
Minimal Extended Generalized Answer Sets and
their Applications

Mauricio Osorio1 and Claudia Zepeda2

1 Universidad de las Américas, CENTIA,
Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@gmail.com,
2 Universidad Politécnica de Puebla,

Tercer Carril del Ejido Serrano, San Mateo Cuanala,
Municipio Juan C. Bonilla, Puebla, 72640 México

czepedac@gmail.com

Abstract When intelligent agents get new knowledge and this knowl-
edge must be added or updated to their knowledge base, then it is im-
portant to avoid inconsistencies. In this paper, we propose a semantics
for update sequences of programs. The semantics is proposed as an ap-
plication of an extension of the notion of generalized answer sets. This
extension is also introduced in this work.
Keywords: Logic Programming, Answer Set Programming, Updates.

1 Introduction

When intelligent agents get new knowledge and this knowledge must be added
or updated to their knowledge base, then it is important to avoid inconsisten-
cies. Currently there are several approaches in non-monotonic reasoning dealing
with updates [4,1,6]. As part of the contribution of this paper, we consider se-
quences of programs to specify updates. We propose a semantics for update
sequences of programs. Some challenging problems such as the problems pre-
sented in [4,1,6,7] are correctly solved in our approach. Due to lack of space we
omit their presentation here. Additionally, we believe that the generalization of
the formal properties presented in [6] also hold in this approach.

The formalism used to develop our work is Answer Set Programming (ASP)
[5]. ASP is a declarative knowledge representation and logic programming lan-
guage. It represents a new paradigm for logic programming. It allows us to handle
problems with default knowledge and produce non-monotonic reasoning using
the concept of negation as failure. Moreover, there are two popular software im-
plementations to compute answer sets: DLV1 and SMODELS2. The efficiency
of such programs has increased the list of practical applications in the areas of
planning, logical agents and artificial intelligence.

1 http://www.dbai.tuwien.ac.at/proj/dlv/
2 http://www.tcs.hut.fi/Software/smodels/



In [7] the authors propose an update semantics based on minimal generalized
answer sets [2]. However the update semantics of [7] is only for pairs of programs.
In this work we propose a semantics for update sequences of programs. The
semantics proposed is given by an extension of the notion of generalized answer
sets. This extension is also part of the contribution of this work. The notion of
generalized answer sets was used in [2] to define the semantics of Abductive Logic
programs. Abductive Logic programs are used to characterize the semantics of
Consistency Restoring programs (CR- programs) [2]. In a CR-program there are
CR-rules that are added to standard disjunctive logic programs, but they are
only applied when the standard rules in the program lead to inconsistency. For
further reading on CR-programs and their relation with generalized answer sets,
refer to [2].

Our paper is structured as follows. In section 2 we introduce the preliminaries
about general syntax of the logic programs, answer sets and generalized answer
sets. In section 3 we describe the extension of the notion of generalized answer
sets. In section 4 we present an application of minimal extended generalized
answer sets: the semantics for update sequences of programs. Finally, in section
5 we present some conclusions and future work.

2 Preliminaries

In this paper, logic programs are understood as propositional theories. We shall
use the language of propositional logic in the usual way, using propositional
symbols: p, q, . . . , propositional connectives ∧,∨,→,⊥ and auxiliary symbols:
(, ). We assume that for any well formed propositional formula f , ¬f is just an
abbreviation of f → ⊥. In this work, we consider the two types of negation: true
or explicit negation (written as −) and negation-as-failure (written as ¬). An
atom is a propositional symbol. A literal is either an atom or the negation of an
atom. In particular, f → ⊥ is called a constraint and it is also denoted as ← f .
Sometimes we may use not instead of ¬ and a, b instead of a ∧ b, following the
traditional notation of logic programming. A regular theory or logic program is
just a finite set of well formed formulas or rules, it can be called just theory or
program where no ambiguity arises. We shall define as a rule any well formed
formula of the form: f ← g. The signature of a logic program P , denoted as LP ,
is the set of atoms that occur in P .

