CEUR-WS.org/Vol-2196/BPM_2018_paper_18.pdf

MIDA: Multiple Instances and Data Animator

Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, and Francesco Tiezzi

School of Science and Technology, University of Camerino, Italy
name.surname@unicam.it

Abstract. The BPMN standard is largely adopted by industry and academia due
to its intuitive graphical notation. Nevertheless, fully understanding the behaviour
of BPMN collaboration models may be difficult when dealing at the same time
with multiple instances, exchange of messages, and data manipulation. Figuring
out the interplay between such concepts by statically looking at models is in gen-
eral error-prone and time-consuming. To overcome this issue we provide a novel
model animator tool, called MIDA. It turns out to be an effective supporting tool
for enhancing the understanding of BPMN collaborations and debugging errors
that can easily arise in modelling them.

Keywords: BPMN - Multi-Instance Collaborations - Data Handling - Animation

1 Introduction

The BPMN standard [[6] is nowadays the most prominent modelling notation for busi-
ness processes. In particular, BPMN collaboration diagrams provide an effective way
to describe how multiple participants cooperate to reach a shared goal. However, the
standard leaves unformalised the interplay between control flow, data handling and ex-
change of messages in scenarios requiring multiple instances of some interacting partic-
ipants. These concepts are indeed strictly related to each other. The arrival of a message
can create a new process instance if caught by a start message event, or can drive the be-
haviour of a running instance if caught during the process flow. In both cases, messages
deliver data whose content can be used to fill data objects and to influence the process
behaviour. In particular, the content of messages is used by the correlation mechanism
to deliver them to the appropriate process instances. This is particularly useful in case
of models including multi-instance pools. However, the lack of formalisation has con-
sequently led to a lack of tools supporting designers in the modelling and debugging
of collaborations involving these tricky, yet crucial, features of BPMN. In fact, design-
ers are currently not assisted in figuring out the (possibly complex) behaviour of such
models, and just looking at their static descriptions is in general an error-prone task.
To clarify this issue, we resort to a multi-instance collaboration model that will be
used as a case study throughout this demo paper. The collaboration diagram depicted in
Fig.[T]concerns with the management of a hotel booking involving three participants: the
Customer, the Booking System, and the Hotel. The collaboration represents a scenario
in which the Customer interacts with the Booking System in order to get a list of hotel
quotes for a desired travel. To serve the customer request, the Booking System creates
a process instance. This, in its turn, sends multiple requests (via a multi-instance send-
ing task) to the Hotel pool, thus creating many instances of this latter participant. The

F. Casati et al. (Eds.): Proceedings of the Dissertation Award and Demonstration, Industrial Track at BPM 2018,
CEUR-WS.org, 2018. Copyright © 2018 for this paper by its authors. Copying permitted for private and academic
purposes. This volume is published and copyrighted by its editors.

Corradini, Muzi, Re, Rossi and Tiezzi

Animation Mode @ Scegli file | Nessun file selezionato 2 Saved | Property Panel M| | Data Panel €

1 & AN
i\ L s
A Travel : Quotes]

= g = Receive = Seloct and
Ot
‘ Quotes Travel Quote

ook 7 Travel

Booking A Booked

Travel Info_; Travel Quotes : Selected Quote |

: v
=
Require & ecoive and Send 5.3.351?3 Send
Qules combme Quotes Quotes P Feedback
it uotes W Quote
Duole s 4

Management Managed

Customer

Booking System

|
1
I

0o 000

|
|
|
!
)

Tra el Order

t
1 ! Qav@

| 'y Transacuon
Calculate = Hecelve Transacllon
Check Travel Travel ge"‘d Quote Performed
Availability Quote J,----- > uote Feedback s
Travel Iy : i
Transaction v : : N 1 abﬂ:s,:m ';

Hotel

Transaction
Aborted

Fig. 1: Hotel Booking Collaboration.

Booking System collects the quotes for the Customer and sends them to him. Finally, the
Customer communicates the selected hotel to the Booking System, which consequently
gives a feedback to both selected and discarded Hotel instances. To model correctly this
collaboration the diagram must contain enough information to correlate each message
with the appropriate instance. For example, if messages are not properly delivered, an
Hotel instance may save a transaction even if it has not been selected.

Model animation plays an important role to address the issues that may arise when
modelling multi-instance collaborations, such as the intricate management of the cor-
relation mechanism or the handling of data and messages. Animation can enhance the
understanding of business processes behaviour [Sl4], especially in presence of a faithful
correspondence with a precise semantics [2]] (which, in our case, is described in [3]]). In
the literature, few relevant contributions have been proposed: the animator by Allweyer
and Schweitzer [1], and those developed by Signavio and Visual Paradigm. However,
these tools do not support the interplay between multiple instances, messages and data,
hence they do not allow designers to deal with the mentioned issues.

