
Programming in Java with Restricted
Intensional Sets

Maximiliano Cristiá1 and Gianfranco Rossi2

1 Universidad Nacional de Rosario and CIFASIS, Rosario, Argentina
2 Università degli Studi di Parma, Parma, Italy

cristia@cifasis-conicet.gov.ar gianfranco.rossi@unipr.it

Abstract. Intensional sets are sets given by a property rather than by
enumerating their elements, similar to set comprehensions available in
specification languages such as B and MiniZinc. In a previous paper [3] we
have presented a decision procedure for a first-order logic language which
provides Restricted Intensional Sets (RIS), i.e. a sub-class of intensional
sets that are guaranteed to denote finite—though unbounded—sets. In
this paper we show how RIS can be exploited as a convenient program-
ming tool also in a more conventional setting, namely, an imperative O-O
language. We do this by considering a Java library, called JSetL [14], that
integrates the notions of logical variable, (set) unification and constraints
that are typical of constraint logic programming languages into the Java
language. We show how JSetL is naturally extended to accommodate for
RIS and RIS constraints, and how this extension can be exploited, on
the one hand, to support a more declarative style of programming, and
on the other hand, to effectively enhance the expressive power of the
constraint language provided by the library.

1 Introduction and motivations

Intensional sets, also called set comprehensions, are sets described by providing
a condition ϕ that is necessary and sufficient for an element x to belong to
the set itself, i.e., {x : ϕ[x] }, where x is a variable and ϕ is a first-order
formula containing x. Intensional sets are widely recognized as a key feature
to describe complex problems. As a matter of fact, various specification (or
modeling) languages provide intensional sets as first-class entities. For example,
some form of intensional sets are offered by MiniZinc [12], ProB [11] and Alloy
[9]. As concerns programming languages, only relatively few of them support
intensional sets. To name some, the general-purpose programming languages
SETL [15] and Python, and the Constraint Logic Programming (CLP) languages
Gödel [8] and {log} [7]. Also conventional Prolog systems provide some facilities
for intensional set definition in the form of the setof built-in predicate.

The processing of intensional sets in most of these proposals is based on the
availability of a set-grouping mechanism [16] capable of collecting in a set S
all the instances of x satisfying the formula ϕ. Basically, the implementation of
set-grouping exploits the following intended semantics of intensional sets:

{x : ϕ[x]} = S ↔ ∀x(x ∈ S → ϕ[x]) ∧ ∀x(ϕ[x]→ x ∈ S)
↔ ∀x(x ∈ S → ϕ[x]) ∧ ¬∃x(x 6∈ S ∧ ϕ[x]).

(1)

An example of this approach is {log} (pronounced ‘setlog’), a freely available
extended Prolog system that embodies the CLP language with sets CLP(SET)
[7, 13]. For instance, while processing the formula3 A = {1, 2} ∧ S = {X : X ⊆
A}∧{3} 6∈ S, {log} first collects in S all elements X which are subsets of the set
A, i.e. 2A, then it checks the 6∈ constraint on S. Though set grouping works fine
in many cases, it also have a number of more or less evident drawbacks: (i) if
the intensional set denotes an infinite set, then set-grouping may be endless; (ii)
if the formula ϕ contains unbound variables other than X, then set grouping
may incur the well-known problems of the general handling of negation in a
logic programming language [4]; (iii) if the set of values to be collected is not
completely determined (e.g., the solver rewrites ϕ to a simplified equi-satisfiable
form, without generating the actual values for x), then set-grouping may cause
the computation to be not complete (and possibly not sound).

Example 1. The following formulas can be written in {log} using (general) in-
tensional sets, but {log} is not able to process them adequately, due to some of
the problems with set-grouping listed above:

– S = {2, 4, 6} ∧ S = {x : x ∈ D ∧ x mod 2 = 0}, i.e., S is the set of all even
numbers belonging to an unknown set D;

– C = A ∩ B ∧ S = {x : x ∈ A ∧ x ∈ B} ∧ C 6= S, i.e., S is the set of all
elements in both sets A and B (A and B unknown sets).

If, on the contrary, the sets involved in the above formulas are completely spec-
ified sets, then {log} is able to perform set-grouping and hence to compute the
correct answers. ut

Set-grouping is not always necessary to deal with intensional sets. For ex-
ample, given the formula t ∈ {x : ϕ}, one could check whether it is satisfiable
or not by simply checking satisfiability of ϕ(t), i.e., of the instance of ϕ which
is obtained by replacing x by t. A very general proposal along these lines is
CLP({D}) [5], a CLP language offering arbitrarily nested extensional and in-
tensional sets of elements over a generic constraint domain D, along with basic
constraints (namely, ∈, /∈, =, and 6=) dealing with intensional sets. The proposed
solver is able to eliminate occurrences of intensional sets from the constraints
without explicit enumeration of the sets. The generality of the intensional set
formers supported in this proposal, however, may cause some of the drawbacks
mentioned above (namely, problems concerned with intensional sets denoting in-
finite sets and with the general use of negation). As observed in [5], the presence
of undecidable constraints such as {x : p(x)} = {x : q(x)}, where p and q can
have an infinite number of solutions, “prevents us from developing a parametric

3 In order to not burden the presentation too much, {log} formulas will be written
using the usual mathematical notation rather than its concrete syntax.

and complete solver”. As a matter of fact, no working implementation of this
proposal has been developed.