We want to stress the fact that in our approach, a logic program is inter-
preted as a propositional theory. We will restrict our discussion to propositional
programs. As usual in ASP, we take for granted that programs with predicate
symbols are only an abbreviation of the ground program. In this work we fol-
low the answer sets semantics defined in terms of the so called Gelfond-Lifschitz
reduction [5]. It is worth mentioning that in our approach an atom and its ex-
plicitly negated counterpart may never occur in the same answer set.

Finally, we say that B is a subset of A (written as B ⊆ A) iff every member
of B is a member of A, and we say that B is a proper subset of A (written as
B ⊂ A) iff B ⊆ A and B 6= A.

2



2.1 Minimal generalized answer sets

In this section we recall the syntax and semantics of Abductive Logic programs
as presented in [2].

Definition 1 (Abductive Logic Program). [2] An abductive logic program
is a pair 〈P,A〉 where P is an arbitrary program and A a set of literals, called
abductives.

In [2], the notion of minimal generalized answer sets is used to define the seman-
tics of Abductive Logic programs.

Definition 2 (Generalized Answer Set). [2] 〈M,∆〉 is a generalized answer
set of the abductive program 〈P, A〉 iff ∆ ⊆ A and M is an answer set of P ∪∆.

In [2] is also presented an ordering between generalized answer sets in order
to get the minimal generalized answer sets of an Abductive Logic program. We
shall see that a minimal generalized answer set is a pair 〈M, ∆〉, but for all
practical purposes, we are only interested in M .

Definition 3 (Abductive Inclusion Order). [2] We can establish an order-
ing between generalized answer sets as follows: Let 〈M1,∆1〉 and 〈M2,∆2〉 be
generalized answer sets of 〈P, A〉, we define 〈M1,∆1〉 < 〈M2,∆2〉 if ∆1 ⊂ ∆2.

Definition 4 (Minimal Generalized Answer Set). [2] 〈M, ∆〉 is a minimal
generalized answer set of 〈P, A〉, iff 〈M,∆〉 is a generalized answer set of 〈P, A〉
and it is minimal w.r.t. abductive inclusion order.

3 Minimal extended generalized answer sets

The semantics for update sequences of programs is given by an extension of the
notion of generalized answer sets. This section describes this extension. We start
introducing the definition of an Extended Abductive Logic program. We shall see
that this definition is similar to Definition 1, but it is added a surjective function
that will be used to define an order among the extended generalized answer sets
of an Extended Abductive Logic program. We also present the definition of
Extended Generalized answer sets of an Extended Abductive Logic program.

Definition 5 (Extended Abductive Logic (EAL) program). An extended
abductive logic (EAL) program is a triple 〈P, A, f〉 such that P is an arbitrary
program, A is a set of atoms, and f is some surjective function with domain A
and codomain {1, . . . , N}, N > 0.

Example 1. We can define an EAL program 〈P, A, f〉 such that P is the following
program:

a ← ¬x1
1.

b ← a,¬x1
2.

−a ← ¬x2
1.

−b ← ¬x2
2.

c ← .

3



A is the following set of atoms: {x1
1, x

1
2, x

2
1}; and f : A → {1, 2} is the function

such that f(xi
j) = i.

Definition 6 (Extended Generalized (EG) answer set). Let 〈P,A, f〉 be
an EAL program, M be a set of literals, and ∆ ⊆ A. An extended generalized
(EG) answer set of 〈P,A, f〉 is a pair 〈M, ∆〉 if M is an answer set of P ∪∆.

Example 2. Let us consider the EAL program 〈P,A, f〉 of Example 1. The Table
1 shows the different EG answer sets of 〈P, A, f〉 with their respective ∆ ⊆ A
(the subsets that do not appear in the table do not have EG answer sets).

