formats, structure and quality can vary vastly. Existing
approaches focus only on certain phases of PLM, predominantly design
and manufacturing, while the subsequent phases of usage/maintenance
and disposal are often ignored. However, especially the usage phase is
becoming increasingly important for revenue as customer expectation
for services beyond the initial purchase of a product is growing. This
paper proposes an ontology CO-PLM based on the foundational ontology
DOLCE+DnS Ultralite to provide a formal basis for PLM. In contrast
to existing approaches, CO-PLM follows an holistic approach covering
all phases of PLM and integrates patterns from existing core ontologies.
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1 Introduction

Product Lifecycle Management (PLM) sums up all activities regarding the design,
production, usage, and termination of products. It includes the processes from the
first ideas up to disposal [1]. A central challenge of PLM is sharing information
and knowledge between different organizational parties, such as departments,
companies, etc., over the whole lifecycle of a product [2]. This is not a trivial task,
as many different software systems used by companies today to support their
business processes often rely on individual data models and lack interoperability
with one another. Several models exist for dividing a product’s lifecycle in separate
phases. In general, these consist of four main phases describing the early, middle,
and late life of a product. Depending on the specific product, the phases may
involve different business processes. In context of manufacturing, the design
phase consists of requirement engineering, product specification, and prototyping.
This phase starts with the very first idea of a new product. Most of research and
product development takes place in this phase. Next, the production phase



describes the processes around procurement and disposition of the product‘s
components as well as its assembly. In the usage phase the product is sold to the
customers. Most of spare parts management and customer service management
takes place in this phase. The product lifecycle ends with the disposal phase.
The product gets either replaced, recycled, or eliminated, when it is not of
sufficient use any more. The activities in all phases may differ depending on the
components of the product. Most high-tech products consist of multiple types
of components, e. g., electrical, electronic, mechanical, hydraulic/pneumatic, or
software. For each of these types certain pieces of information are created and
have to be managed. This process can be digitally supported by Product Data
Management (PDM) software systems. The most common data of a high-tech
product’s lifecycle to be managed are its metadata, e. g., identification numbers,
spatial dimensions, weight, or storage conditions. Depending on the industry,
further artifacts are relevant, e. g., technical specifications, geometrical drawings,
and 3D-models usually summarized as Computer Aided Design (CAD) data,
manuals, and test reports.

Several ontologies covering concepts of PLM already exist and can be catego-
rized into three groups: engineering [3,4,5], manufacturing [6,4,5], and lifecycle
ontologies [7,8]. Engineering-centred ontologies classify product features,
e. g., drilling holes or edges, while manufacturing-centred ontologies focus
on describing resources and processes on the shop floor level, e. g., machine,
schedule, and production steps. In contrast to these, lifecycle-centred ontolo-
gies try to describe product lifecycle management comprehensively by focusing
on more general concepts. They may also refer to products and machines, but
not as explicitly as ontologies of the other two types. They rather focus on
activities connecting resources and information from different lifecycle phases. In
comparison to engineering and manufacturing centred ontologies, lifecycle-centred
ontologies address also a more abstract meta-level of Product Data Management.

Most literature and software solutions for PLM focus on the design and
manufacturing phases, as these two are considered to have the most business
impact [9]. The CO-PLM model presented in this paper shares this view,
but extends the state of the art by supporting also the remaining
phases, especially the usage phase.

Section 2 contains a more detailed problem description for PLM using a
LEGO model as an illustration. In Section 3, we describe the requirements for a
core ontology for PLM. As none of the ontologies in the related work cover these
entirely, we present the pattern-based design of CO-PLM in Section 4. Section 5
investigates how the use of CO-PLM scales with increasing number of product
parts in terms of axiom count and reasoning time, before we conclude the paper.

2 Problem Description

We illustrate the problem using a commonly known example of a LEGO model.
It serves as illustration of several PLM concepts and challenges, i. e., part identifi-
cation, subpart relations or assembly processes. Figure 1 shows LEGO Set 31504
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Stone Grey

BRICK 1X1 W. 
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Fig. 1: Blue Express Train with Bill of Materials (extract)

“Blue Express” and an extract of its Bill of Materials (BOM). The model consists
of 71 individual bricks of 32 different brick types. A BOM “lists the subassemblies,
intermediate assemblies, component parts, raw materials, and quantities of each
needed to produce one final product” [10]. Therefore, the BOM can be different
for the design phase, called Engineering Bill of Materials (EBOM), in comparison
to the production phase’s Manufacturing Bill Of Materials (MBOM). The shown
BOM is generated by the LEGO Digital Designer. The most common attributes
of BOMs are an ID and the amount. Other common content is the color, pictures
of the parts, materials or units, especially when liquids, gases, or bulk stock is
used. The following sections illustrate differences between EBOM and MBOM.