Recently, Cristia and Rossi [3] proposed a narrower form of intensional sets,
called Restricted Intensional Sets (RIS), and a complete solver to deal with
basic set-theoretical operations on them in a way similar to [5] (i.e., not using
set-grouping). RIS have similar syntax and semantics to the set comprehensions
available in the formal specification languages Z and B, i.e. {x : D | Ψ • τ [x]},
where D is a set, Ψ is a formula over a first-order theory X , and τ is a term
containing x. The semantics of {x : D | Ψ • τ [x]} is “the set of terms τ [x] such
that x is in D and Ψ holds for x”. RIS have the restriction that D must be
a finite set and Ψ is a quantifier-free constraint in X , for which we assume a
complete solver to decide its satisfiability is available. It is important to note
that, although RIS are guaranteed to denote finite sets, nonetheless, RIS can
be not completely specified. In particular, as the domain can be a variable or a
partially specified set, RIS are finite but unbounded.

The work in [3] is mainly concerned with the definition of the constraint
language and its solver, and the proof of soundness and completeness of the con-
straint solving procedure. In this paper, our main aim is to explore programming
with intensional sets. Specifically, we are interested in exploring the potential
of using RIS in the more conventional setting of imperative O-O languages. To
this purpose, we consider JSetL [14], a Java library that integrates the notions
of logical variable, (set) unification and constraints that are typical of constraint
logic programming languages into the Java language. First, we show how JSetL
is naturally extended to accommodate for RIS. Then, we show with a number of
simple examples how this extension can be exploited, on the one hand, to support
a more declarative style of programming, and on the other hand, to effectively
enhance the expressive power of the constraint language provided by the library.
Observe that though we are focusing on Java, the same considerations could be
easily ported to other O-O languages, such as C++.

The paper is organized as follows. Sect. 2 introduces RIS informally through
some examples. Sect. 3 briefly reviews the JSetL library and Sect. 4 presents the
extension of JSetL with RIS. In Sect. 5 we start showing examples using JSetL
to demonstrate the usefulness of RIS and RIS constraints to support declarative
programming. Sect. 6 shows how RIS can be used to define and manipulate
partial functions. In Sect. 7 we consider some extensions to RIS and we present
examples showing their usefulness. Finally, in Sect. 8 we draw some conclusion.

2 An Informal Introduction to RIS

In this section we introduce RIS in an informal, intuitive way, through a number
of simple examples.

The language that embodies RIS, called LRIS , is a quantifier-free first-order
logic language which provides both RIS and extensional sets, along with basic
operations on them, as primitive entities of the language. LRIS is parametric
with respect to an arbitrary theory X , for which we assume a decision procedure

for any admissible X -formula is available. Elements of LRIS sets are the objects
provided by X , which can be manipulated through the primitive operators that
X offers (at least, X -equality). Hence, RIS in LRIS represent untyped unbounded
finite hybrid sets, i.e., unbounded finite sets whose elements are of any sort. For
the sake of convenience, we assume that the language of X , LX , provides the
constant, function and predicate symbols of the theories of the integer numbers
and ordered pairs.
LRIS provides the following set terms: a) the empty set, noted ∅; b) exten-

sional sets, noted {x t A}, where x, called element part, is an X -term, and A,
called set part, is an LRIS set term; and c) Restricted Intensional Sets (RIS),
noted {c : D | F • P [c]}, where c, called control term, is an X -term; D, called
domain, is an LRIS set term; F , called filter, is an X -formula; and P , called pat-
tern, is an X -term containing c. Both extensional sets and RIS can be partially
specified because elements and sets can be variables. As a notational conve-
nience, {t1 t{t2 t · · · {tn t t} · · · }} (resp., {t1 t{t2 t · · · {tn t∅} · · · }}) is written as
{t1, t2, . . . , tntt} (resp., {t1, t2, . . . , tn}). When useful, the domain D can be rep-
resented also as an interval [m,n], m and n integer constants, which is intended
as a shorthand for {m,m+1, . . . , n}.RIS-literals are of the form A = B, A 6= B,
e ∈ A or e /∈ A, where A and B are set terms and e is an X -term. RIS-formulas
are built from RIS-literals using conjunction and disjunction.