Therefore, we have developed MIDA (Multiple Instances and Data Animator), a
novel animator tool. It supports designers in achieving a more precise understanding of
the behaviour of a collaboration by means of the visualisation of the model execution,
also in terms of the values evolution of data objects and messages. MIDA animation
features result helpful both in educational contexts, for explaining the behaviour of
BPMN elements, and in practical modelling activities, for debugging errors that can
easily arise in multi-instance collaborations.

2 Main Features of MIDA

In this section, we present the MIDA modelling and animation features, specifically
focussing on the interplay between data, messages and multiple instances.

MIDA: Multiple Instances and Data Animator

. if (Travel_destination != undefined

& Travel period != undefined) { yes OrderQuote_Chosen ===
var TravelInfo_customer = Transaction Order_CustomerName

L4 CustomerName;

> B gequire var Travellnfo_destination =
Travel Quotes Travel_destination;

o var Travellnfo_period =

OrderQuote_Chosen !=

ted? Order_CustomerName
Travel_period; } accepted?

Fig. 2: Activity Guard and Assignments. Fig. 3: XOR Conditions.

Modelling. MIDA is a web application written in JavaScript, accessible by users via a
web browser without installing any plug-in or server backend. MIDA has been realised
by extending the Camunda bpmn.io token simulation plug-in [[7]]. As shown in Fig.
the graphical interface of the tool consists of four main parts: (i) the canvas, where
BPMN elements are composed to form a collaboration diagram; (i) the palette, to insert
elements in the diagram; (iii) the property panel, to specify attributes of the BPMN
elements of the diagram; and (iv) the data panel, to visualise data object values. MIDA
permits to locally save models in the standard format .bpmn and, hence, to load models
previously designed.

The property panel plays a key role when modelling collaborations with MIDA, as
it permits exploiting .bpmn XML attributes to model and save information about multi-
instance characteristics, data objects and related fields, and messages. This information
is written using the JavaScript syntax.

Both pools and activities can be set as multi-instance. In the former case, a dou-
ble click on the pool element opens a pop-up window that allows to specify the pool
as multi-instance and to constrain the number of instances that will be executed for
that pool. In the latter case, multi-instance activities are defined by selecting the corre-
sponding marker (i1 or =) in the element context pad and by filling the loopCardinality
attribute with the number of activity instances to execute.

Data objects are structured in terms of fields, which are rendered in MIDA as
JavaScript variables that can be initialised or left undefined. According to the BPMN
standard, the access to data is represented by associations between data objects and
activities. These associations can define preconditions for the execution of an activity,
expressed in MIDA as an activity guard. The effects on data objects of an activity
execution is instead specified by means of a list of assignments. In case of send tasks,
assignments can be used also to fill message fields while, in case of receive tasks, guards
also specifies correlation conditions. For example, considering our running scenario, the
guard and the assignments of the Require Travel Quotes task are expressed as reported
in Fig. 2] Specifically, the condition of the i f statement checks that the fields destina-
tion and period of the Travel data object are initialised. The content of such fields is
then used by the task’s assignments to fill the Travel Info message.

Values stored in data objects can be also used by conditions associated to the out-
going sequence flows of XOR split gateways, in order to drive choices. Concerning our
case study, Fig. [3] reports the conditional expressions that check for a Hotel instance
if its quote has been chosen or not by the customer, according to the content of the
Feedback message it has received and stored in the Order Quote data object.

Animation. The key characteristic of MIDA is the animation of collaboration models,
supporting in particular the visualisation of data evolution and multiple instances exe-
cution. At any time, the animation can be paused by the user to check the distribution of

Corradini, Muzi, Re, Rossi and Tiezzi

4 5 6 Property Panel M| | Data Panel &
|

Name Value

Travel_estinaton Sydney

Travel_period ‘September

Qv

customer Customerd

September
Customert
Syaney
34

|o%

Fig.4: MIDA Animation.

tokens and the current state of data. From a practical point of view, this allows design-
ers to debug their collaboration models. They can indeed detect undesired executions,
where e.g. a control flow is blocked, and deduce the cause beyond them by possibly
checking the values of the involved data. These debugging facilities are particularly
useful in case of multi-instance collaborations, where data values are used to regulate
the correlation of messages with instances. Anyway, like in software code debugging,
the identification and fixing of bugs are still in charge of the human user.