2.1 Engineering and Manufacturing View on Parts

LEGO bricks have two different IDs which are Element IDs and Design IDs.
The Design ID defines the geometry of a LEGO brick. For example, a two by
two standard brick will always have the same Design ID, regardless of color
or graphics printed on it (Figure 2a, left side). The Element ID on the other
hand refers to a specific LEGO brick, including its Design ID, color, printing,
etc., which can be bought from the parts shop, or is referenced in a building
manual (Figure 2a, right side). This distinction illustrates different views on the
same part in a real life scenario. An engineer is more interested in form, fit, and
function of a product or a part, while parts in manufacturing must be identifiably
in an unambiguous way (e. g., for retrieval from a storage system). Therefore
the engineer only needs to specify the design of a part as it is not necessary to
dictate, e. g., the color of the part. Besides color, the supplier may be another
discriminator to have several (Element) IDs for the same functional part (Design
ID). In general, the “engineering version” only depicts form, fit, and function
while the “manufacturing version” adds, e. g., color, printing, or supplier. This
separation implies that one engineering part may refer to many manufacturing
parts, while usually one manufacturing part refers to exactly one engineering
part, as depicted in Figure 2a. This distinction in views may be applied not only
on part level but even on top level (“whole product” level). For example, there
may be region or even customer specific versions of a product. But again they
are all based on the same functional design (see Figure 2b).
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Fig. 2: Engineering vs. Manufacturing View
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Fig. 3: Different Structure Views on LEGO Train

2.2 Engineering and Manufacturing Product Structure

Especially for complex products, such as in automotive, aviation, and similar
sectors, the BOMs in engineering and manufacturing context differ significantly.
In engineering, the product structure is deduced from the functionality of a
product. The example train model could be divided into a steam engine, chassis,
and operator’s cabin (Figure 3a). In a real life setting, the engineering product
structure might be divided into hydraulics, electrics, power train, body parts, etc.
The manufacturing structure on the other hand is compounded by subassemblies,
as they exist in assembling processes. For the example model, the official building
instructions define the three segments front, center, and rear, which are first
assembled separately and then joined together (Figure 3b). Although these are not
the proper steps to assemble a real train, the analogy is still valid, as engineering
and manufacturing product structure also differ in a real life setting. For example,
a set of parts grouped by their functions, such as ”all electrical elements”, is
useful in an EBOM, but will not be used in an MBOM as this group will never
be assembled into a physical sub-assembly.



3 Requirements

Based on the scenario described above, we have derived the functional and
non-functional requirements for our core ontology. When designing models for
information systems, Part-whole relations, i. e., the relations between a “whole”
and its parts, components and/or constituents, are of major importance [11].
Section 2.2 illustrated such varying product structures. Semantically, it would be
slightly more precise to use the term “subcomponent” instead of “subpart”, as
“is component of” usually does not imply transitivity, while “is part of” often does
[12]. However, the latter is the commonly used term in PLM and is therefore
adapted in this paper.

Req 1: Differentiating between product concepts and product in-
stances Typically, the term “product” is used both as the concept of a product,
like a model, drawing or idea, as well as its physical implementation, such as a
concrete train with a certain ID where parts like a concrete steam engine with a
specific ID are built in. In this regard, the ontology must be able to explicitly
differentiate between such product concepts and product instances.

Req 2: Different views on parts depending on context Views on the
parts used in products differ depending on PLM-phases and parties. A supplier
may consider a part as an assembly, while the manufacturer considers it a subpart
without a sub-structure relevant to the manufacturer. Different requirements
exist regarding the information and models needed and created for the parts
as these depend heavily on the phases. For example, in the early design phase,
parts may not need a parameter set for their procurement method, while this
information is required for production planning in the early manufacturing phase.
The ontology must support separate views on the product data for the several
PLM phases.