An extensional set {xtA} is interpreted as {x}∪A. A RIS term is interpreted
as follows: if x1, . . . , xn (n > 0) are all the variables occurring in c, then {c : D |
F • P [c]} denotes the set {y : ∃x1 . . . xn(c ∈ D ∧ F ∧ y =X P [c])}. Note that
x1, . . . , xn are bound variables whose scope is the RIS term itself. Also note that
equality between y and the pattern P requires equality of the theory X .

In order to devise a decision procedure for LRIS , the control term c and the
pattern P of RIS are restricted to be of specific forms. Namely, if x and y are
variables ranging on the domain of X , then c can be either x or (x, y), while P
can be either c or (c, t) or (t, c), where t is any (uninterpreted/interpreted) X -
term, possibly involving the variables in c. As it will be evident from the various
examples in the next sections, in spite of these restrictions, LRIS is still a very
expressive language.

Example 2. The following are RIS-literals involving RIS terms:

– {x : [−2, 2] | xmod 2 = 0 • x} = {−2, 0, 2}
– (5, y) ∈ {x : D | x > 0 • (x, x ∗ x)}, where y and D are free variables
– (5, 0) 6∈ {(x, y) : {P tR} | y 6= 0 • (x, y)}, where P and R are free variables,

and {P tR} is a set term denoting the set {P} ∪R. ut

When the pattern is the control term and the filter is true, they can be
omitted (as in Z and B), although one must be present.
LRIS provides a complete constraint solver which is able to decide satisfia-

bility of any LRIS formulas. Precisely, the solver reduces any input formula Φ
to either false (hence, Φ is unsatisfiable), or to an equi-satisfiable disjunction
of formulas in a simplified form, called the solved form, which is guaranteed to
be satisfiable (hence, Φ is satisfiable). If Φ is satisfiable, the answer computed

by the solver constitutes a finite representation of all the concrete (or ground)
solutions of the input formula.

Example 3 (Constraint solving with RIS).

– The second formula of Ex. 2 is rewritten by the LRIS solver to the solved
form formula y = 25 ∧D = {5 tN1}, where the second equality states that
D must contain 5 and something else, denoted N1.

– The first formula of Ex. 1 can be written using RIS as S = {2, 4, 6} ∧ S =
{x : D | xmod 2 = 0}; this formula is rewritten by the solver to a solved form
formula containing the constraint D = {2, 4, 6tN1}∧{x : N1 | xmod2 = 0} =
∅, where the second equality states that N1 cannot contain even numbers
(note that this constraint has the obvious solution N1 = ∅). ut

It is worth noting that the LRIS solver is able to correctly solve all formulas
of Ex. 1, written using RIS. Moreover, note that the formula {x : p(x)} = {x :
q(x)}, which is undecidable when p and q have an infinite number of solutions,
can be “approximated” using RIS as {x : D1 | p(x)} = {x : D2 | q(x)}, D1, D2

variables, which is a solved form formula admitting at least one solution, namely
D1 = D2 = ∅; hence it is simply returned unchanged by the solver.

3 JSetL

JSetL [14] is a Java library that combines the object-oriented programming
paradigm of Java with valuable concepts of CLP languages, such as logical vari-
ables, lists, unification, constraint solving and non-determinism. The library pro-
vides also sets and set constraints like those found in CLP(SET). Unification
may involve logical variables, as well as list and set objects (i.e., set unification
[6]). Set constraints are solved using a complete solver that accounts for partially
specified sets (i.e., sets containing unknown elements). Equality, inequality and
comparison constraints on integers are dealt with as Finite-Domain Constraints,
like in CLP(FD) [2]. JSetL has been used as one of the first six implementa-
tions for the standard Java Constraint Programming API defined in the Java
Specification Request JSR-331 [10] (see for instance http://openrules.com/

jsr331/JSR331.UserManual.pdf). The JSetL library can be downloaded from
the JSetL’s home page at http://cmt.math.unipr.it/jsetl.html.

In JSetL a (generic) logical variable is an instance of the class LVar. Basically,
LVar objects can be manipulated through constraints, namely equality (eq), in-
equality (neq), membership (in) and not membership (nin) constraints. Logical
variables can be either initialized or uninitialized. When the collection of pos-
sible values for a logical variable reduces to a singleton, this value becomes the
value of the variable and the variable is initialized. Moreover, a logical variable
can have an optional external name (i.e., a string) which can be useful when
printing the variable and the possible constraints involving it.

Example 4 (Logical variables).