By selecting the Animation Mode in the MIDA interface, a play button will appear
over each fireable start event. Once this button is clicked, one or more instances of the
desired process are activated, depending on the multi-instance information specified in
the model. This creates a new token labelled by a fresh instance identifier. Then, as
shown in Fig. 4] the token starts to cross the model according to the operational rules
induced by our formal semantics [3]. The animation terminates once all tokens cannot
move forward. In case a token remains blocked due to a data handling issue, e.g. a
wrong correlation or a guard condition violation, MIDA highlights it in red as in Fig.[5]

The Data Panel of the MIDA inter-

face allows the user to monitor the evo-
lution of data values. Fig. [6] shows how
data values change after the execution of
the task Require Quotes, which stores the
values received via the Travel Info mes-

Travel

iy =T

© Instance 1 violates activity guard!

e

Require
Travel

Customer

Quotes

sage in the fields destination, period and
customer of the Customer Choices data

Travel
Booking

object. Fig. 5: Guard Violation.

3 Model Debugging with MIDA

In this section, we present how MIDA can effectively support designers in debugging
their models. We resort to our case study in Fig.[T|to show how issues related to instance
correlation can be detected.

MIDA: Multiple Instances and Data Animator

| Custo| Name Value | Custo| Name Value
Choi Travel_destination Sydney Choid Travel_destination Sydney
| — Travel_period September | — Travel_period September
v/ [~ Quotes_quotes - v, N Quotes_quotes -
. Quotes_hotels - . Quotes_hotels -
Require CustomerChoiches_customer — Require — CustomerChoiches_customer Customert
Quotes CustomerChoiches_destination — Quotes CustomerChoiches_destination Sydney

CustomerChoiches_period
Order_customer

m - CustomerChoiches_period September
O —
Order_destination -

Order_customer -

Order_destination

| Order_id
OrderQuote_quote

? OrderQuote_Choosed

Quote

I}
Management Management O

| Order_id
OrderQuote_quote
| OrderQuote_Choosed

Fig. 6: Data Change after Require Quotes Task Execution.

Let us consider the effect of messages arrival into the Hotel pool. The arrival of a
Travel Order message triggers the activation of a new process instance, while a Feed-
back message has to be routed to an already existing instance. Hence, in the latter case,
the message needs to be properly correlated. In fact, after the choice performed by the
Customer, only the selected Hotel instance has to receive a positive Feedback and then
perform the Save Transaction task. To do that, each Feedback message contains the
unique name of the Hotel that has to receive it. However, if the correlation check would
be not properly specified in the receive task Receive Quote Feedback (e.g., only the
travel period is used as correlation data or no correlation data is provided), the feedback
messages would be not correctelly delivered. As consequence, the unwanted Hotel in-
stances may book an overnight stay in vain, while the one selected by the Customer
would not. This bug can be detected by MIDA as the Hotel chosen by the customer,
stored in Customer Quotes, would not be the one stored in the Order Quote data object
of the corresponding Hotel instance. To fix the bug, the designer can specify the con-
ditional expression OrderQuote_hotelName === Feedback_hotelName of
the receive task thus enabling the right message correlation.

4 Screencast and Website

The MIDA tool, as well as its source code, examples, user guide and screencast, are
availableathttp://pros.unicam. it /mida/. In particular, the screencast shows
a typical scenario where the user requires to model, animate, and debug a BPMN model.
MIDA can be redistributed and/or modified under the terms of the MIT License.

References

1. Allweyer, T., Schweitzer, S.: A tool for animating BPMN token flow. In: BPMN Workshop.
LNBIP, vol. 125, pp. 98-106. Springer (2012)

2. Becker, J., Kugeler, M., Rosemann, M.: Process management: a guide for the design of busi-
ness processes. Springer Science & Business Media (2013)

3. Corradini, F.,, Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Animating Multiple Instances in BPMN
Collaborations: from Formal Semantics to Tool Support (2018), BPM’18 - To Appear.

4. Desel, J.: Teaching system modeling, simulation and validation. In: WSC. pp. 1669-1675
(2000)

5. Hermann et al., A.: Collaborative business process management - a literature-based analysis

of methods for supporting model understandability. In: WI (2017)

OMG: Business Process Model and Notation (BPMN V 2.0) (2011)

7. Philipp Fromme and Sebastian Warnke and Patrick Dehn: bpmn-js Token Simulation (2017),
https://github.com/bpmn-io/bpmn-js-token-simulation

o

http://pros.unicam.it/mida/
https://github.com/bpmn-io/bpmn-js-token-simulation

	MIDA: Multiple Instances and Data Animator