Req 3: Distributed workflow models and workflow executions In
PLM, information about the product and the product itself change across the
phases. An ontology needs to support workflows regulating the processes inside a
business and across parties. Information may be accessed, validated, changed,
transmitted, or taken as input for manufacturing steps, e. g., assembling a sub-
assembly according to an MBOM. Workflows supporting these processes need
to be weakly structured in some cases, e. g., for dynamic processes in the early
development of a new product, while they need to be strongly structured in
others, e. g., approval steps for changing manufacturing documents of a product
already in production or even use. The ontology must therefore support workflows
for using, creating, and changing product information.

Req 4: Secure distributed group management and access right man-
agement PLM includes providing the correct information to the authorized per-
son at the right time. Therefore, another key-aspect of modern PLM is ensuring
the correct access rights to protect the confidentiality, integrity, and availabil-
ity [13] of all necessary information. This includes a flexible group management
that provokes and revokes access rights to specific information, such as drawings
or models, on product parts. Distributed settings including international settings
have to be considered, as the parties often reside in different countries where



different legislations are applied. The ontology must support establishing rulesets
for rights management.

Non-functional Requirements: The central purpose of a core ontology is
to provide a formal foundation for data integration in a heterogeneous, possibly
distributed infrastructure [14] such as found in PLM applications. Thus, besides
the above mentioned functional requirements, also a couple of non-functional re-
quirements need to be supported by CO-PLM. These non-functional requirements
are derived from the experiences in designing core ontologies and are precise
semantics, modularity, extensibility, reuseability, and separation of concerns [14].
CO-PLM needs to provide precise semantics in order to ensure interoperability
with other ontologies. While the CO-PLM ontology can be used as is, there may
be certain circumstances where it is desirable to reuse or extend only parts of it.
Modularity is a pre-requisite for extensibility, i. e., the addition of future function-
alities or the integration of new domain-specific knowledge. The requirement of
extensibility is needed for CO-PLM in order to apply it in different sectors such
as automotive, aviation, construction, etc. Finally, with separation of concerns
we refer to the requirement that the CO-PLM ontology shall be applicable in
arbitrary application domains that deal with production [14]. This supports the
adoption of the ontology.

4 Solution: CO-PLM Core Ontology

Our solution to the requirements stated above is CO-PLM, a novel core ontology
for PLM. Unlike existing PLM approaches, our CO-PLM extends the state of
the art by supporting all phases of a product’s lifecycle.

Design Approach: The design of CO-PLM follows the most common ap-
proach in the PLM literature by applying a part-centred model since product
parts are the objects inherently holding most of the product data [15]. A part
is a specific entity in the product, not the documents related to the product.
In general, data for the different lifecycle phases is stored in separate software
systems being updated by different departments. These systems expand in func-
tionality over time and focus on the individual requirements of the particular
department. Therefore, product models, data formats, and supported processes
often differ among these systems. However, a manufacturing company must
ensure all product data to be precisely assignable to a product or its parts and
be shared across the different departments. CO-PLM offers a semantic basis
to formalize product information and the relations among them. To this end,
we base the design of CO-PLM on the foundational ontology DOLCE+DnS
Ultralite (DUL) [16], because it provides rich semantics. Furthermore, we apply
a pattern-based ontology design because it supports modularity by enabling
reusing individual aspects of the ontology separately. The following presents an
overview of its patterns.

Fulfillment of Functional Requirements: CO-PLM consists of ten on-
tology design patterns, which are implemented in six OWL files (see Figure 4)
presented in the next sections. The legend depicted in this figure also applies
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Fig. 4: Pattern Overview

for the following figures. First, the Product Part Information Entity Pattern
and the Product Part Information Quality Pattern refine the Information Entity
and Quality concepts from DUL in the PLM context. Next, the Product Part
Information Object Pattern and the Part Entry Pattern further specify these
concepts to elaborate on BOMs and their relation to referenced parts. Finally,
the Product Part Pattern and the Product Part Description Pattern utilize the
previous concepts as well as DUL’s Description and Situations Pattern to offer a
framework for representing product information. As Figure 4 shows, the patterns
are connected by imports and thereby reuse formerly defined classes. For exam-
ple, ProductPartInformationObject defined in the Product Part Information
Entity Pattern is reused in the Product Part Information Object Pattern.