LVar x = new LVar(); // an uninitialized logical variable

LVar y = new LVar("y",1); // an initialized logical variable

// with external name "y" and value 1 ut

Values associated with generic logical variables can be of any type. For some
specific domains, however, JSetL offers specializations of the LVar data type,
which provide further specific constraints. In particular, for the domain of inte-
gers, JSetL offers the class IntLVar, which extends LVar with a number of new
methods and constraints specific for integers. In particular, IntLVar provides
integer comparison constraints such as < (lt), ≤ (le), etc.

Other important specializations of logical variables are the class LCollection
and its derived subclasses, LSet (for Logical Sets) and LList (for Logical Lists).
Values associated with LSet (LList) are objects of the java.util class Set

(List). A number of constraints are provided to work with LSet (LList), which
extend those provided by LVar. In particular, LSet provides equality and in-
equality constraints that account for the semantic properties of sets (namely, ir-
relevance of order and duplication of elements); moreover it provides constraints
for many of the standard set-theoretical operations, such as union (union), in-
tersection (inters), inclusion (subset), and so on.

Example 5 (Logical lists/sets).

LList l = new LList(); // an uninitialized logical list

LSet r = new LSet("r"); // an uninitialized logical set

// with external name "r"

LSet s1 = LSet.empty().ins(2).ins(1); // the set {1,2}
LVar x = new LVar("x");

LSet s2 = r.ins(x); // the set {x} ∪ r ut

ins is the element insertion method for LSet objects: s.ins(o) returns the
new logical set whose elements are those of the set s∪{o}. In particular, the last
statement in Ex. 5 creates a partially specified set s2 with an unknown element
x and an unknown rest r (i.e., {x | r}, using a Prolog-like notation).

A JSetL constraint solver is an instance of the class SolverClass. Basi-
cally, it provides methods for adding constraints to its constraint store (e.g., the
method add) and to prove constraint satisfiability (e.g., the method solve). If
solver is a solver, Γ is the collection of constraints stored in its constraint store
(possibly empty), and c is a constraint, then solver.solve(c) checks whether
Γ ∧ c is satisfiable or not: if it is, then the constraint store is modified so to rep-
resent the computed constraint in solved form; otherwise an exception Failure

is raised.

Example 6 (Constraint solving).

LSet s1 = LSet.empty().ins(2).ins(1); // the set {1,2}
LVar x = new LVar("x"), y = new LVar("y");

LSet s2 = LSet.empty().ins(y).ins(x); // the set {x,y}

SolverClass solver = new SolverClass();

solver.add(s1.eq(s2).and(x.neq(1))); // the constraint s1=s2 ∧ x6=1

solver.solve();

x.output(); y.output();

where the method output is used to print the value possibly bound to a logical
object. Executing this code fragment will output: x = 2, y = 1. ut

4 Adding RIS to JSetL

In this section we show how RIS are added to JSetL. The new version of the
JSetL library can be downloaded from the JSetL’s home page. All sample Java
programs shown in this and in the next sections have been tested using the new
version and are available on-line.

RIS are added to JSetL by defining a new class, named Ris. Ris extends
LSet, hence Ris objects can be used as logical sets, and all methods of LSet

are inherited by Ris. Basically, a Ris object (i.e., an instance of Ris) is created
by specifying its control term (an object of type LVar or Pair), its domain (an
object of type LSet), its filter (an object of type Constraint), and its pattern
(an object of type LVar or Pair). The pattern can be omitted if it coincides with
the control term.

Example 7 (Ris object creation). The first RIS of Ex. 2 is created in JSetL as
follows:

IntLVar x = new IntLVar();

LSet d = new LSet(new Interval(-2,2));

Constraint f = x.mod(2).eq(0);

Ris ris = new Ris(x,d,f); // {x:[-2,2] | x mod 2 = 0 • x}

where Interval and Constraint are classes provided by JSetL with their obvi-
ous meaning. ut

Constraint methods provided by Ris implement the constraints = (method
eq) and 6= (method neq). Moreover, the constraint methods in and nin of classes
LVar and Pair are extended so to accept Ris objects as their arguments.

Example 8 (RIS constraints). If ris is the Ris object created in Ex. 7, then the
following are possible RIS constraints posted on ris:

LSet s = LSet.empty().ins(2).ins(0).ins(-2);

solver.add(ris.eq(s)); // {x:[-2,2] | x mod 2 = 0 • x} = {-2,0,2}
LVar y = new LVar(1);

solver.add(y.nin(ris)); // 1 nin {x:[-2,2] | x mod 2 = 0 • x} ut

The class Ris provides also a number of general utility methods, such as
isBound(), which returns true iff the domain of the Ris object is bound to some
value, and expand which returns the LSet object representing the extensional
set denoted by the Ris object (i.e., it performs set grouping) or it raises an
exception if the domain of the Ris object is not a completely specified set.