∆ 〈M, ∆〉
{x1

1, x
1
2} 〈{x1

1, x
1
2,−a,−b, c}, {x1

1, x
1
2}〉

{x1
1, x

1
2, x

2
1} 〈{x1

1, x
1
2, x

2
1,−a, c}, {x1

1, x
1
2, x

2
1}〉

{x1
1, x

1
2, x

2
2} 〈{x1

1, x
1
2, x

2
2,−b, c}, {x1

1, x
1
2, x

2
2}〉

{x1
1, x

1
2, x

2
1, x

2
2} 〈{x1

1, x
1
2, x

2
1, x

2
2, c}, {x1

1, x
1
2, x

2
1, x

2
2}〉

{x1
1, x

2
1, x

2
2} 〈{x1

1, x
2
1, x

2
2, c}, {x1

1, x
2
1, x

2
2}〉

{x1
2, x

2
1, x

2
2} 〈{x1

2, x
2
1, x

2
2, a, c}, {x1

2, x
2
1, x

2
2}〉

{x2
1, x

2
2} 〈{x2

1, x
2
2, a, b, c}, {x2

1, x
2
2}〉

Table 1. The EG answer sets of the program 〈P, A, f〉 of Example 1.

Now we present an order among the EG answer sets of an EAL program.

Definition 7 (Inclusion order among the EG answer sets). Let 〈P,A, f〉
be an EAL program where the codomain of f is the set {1, . . . , N}, N > 0. Let
Ai = {a ∈ A|f(a) = i}. We establish an inclusion order among the EG answer
sets of 〈P, A, f〉 as follows: Let 〈M1,∆1〉 and 〈M2, ∆2〉 be EG answer sets of
〈P, A, f〉. We define 〈M1, ∆1〉 ≤inclu 〈M2,∆2〉 iff there is k, 1 ≤ k ≤ N such
that (∆1 ∩Ak) ⊂ (∆2 ∩Ak), and for all j, k < j ≤ N , (∆1 ∩Aj) = (∆2 ∩Aj).

Example 3. Let us consider the EAL program 〈P, A, f〉 of Example 1 and its
EG answer sets in Table 1. We recall that N = 2 and f : A → {1, 2} is the
function where f(xi

j) = i. We can verify that A1 = {x1
1, x

1
2} and A2 = {x2

1, x
2
2}.

So, according to Table 1 and Definition 7, we can verify that
〈{x1

2, x
2
1, x

2
2, a, c}, {x1

2, x
2
1, x

2
2}〉 ≤inclu 〈{x1

1, x
1
2, x

2
1, x

2
2, c}, {x1

1, x
1
2, x

2
1, x

2
2}〉; since

there is k = 1 such that ({x1
2, x

2
1, x

2
2} ∩A1) ⊂ ({x1

1, x
1
2, x

2
1, x

2
2} ∩A1), i.e, {x1

2} ⊂
{x1

1, x
1
2}, and for all j, 1 < j ≤ 2 we have that

({x1
2, x

2
1, x

2
2} ∩A2) = ({x1

1, x
1
2, x

2
1, x

2
2} ∩A2), i.e, {x2

1, x
2
2} = {x2

1, x
2
2}.

In a similar way we can verify that
〈{x1

1, x
1
2,−a,−b, c}, {x1

1, x
1
2}〉 ≤inclu 〈{x1

1, x
1
2, x

2
1,−a, c}, {x1

1, x
1
2, x

2
1}〉, since there

is k = 2 such that ({x1
1, x

1
2}∩A2) ⊂ ({x1

1, x
1
2, x

2
1}∩A2), i.e., ∅ ⊂ {x2

1}, and there
is no j, 2 < j ≤ 2.

Let us notice that we can also define a cardinality order among the EG
answer sets of an AL program 〈P, A, f〉, denoted by ≤card. This definition can be

4



obtained from Definition 7 by replacing set inclusion criterion by set cardinality
criterion. In the rest of this paper we will use only inclusion order among the
EG answer sets and we will write ≤ to denote this order.

It is also worth mentioning that in Definition 7 the program P is used to
get the EG answer sets, although it is not used to define the order among the
EG answer sets. The order among the EG answer sets is defined in terms of the
subsets of A (∆i and Aj). Moreover, this order can be used to get the minimal
extended generalized answer sets of an EAL program 〈P,A, f〉. We shall see that
a minimal extended generalized answer set is a pair 〈M, ∆〉, but for all practical
purposes, we are only interested in M .