The Product Part Pattern fulfils Req 1 and the Product Part Description
Pattern fulfils Req 2. Req 3 is fulfilled by integrating the workflow core ontology
strukt [17], which is also based on DUL. Req 4 is fulfilled by a combination of
InFO [18] for access control and dgFOAF [19] for group management. Thus, CO-
PLM covers all of the presented functional requirements. The following sections
focus primarily on the first two functional requirements, as these relate to the
most essential concepts of the ontology. The Technical Report for this paper,
describing all CO-PLM patterns in more detail, as well as OWL implementations
of all patterns can be found online, at the CO-PLM repository.4

Product Part Information Entity Pattern In DUL, an information ob-
ject represents a piece of information in its abstract form while an information

4https://github.com/FSCHOEN/CO-PLM

https://github.com/FSCHOEN/CO-PLM
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Fig. 5: Product Part Information Entity Pattern

realization is its physical manifestation, such as a paper document or a digi-
tal file, which consists of physical bits on a storage or transport medium. The
central concepts of this pattern are InformationEntity and its subclasses In-

formationObject and InformationRealization. Based on these concepts, we
introduce product-part-related counterparts, i. e., ProductPartInformationEn-
tity, -Object, and -Realization (see Figure 5). Similar to information entities,
product part information objects can have one or multiple product part informa-
tion realizations and vice versa, i. e., one realization can realize one or multiple
information objects.

Product Part Information Entity Qualities Pattern ProductPartIn-

formationEntitys have special Qualitys relevant in the PLM context (see
Figure 6). In DUL, a Quality is “any aspect of an Entity (but not a part
of it), which cannot exist without that Entity” (see documentation at [16] in
DUL.owl). Qualities of a ProductPartInformationEntity are the approval sta-
tus, the level of confidentiality, and a version. The approval status illustrates the
state of development such as “draft”, “approved for procurement”, “approved
for prototyping”, “approved for production”, or “deprecated”. Possible values
of the level of confidentiality are “public” or “company confidential” as well
as governmental classification levels. A Quality generally belongs to exactly
one ProductPartInformationEntity, as otherwise a change of a quality of one
entity implies a change in the quality of another. In special cases this could be
desirable, e. g., if multiple entities can only be approved together. ProductPart-
InformationEntity has in most cases only one Version, ApprovalStatus and
LevelOfConfidentiality. However, there may be exceptions, e. g., if multiple
systems of confidentiality levels are used in parallel. This could be an internal
company standard next to governmental levels, which do not necessarily correlate.
Similarly, the version could be a composition of separate versions for different
countries and yet multiple versions for each country. The approval statues can
have different values depending on the state of progress or approval by different
boards.
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Fig. 6: Product Part Information Entity Qualities Pattern

Product Part Information Object Pattern The Product Part Informa-
tion Object Pattern (Figure 7) illustrates the relevant information objects of the
CO-PLM ontology. ProductPartInformationObjects, as defined in the Product
Part Information Entity Pattern, are all information objects related to a part (in
PLM literature often called “product data” [1,9]). The most common additional
ProductPartInformationObjects are ProductPartMetainformation, such as
identifiers, like the PartNumber, Weight and Dimensions. The BillOfMaterials
describes the phase-dependant structure of ProductPartInformationObject

and states its parts. GeometricProductPartInformation contains spatial lay-
outs of the part and its components. ProductPartForms subsume information
commonly represented by forms, e. g., ProductPartSpecification, Product-
PartManual, and ProductPartTestReport.

Part Entry Pattern Figure 8 introduces the class PartEntry to represent
individual entries in BOMs, using the “Ontology of units of Measure” (OM)5

to represent quantities. A Measure is a combination of a value and a unit, e. g.,
“10 kg”, “5.2 m” or “3 pieces”. Also, a part entry can refer to the more general
product part information entity, as e. g., a manual could be content for a sales
bill of materials, describing the deliverables. The hasConstituent property is
an oversimplification of the relationship between the product part and the BOM
(or any information object describing it). Figure 11 elaborates this further.

Product Part Pattern A product part can either be a product part master
or a physical product part (Figure 9). While a product part master describes
product parts in an abstract way, physical product parts represent the real

5http://www.ontology-of-units-of-measure.org/vocabularies/om-2/ Ontolo-
gies for units are discussed at [20].

http://www.ontology-of-units-of-measure.org/vocabularies/om-2/
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physical objects. This pattern therefore fulfills Req 1. The physical objects are
the realization of the master, which only exists for communication purposes.
Using the example model from Section 2, Figure 10 shows different product part
information entities. While the product part master in the upper left represents
the LEGO model 31504 in general, the photo on the bottom left depicts one
specific physical build of this model. On the right side a BOM is on the top,
while its physical representation is on the bottom in form of a printed document.