Example 9. If ris is the Ris object created in Ex. 7, then the corresponding
extensional set S is computed and printed as follows:

LSet S = ris.expand().setName("S");

S.output();

whose execution yields S = {2,0,-2}. ut

In JSetL the language of RIS and the language of the parameter theory X
are completely amalgamated. Thus, it is possible to use constraints of the latter
together with constraints of the former, as well as to share logical variables of
both. The following in an example that uses this feature to prove a general
property about sets.

Example 10. Check the property of set intersection as stated by the second for-
mula of Ex. 1.

LSet A = new LSet(), B = new LSet(), C = new LSet();

solver.add(C.inters(A,B)); // the constraint C = A ∩ B

LVar X = new LVar();

Ris S = new Ris(X,A,X.in(B)); // S = {X:A | X ∈ B}
solver.add(S.neq(C)); // the constraint S 6= C

Calling solver.solve() causes an exception Failure to be thrown (i.e., the
formula is found to be false). ut

Observe that constraints in JSetL are predicates, not functions; hence we
write, for instance, C.inters(A,B), instead of C.eq(A.inters(B)), to denote
the predicate inters(A,B,C) which is true iff C = A ∩B.

5 Declarative programming with RIS

Intensional set definition represents a powerful tool for supporting a declarative
programming style, as pointed out for instance in [7].

A first interesting application of RIS to support declarative programming is to
represent Restricted Universal Quantifiers (RUQ). The RUQ ∀x ∈ D : F [x] can
be easily represented by using a RIS term as follows: D = {x : D | F [x]}. Solving
this formula amounts to check whether F [x] holds for all x in D. For instance,
D = {1, 2, 3} ∧D = {x : D | x > 0} is true, whereas D = {1,−2, 3} ∧D = {x :
D | x > 0} is false.

Since the LRIS solver can decide satisfiability of such formulas, then we have
a decision procedure for a fragment of first-order logic with quantifiers.

The following are Java programs that solve simple—though not trivial—
problems using JSetL with RIS. Basically, their solution is expressed declara-
tively as a formula using RUQ.

Example 11. Compute and print the minimum of a set of integers S.

public static LVar minValue(LSet S)} throws Failure {

IntLVar x = new IntLVar();

IntLVar y = new IntLVar();

Ris ris = new Ris(x,S,y.le(x));

solver.add(y.in(S).and(S.eq(ris)));

solver.solve();

return y; }

The method minValue posts the constraint y ∈ S ∧ S = {x : S | y ≤ x}. The
solver, non-deterministically binds a value from S to y and then it checks if the
property y ≤ x is true for all elements x in S. If this is not the case, the solver
backtracks and tries a different choice for y. A possible call to this method is:

Integer[] sampleSetElems = {8,4,6,2,10,5};

LSet R = LSet.empty().insAll(sampleSetElems);

LVar min = minValue(R).setName("min");

min.output();

and the printed answer is min = 2. ut

It is important to observe that operations on RIS are dealt with as real
constraints. This implies, among other things, that the order in which constraints
are posted to the solver is irrelevant.

More generally, the use of constraints allows to compute with only partial
specified aggregates [1]. For example, the set passed to the method minValue

can be {8, 4, 6, z}, where z is an uninitialized logical variable, or even it can
contain an unknown part, e.g. (using the abstract notation), {8, 4tR}, where R
is an uninitialized LSet object. In the first case, i.e., with S equal to {8, 4, 6, z},
the solver is able to non-deterministically generate three distinct answers, one
with z = 4, min = 4, another with z ≤ 4, min = z, and the last one with
z ≥ 4, min = 4.

Another example that shows the use of RIS to define a universal quantifica-
tion in a declarative way is the following simple instance of the well-known map
coloring problem.

Example 12. Given a cartographic map of n regions r1,. . . ,rn and a set {c1, . . . , cm}
of colors find an assignment of colors to the regions such that no two neighboring
regions have the same color.

Each region can be represented as a distinct logical variable and a map as a
set of unordered pairs (hence, sets) of variables representing neighboring regions.
An assignment of colors to regions is represented by an assignment of values (i.e.,
the colors) to the logical variables representing the different regions.

public static void coloring(LSet regions, LSet map, LSet colors)

throws Failure {

solver.add(regions.subset(colors));

LSet p = new LSet();

Ris ris = new Ris(p, map, p.size(2));

solver.add(map.eq(ris));

solver.solve(); }

The method coloring posts the constraint regions ⊆ colors ∧ map = {p :
map | |p| = 2}. The first conjunct exploits the subset constraint to non-
deterministically assign a value to all variables in regions. The second con-
junct requires that all pairs of regions in the map have cardinality equal to 2,
i.e., all pairs have distinct components. If coloring is called with regions =
{r1,r2,r3}, r1, r2, r3 uninitialized logical variables, map = {{r1,r2},{r2,r3}},
and colors = {"red", "blue"}, the invocation terminates with success, and r1,
r2, r3 are bound to "red", "blue", "red", respectively (actually, also the other
solution which binds r1, r2, r3 to "blue", "red", "blue", respectively, can be
computed through backtracking). ut