Definition 8 (Minimal Extended Generalized (MEG) answer set). Let
〈P, A, f〉 be an EAL program. 〈M,∆〉 is a minimal extended generalized (MEG)
answer set of 〈P,A, f〉 if 〈M,∆〉 is an EG answer set of P and there is no EG
answer set 〈M ′, ∆′〉 of 〈P,A, f〉 such that 〈M ′, ∆′〉 ≤ 〈M, ∆〉.

Example 4. Let us consider the EAL program 〈P, A, f〉 of Example 1. According
to Table 1 and Definition 8, we can verify that 〈{x1

1, x
1
2,−a,−b, c}, {x1

1, x
1
2}〉 is

the only MEG answer set of 〈P,A, f〉 since there is no EG answer set 〈M ′, ∆′〉
of 〈P,A, f〉 such that 〈M ′,∆′〉 ≤ 〈{x1

1, x
1
2,−a,−b, c}, {x1

1, x
1
2}〉.

4 Updates using minimal extended generalized answer
sets

In this section we present an application of minimal extended generalized answer
sets. We present how the semantics for update sequences of programs is given
by the extended generalized answer sets.

Formally, by an update sequence of programs, we understand a sequence
(P1, . . . , Pn) of logic programs where NPi is the number of rules in each logic
program. We say that P is an update sequence of programs over LP iff LP

represents the set of atoms occurring in
⋃

1≤i≤n Pi.

Definition 9 (Update program and EAL program of an update se-
quence). Given an update sequence of programs P = (P1, . . . , Pn) over LP, we
define the update program P® = P1 ® · · · ® Pn over L∗P (extending LP by new
abducible atoms) consisting of the following items:

1. all constraints in P1, . . . , Pn−1,
2. for each rj ∈ Pi, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ NPi we add the rule rj ← ¬bi

j,
where bi

j is an abducible (a new atom),
3. all rules r ∈ Pn.

An EAL program of P is a triple 〈P®, B, f〉 such that B is the set of abducibles
of P®, i.e., B = {bi

j | bi
j ∈ P®, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ NPi}; and f : B →

{1, . . . , n− 1} is the surjective function where f(bi
j) = i.

5



Example 5. Let P = (P1, P2, P3) be an update sequence of programs over LP =
{a, b, c} where,

P1 : P2 : P3 :
a ← . −a ← . c ← .
b ← a. −b ← .

So, the update program P® = P1 ® P2 ® P3 over L∗P (extending LP by new
abducible atoms {x1

1, x
1
2, x

2
1, x

2
2} ) is the following program:

a ← ¬x1
1.

b ← a,¬x1
2.

−a ← ¬x2
1.

−b ← ¬x2
2.

c ← .

The EAL program of P is the triple 〈P®, B, f〉, where B = {x1
1, x

1
2, x

2
1, x

2
2};

and f : B → {1, 2} is the function f(xi
j) = i.

Now we will see how the intended update answer sets and update answer sets
of a sequence of programs P can be gotten from the EG answer sets and MEG
answer sets of the EAL program of P.

Definition 10 (Intended update answer set). Let P = (P1, . . . , Pn−1, Pn)
be an update sequence of programs over the set of atoms LP. Let 〈M ′,∆′〉 be an
EG answer set of 〈P®, B, f〉. Then, M is an intended update (IU) answer set
of P if only if M = M ′ ∩ LP.

Example 6. Let us consider the update sequence P = (P1, P2, P3) of Example 5.
We can see that the EAL program of P, 〈P®, B, f〉 coincides with the EAL pro-
gram of Example 1. So, the EG answer sets of the EAL program of P, 〈P®, B, f〉
coincide with the EG answer sets of the EAL program of Example 1 (see Table
1). Table 2 shows the EG answer sets of the EAL program 〈P®, B, f〉 and their
respective intended update answer sets.