Both masters and physical product parts can have subparts, which are listed
in their respective BOMs. While the master can only have other masters in its
BOM, a physical product part can have both masters and physical product parts
in its BOM. The BOM of a master, which is the basis for multiple physical
product parts, cannot contain a specific physical subpart. On the other hand, the
BOM of a physical product part can either refer to a subpart master (anonymous
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part reference) or a physical product part (specific part reference). If individual
aspects of the subpart should be traceable, e. g., serial number or production date,
a specific reference is needed, otherwise, an anonymous reference is sufficient.

Product Part Description Pattern With the Product Part Description
Pattern (Figure 11) different views on product parts can be represented, which
fulfills Req 2. The pattern uses the Descriptions and Situations pattern of DUL.
A Description forms the “descriptive context”, i. e., in product information
context:

The components of a product part are described by a BOM, which has
an approval status, being valid at a specific time interval; the geometric
dimensions can be described in 2D or 3D CAD models, . . .

The Situations represent specific “relational context” satisfying the Descrip-

tion, e. g., for the LEGO example:

The product “BlueExpressTrain-A 1.0:ProductPart” has subparts ac-
cording to MBOM “MBOM-X-1.0:BillOfMaterials” valid from 01 Jan
2017 to 31 Dec 2017, its geometrical dimensions . . .

A Description defines various Concepts such as Roles (here: ProductPartIn-
formationObjectRole) and Parameters (here: ProductPartParameter).

Fulfilment of Non-Functional Requirements: In order to address the
non-functional requirement of precise semantics, CO-PLM is strongly axiomatized
and reuses the foundational ontology DOLCE+DnS Ultralite [16]. In addition,
it integrates patterns from existing core ontologies for modeling workflows [17]
and access control [18]. Using pattern-based design, the core ontology features
modularity, extensibility, and reusability, as described by Scherp et al. [14].
Especially CO-PLM’s extensions of DUL’s Descriptions and Situations ontology
pattern support reuseability and separation of concerns. Separation of concerns
is also supported by establishing an ontology hierarchy, using a foundational
ontology and multiple core ontologies, with each ontology fulfilling a particular
well-defined purpose.



5 Evaluation of Practical Use

The fulfillment of the functional and non-functional requirements was shown in
Section 4. This section evaluates the practical use of CO-PLM in the context of
an application in a vehicle manufacturing company. Using ontologies in practice
requires an integrated engineering process, which is closely aligned to system
development. Therefore, we first describe our approach of combining ontologies
and software design, before we further discuss technical evaluation of CO-PLM.

Combined Engineering Process: CO-PLM is embedded in an advanced
joined ontology engineering process and a software engineering process. As
ontologies are used to create and query triples from software applications, the
ontology engineering process has to be aligned to the software engineering process.
This ensures maintainability, reusability, and extensibility of the developed
software artifacts and ontologies [21]. Although ontologies and software are
used in combination with each other, their development is slightly different.
Ontologies are data models and follow a data-driven modeling approach. In
contrast, software implements behavior and focuses on functionality. For example,
ontology design patterns are only relevant within an ontology and not all of
their details must be mapped to source code. Instead, a software’s source code
should provide an easy to use programming interface to create the individual
triples of an ontology design pattern. On the other hand, functions like get,
set, update, and execute are required in a software implementation, but are
not part of an ontology. Approaches exist to combine ontology engineering and
software engineering, such as TwoUse [21,22]. TwoUse is an open source tool
implementing OMG and W3C standards in order to develop ontology-based
software models as well as model-based ontologies. However, additional research
has to be done to better integrate such approaches in modern system engineering
processes including test, configuration, build, change, and artifact management,
which are not considered in current approaches.

Our solution for such an integrated engineering process is depicted in Figure 12.
First, ontologies are created as OWL files using an ontology editor such as Protégé6.
In order to combine ontologies with software artifacts, we use Apache Maven 7

for managing both our ontology and software projects. Maven uses a project
object model (POM) to store all information of a particular project including the
project’s name and its connections to other projects. Second, OWL files and POM
files are stored in a version control system, which also stores the software’s source
code. Third, any changes to the version control system triggers a build server to
download the latest version of the ontology and to perform a build process. The
build process generates an API which can be used by software applications to
create triples. Finally, all files of the ontology project are stored in an artifact
repository which is used by both ontology engineers and software developers to
retrieve any required artifact. In order to use an ontology, a software developer

6https://protege.stanford.edu/
7http://maven.apache.org/

http://maven.apache.org/
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imports the ontology’s API in the source code. This is done by defining a Maven
dependency to the API using the POM file of the software artifact.