This example uses a pure “generate & test” approach; hence it quickly be-
comes very inefficient as soon as the map becomes more and more complex.
However, it may represent a first “prototype” whose implementation can be
subsequently refined (e.g., by modeling the coloring problem in terms of Finite
Domain (FD) constraints and using the more efficient FD solver provided by
JSetL), without having to change its usage. On the other hand, this solution
allows to exploit the flexible use of constraints and partially specified sets. As
a matter of fact, the same program can be used to solve related problems; e.g.,
given a map and a partially specified set of colors, find which constraints the
unknown colors must obey in order to obtain an admissible coloring of the map.

The next program shows another example where RIS are used to check
whether a property holds for all elements of a set, but using a different kind
of equality constraint.

Example 13. Check whether n is a prime number or not:4

public static Boolean isPrime(int n)} {

if (n <= 0) return false;

IntLVar N = new IntLVar(n);

IntLVar x = new IntLVar();

LSet D = new LSet(new Interval(2,n/2));

Ris ris = new Ris(x,D,N.mod(x).eq(0));

solver.add(ris.eq(LSet.empty()));

return solver.check(); }

The method isPrime posts the constraint {x : [2, N div 2] | N mod x = 0} = ∅.
The equality between the RIS term and the empty set ensures that there is no
x in the interval [2, N div 2] such that N mod x = 0 holds. If, for instance, n is
101, then the call to isPrime returns true. ut

6 Using RIS to define partial functions

Another important application of RIS is to define (partial) functions by giving
their domains and the expressions that define them. In general, a RIS term of

4 s.check() differs from s.solve() in that the latter raises an exception if the con-
straint in the constraint store of s is unsatisfiable, whereas the former returns a
boolean value indicating whether the constraint is satisfiable or not.

the form {x : D | F • (x, f(x))}, where f is any function symbol belonging to
the language LX , defines a partial function. In fact, this RIS term denotes a set
of ordered pairs as its pattern is an ordered pair; besides, it is a partial function
because each of its first components never appears twice, since they belong to
the set D.

Given that RIS are sets, then, in LRIS , functions are sets. Therefore, through
standard set operators, functions can be evaluated, compared and point-wise
composed; and by means of constraint solving, the inverse of a function can also
be computed. The following examples illustrate these ideas in the context of
Java with JSetL.

Example 14. The square of an integer n.

IntLVar x = new IntLVar();

LSet D = new LSet();

Ris Sqr = new Ris(x,D,Constraint.TRUE,new Pair(x,x.mul(x));

The Ris object Sqr defines the set of all pairs (x, x ∗ x), where x belongs to an
(unknown) set D. This function can be “evaluated” in a point n, and the result
sent to the standard output, by executing the following code:

IntLVar y = new IntLVar("y");

solver.solve(new Pair(n,y).in(Sqr));

y.output();

that is, y is the image of n through function Sqr. If, for instance, n has value 5
(e.g., int n = 5), then the printed result is y = 25. Note that the RIS domain,
D, is left underspecified as a variable. ut

The same RIS of Ex. 14 can be used also to calculate the inverse of the square
function, that is the square root of a given number. To obtain this, it is enough
to post and solve the constraint

solver.solve(new Pair(y,n).in(Sqr));

If, for instance, n has value 25, the computed result is y = unknown - Domain:

{-5,5}, stating that the possible values for y are -5 and 5.
The interesting aspect of using RIS for defining functions is that RIS are sets

and sets are data. Thus, we have a simple way to deal with functions as data. In
particular, since Ris objects can be passed as arguments to a function, we can
use RIS to write generic functions that take other functions as their arguments.
The following is an example illustrating this technique.

Example 15. The following method takes as its arguments an array of integers
A and a function f(x) and updates A by applying f to all its elements.

public static void mapList(int[] A,Ris f) throws Failure {

for(int i=0; i<A.length; i++) {

IntLVar y = new IntLVar();

solver.solve(new Pair(A[i],y).in(f));

A[i] = y.getValue();

} }

If, for instance, the array passed to mapList is {3,5,7} and f is the Ris object
Sqr of Ex. 14, then the modified array is {9,25,49}. ut

7 Extended RIS

To guarantee that the constraint solver is indeed a decision procedure a number
of restrictions are imposed on the form of RIS in [3]. Specifically: (i) the control
term and pattern of RIS are restricted to be of specific forms—roughly speaking,
variables and pairs, see Sect. 2; (ii) the filter of RIS cannot contain “local”
variables, i.e., existentially quantified variables declared inside the RIS term;
(iii) recursively defined RIS such as X = {x : D | Ψ [X] • τ} are not allowed.5

Although compliance with these restrictions is important from a theoretical
point of view, in practice there are many cases in which they can be (partially)
relaxed without compromising the correct behavior of programs using RIS.