Evaluation on Demo LEGO Train Example Data: To evaluate the
practical use of CO-PLM, the example model from Section 2 was implemented and
checked for consistency with the HermiT OWL Reasoner [23]. By implementing
the model step-wise, one part at a time, we can observe how reasoning time
increases with growing part counts. Figure 13a shows five of these reasoning runs.
The plot shows intervals of almost no gain in reasoning time as well as sudden
jumps. The plateaus appear when adding primitive parts without subparts,
while the jumps originate from adding subassemblies. When plotting the mean
time (dotted line in Figure 13b) of these runs together with the axiom count,
a significant correlation of these two graphs becomes apparent (Figure 13b).
A linear regression model fits with R2 = 0.99, p < .00001 and df = 38. This
suggests a linear correlation between the reasoning time and the amount of parts,
as the latter directly influences the amount of axioms.

Evaluation on Large-Scale Synthetic Data: A passenger car usually has
around 30,000 individual parts,8 while an airline plane even has ca. six million
individual parts.9 As such real-life product data structures are not publicly
available, we use synthetic data to simulate a real-life product. An important

8http://www.toyota.co.jp/en/kids/faq/d/01/04/, last accessed: 07/16/2018
9http://magazin.lufthansa.com/xx/en/fleet/boeing-747-8-en/

one-plane-six-million-parts/, last accessed: 07/16/2018

http://www.toyota.co.jp/en/kids/faq/d/01/04/
http://magazin.lufthansa.com/xx/en/fleet/boeing-747-8-en/one-plane-six-million-parts/
http://magazin.lufthansa.com/xx/en/fleet/boeing-747-8-en/one-plane-six-million-parts/


insight is that the linear correlation appears to not hold anymore with larger part
counts, as Figure 13c illustrates. It depicts five reasoning runs on automatically
generated product structures. Here, the experiments start with 100 part types
and 5 subassemblies. Each of the subassemblies has 20 different subpart types
(covering all of the 100 part types). Each subpart type is used 3 times in a
subassembly. The first point on the graph in Figure 13c represents a product
with 300 individual part pieces, 100 different part types (à 3 pieces each) and
5 subassemblies. Then, the amounts of parts and subassemblies are increased by
the same values at each step. Thus, the second experiment is run on 600 part pieces,
200 part types and 10 subassemblies, the third on 900 part pieces 300 part types
and 15 subassemblies, etc. Three pieces per subpart are not relevant for the
reasoning but illustrate that 100 part IDs correspond to 300 individual parts
if every part ID is used 3 times on average in the product. Each “chunk” of
100 part types including 5 subassemblies can be thought of as an independent
package, e. g., an assembled engine or a seat, of instantiated concepts of CO-PLM.

A quadratic regression model (R2 = 0.9973, p < 0.001 and df = 3) fitted to
the mean of the runs in Figure 13c predicts the reasoning time for a whole car to
take around 16 hours. For the airplane the estimation is 71 years. It becomes
obvious that reasoning on whole products is not practical. In this example, every
100-part-chunk has the same structure. Therefore, in an optimal process, the
independent reasoning of, e.g., 1.000 parts (10 chunks) should take 10 times the
time of 100 parts (1 chunk). In such a case, reasoning the car triples would only
take 17 minutes and 7 days for the plane. There, an approach for improving the
reasoning time is needed. By enabling reasoners to recognize instances of ontology
patterns and then process these separately, reasoning could be accelerated. As
shown above, reasoning 10 chunks/ instances of ontology patterns separately is
much faster than reasoning the same amount of data in one run.

6 Conclusion

This work presented the core ontology CO-PLM to formalize product part infor-
mation across all lifecycle phases from idea generation to disposal. CO-PLM is
based on the foundational ontology DOLCE+DnS Ultralite. We evaluated the
ontology in regard to its fulfillment of the functional and non-functional require-
ments and analyzed the reasoning times in practical use with increasingly complex
products. For future work, CO-PLM will be extended by an advanced distributed
group management and secure access control in multi-national industrial projects.
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