7.1 General patterns

As noted in [3], the necessary and sufficient condition for patterns to guarantee
correctness and completeness of the constraint solving procedure is that patterns
be bijective functions. All the admissible patterns of LRIS are bijective patterns.
Besides these, however, other terms can be bijective patterns. For example, x+
n, n constant, is also a bijective pattern, though it is not allowed in LRIS .
Conversely, x ∗ x is not bijective as x and −x have x ∗ x as image (note that
(x, x ∗ x) is indeed a bijective pattern allowed in LRIS).

Unfortunately, the property for a term to be a bijective pattern cannot be
easily syntactically assessed. Thus in [3] we adopted a more restrictive defini-
tion of admissible pattern. However, from a more practical point of view, as in
JSetL, we can admit also more general patterns. In particular, we allow patterns
to be any integer logical expression involving the RIS control variable. An in-
teger logical expression in JSetL is created by using methods such as sum, mul,
etc., applied to IntLVar objects, and returning IntLVar objects (e.g., x.mul(x),
where x is an uninitialized IntLVar).

If the expression used in the RIS pattern defines a bijective function (e.g.,
x.sum(2)) then dealing with the RIS is anyway safe; otherwise, it is not safe in
general, but it may work correctly in many cases.

Example 16. Compute the set of squares of all even number in [1,10].

IntLVar x = new IntLVar(); //ris = {x:[1,10] | x mod 2=0 • x*x}
LSet D = new LSet(new Interval(1,10));

Ris ris = new Ris(x,D,x.mod(2).eq(0),x.mul(x));

LSet Sqrs = ris.expand();

Executing this code will correctly bind Sqrs to {4,16,36,64,100}. ut

Allowing more general forms of patterns (and, possibly, control terms) is
planned as a future extension for RIS in general, and for the implementation of
RIS in JSetL, as well.

5 Note that, on the contrary, a formula such as X = {D[X] | Ψ • τ} is an admissible
constraint, and it is suitably handled by the LRIS decision procedure.

7.2 RIS with local variables

Allowing local variables in RIS raises major problems when the formula repre-
senting the RIS filter has to be negated during RIS constraint solving (basically,
negation of the RIS filter is necessary to assure that any element that does not
satisfy the filter does not belong to the RIS itself). In fact, this would require
that the solver is able to deal with quite complex universally quantified formulas,
which is usually not the case (surely, it is not the case for the JSetL solver). Thus,
to avoid such problems a priori, the RIS filter cannot contain local variables.

However, as already observed for RIS patterns, in practice there are cases
in which we can relax some restrictions on RIS without losing the ability to
correctly deal with such more general RIS constraints.

Thus, in JSetL, we allow the user to specify that some (logical) variables
in the RIS filter are indeed local variables. This is achieved—as a temporary
solution—by using a special syntax for the external name of the logical variable
(namely, the name must start with an underscore character).

Example 17. If R is a set of ordered pairs and D is a set, then the subset of R
where all the first components belong to D can be defined as follows:

LSet D = new LSet(); //ris = {x:D | ∃y((x,y) ∈ R • (x,y))}
LSet R = new LSet();

LVar x = new LVar();

LVar y = new LVar("_y");

Pair P = new Pair(x,y)

Ris ris = new Ris(x,D,P.in(R),P);

If we try to solve the constraint

solver.solve(new Pair(1,2).in(ris).and(new Pair(3,4).in(ris)))

i.e., (1, 2) ∈ ris ∧ (3, 4) ∈ ris, then the solver terminates with success, binding
(as its first solution) D to {1, 3 tN1} and R to {(1, 2), (3, 4) tN2}, N1, N2 new
fresh variables. ut

In the above example, y is a local variable. If y is not declared as local, then
the same call to solver.solve will terminate with failure, since y is dealt with
as a free variable and the first constraint, (1, 2) ∈ ris, binds y to 2 so that the
second constraint (3, 4) ∈ ris fails.

Anyway, it can be observed that many uses of local variables can be avoided
by a proper use of the control term and pattern of RIS. For example, the extended
RIS of Ex. 17 can be replaced by a RIS term without local variables as follows:
{(x, y) : R | x ∈ D}. Hence, the planned extension of the admissible control
terms and patterns for RIS can also be useful to alleviate the problem of local
variables in RIS filters.

7.3 Recursive RIS

The class Ris extends the class LSet; hence it is possible, at least in principle, to
use Ris objects inside the RIS filter formula in place of LSet objects. This allows,
among other things, to define recursive restricted intensional sets (RRIS).

Of course, the presence of recursive definitions may compromise the finite-
ness of RIS and hence the decidability of the formulas involving them. Therefore
RRIS are prohibited in the base language of RIS, LRIS . In practice, however,
their availability can considerably enhance the expressive power of the language
and hence RRIS are allowed in the extended language supported by JSetL. Pro-
grammers are responsible of guaranteeing termination.

The following is an example using a RRIS. Since RRIS has not yet been
fully developed and tested in JSetL we will write programs dealing with them
by using only the abstract notation.

Example 18 (Factorial of a number n).

Fact = {(0, 1) t Fact1}∧
Fact1 = {x : D

| ∃y, z(x > 0 ∧ (x− 1, z) ∈ Fact ∧ y = x ∗ z • (x, y))}
(2)

Note that the domain, D, is left underspecified, and recursion is simply expressed
as a set membership predicate over the same set being defined: (x− 1, z) ∈ Fact
means that z is the factorial of x− 1. If we conjoin, for example, the constraint
(5, f) ∈ Fact then the solver will return f = 120. As usual in declarative pro-
gramming, there is no real distinction between inputs and outputs. Therefore
if we conjoin to formula (2) the constraint (n, 120) ∈ Fact then the solver will
return n = 5. ut

RRIS are not yet fully supported in JSetL, but their inclusion, which has al-
ready been successfully experimented in {log}, should be feasible without major
problems.

8 Conclusion and future work

In this paper we have presented an extension of the Java library JSetL to support
RIS, and we have shown, through a number of simple examples, the usefulness
of RIS as a powerful data and control abstraction. Although efficiency is not
our main concern, the implementation of RIS in {log} has proven to be efficient
enough as to compete with mainstream tools [3]. Hence, we expect similar results
of the implementation of RIS in the JSetL library.

As future work, it can be interesting: (a) on the more theoretical side, trying
to extend the language of RIS for which we are able to provide a correct and
complete solver, e.g. by enlarging the collection of set and relation operators
dealing with RIS (for now limited to equality and membership); (b) on the more
practical side, trying to incorporate in the implementation of RIS within the
JSetL library all the extensions mentioned in Sect. 7, which although falling
outside of the decision procedure, turn out to be of great interest in practice.

Acknowledgments We wish to thank Andrea Guerra and Andrea Fois for their
contribution to the implementation of RIS in JSetL. This work has been partially
supported by GNCS “Gruppo Nazionale per il Calcolo Scientifico”.

References

1. Bergenti, F., Chiarabini, L., Rossi, G.: Programming with Partially Specified Ag-
gregates in Java, Computer Languages, Systems & Structures, 37(4), 178–192
(2011).

2. Codognet, P., Diaz, D.: Compiling constraints in CLP(FD). Journal of Logic
Programming, 27(3):185–226 (1996).

3. Cristiá, M., Rossi, G.: A Decision Procedure for Restricted Intensional Sets. In: de
Moura, L. (ed.) Automated Deduction 26th Int’l Conf. on Automated Deduction
(CADE 26). LNCS, v. 10395, 185-201. Springer (2017).

4. Dovier, A., Pontelli, E., Rossi, G.: Constructive Negation and Constraint Logic
Programming with Sets. New Generation Computing, 19(3):209–255, 2001.

5. Dovier, A., Pontelli, E., Rossi, G.: Intensional sets in CLP. In: Palamidessi, C. (ed.)
Proc. 19th Int’l Conf. on Logic Programming, LNCS, v. 2916, 284–299. Springer
(2003).

6. Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory and Practice of Logic
Programming 6(6), 645–701 (2006).

7. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861–931 (2000).

8. Hill, P.M., Lloyd, J.W.: The Gödel programming language. The MIT Press (1994).
9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press

(2006).
10. JSR-331: JSR-331 Java Constraint Programming API, https://jsr331.org/.
11. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Keijiro, A., Gnesi, S.,

Mandrioli, D. (eds.) FME. LNCS, v. 2805, 855–874. Springer (2003).
12. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:

Towards a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS,
v. 4741, 529–543. Springer (2007).

13. Rossi, G.: {log} (2008), http://people.dmi.unipr.it/gianfranco.rossi/

setlog.Home.html.
14. Rossi, G., Panegai, E., and Poleo, E.: JSetL: A Java Library for Supporting Declar-

ative Programming in Java. Software-Practice & Experience, 37:115-149 (2006).
15. Schwartz, J. T., Dewar, R. B. K., Dubinsky, E., Schonberg, E.: Programming with

Sets: an Introduction to SETL. Springer-Verlag (1986).
16. Shmueli, O., Naqvi, S.: Set Grouping and Layering in Horn Clause Programs. In:

Lassez, J-L. (ed.), Proc. Fourth Int’l Conf. on Logic Programming, 152–177. The
MIT Press (1987).