∆ 〈M, ∆〉 IU answer set

{x1
1, x

1
2} 〈{x1

1, x
1
2,−a,−b, c}, {x1

1, x
1
2}〉 {−a,−b, c}

{x1
1, x

1
2, x

2
1} 〈{x1

1, x
1
2, x

2
1,−a, c}, {x1

1, x
1
2, x

2
1}〉 {−a, c}

{x1
1, x

1
2, x

2
2} 〈{x1

1, x
1
2, x

2
2,−b, c}, {x1

1, x
1
2, x

2
2}〉 {−b, c}

{x1
1, x

1
2, x

2
1, x

2
2} 〈{x1

1, x
1
2, x

2
1, x

2
2, c}, {x1

1, x
1
2, x

2
1, x

2
2}〉 {c}

{x1
1, x

2
1, x

2
2} 〈{x1

1, x
2
1, x

2
2, c}, {x1

1, x
2
1, x

2
2}〉 {c}

{x1
2, x

2
1, x

2
2} 〈{x1

2, x
2
1, x

2
2, a, c}, {x1

2, x
2
1, x

2
2}〉 {a, c}

{x2
1, x

2
2} 〈{x2

1, x
2
2, a, b, c}, {x2

1, x
2
2}〉 {a, b, c}

Table 2. The IU answer sets of the program 〈P®, B, f〉.

6



Definition 11 (Update answer set). Let P = (P1, . . . , Pn−1, Pn) be an up-
date sequence of programs over the set of atoms LP. Let 〈M ′,∆′〉 be a MEG
answer set of the EAL program 〈P®, B, f〉. Then, M is an update answer set
of P if only if M = M ′ ∩ LP.

Example 7. Let us consider the update sequence P = (P1, P2, P3) of Example 5.
In Example 4 we verified that 〈{x1

1, x
1
2,−a,−b, c}, {x1

1, x
1
2}〉 is the only MEG

answer set of 〈P®, B, f〉. So, according to Definition 11, we can verify that
{−b,−a, c} is the only one update answer set of P.

Now, let us consider Example 1 from [6] as another example to illustrate Defin-
ition 11.

Example 8. Let us consider the update sequence P = (P1, P2) where

P1 : P2 :
sleep ← night,¬watchTv,¬other. −tvOn ← powerFailure.
night ← . −tvOn ← assignmentDue, working.
tvOn ← ¬tvBroke. assignmentDue ← .
watchTv ← tvOn. working ← .

other ← working.

We can verify that the only MEG answer set of the EAL program 〈P®, B, f〉
is 〈{x1

3, night, other, assignmentDue,working,−tvOn}, {x1
3}〉. The only update

answer set of P which coincides with the result of Example 1 in [6] is:
{night, other, assignmentDue, working,−tvOn}. Bellow we can see the P® =
P1 ® P2 over L∗P.

sleep ← night,¬watchTv,¬other,¬x1
1.

night ←,¬x1
2.

tvOn ← ¬tvBroke,¬x1
3.

watchTv ← tvOn,¬x1
4.

−tvOn ← powerFailure.
−tvOn ← assignmentDue, working.
assignmentDue ← .
working ← .
other ← working.

5 Conclusions and future work

We presented a semantics for update sequences of programs given by an extension
of the notion of generalized answer sets called Extended Generalized answer
sets. Some challenging problems such as the problems presented in[4,1,6,7] are
correctly solved in our approach. Due to lack of space we omit their presentation
here. In fact, the work presented in this paper is an initial proposal about the
semantics for update sequences of programs. In future work we plan to show how
the formal properties for update programs presented in [6] can be generalized
easily for update sequences of programs.

7



We are also studying the possibility of using EG answer sets to represent
a simple kind of preferences. In the approach that we are studying, we define
a particular EA program 〈P, B, f〉 where its MEG answer sets correspond to
the preferred answer sets. The program P of this particular EA program should
include a set of constraints. Each constraint is related to one possible solution
of the problem and a new and different atom xi

j , where i should indicate the
satisfaction degree of the corresponding solution. For instance, let us consider
an Example from [3] about the decision over possible desserts. In that example
is indicated a preference for ice-cream over cake and a preference for coffee over
tea. Additionally, it is not possible to have coffee with ice cream. We can see
that this problem have three possible solutions: ice-cream with tea, coffee with
cake, and tea with cake. Moreover, the preferred solutions are ice-cream with tea
and coffee with cake since they have at least one of the most preferred options.
So, we could have the EA program 〈P,A, f〉 where P is the following program:

iceCream ∨ cake ←
coffee ∨ tea ←
← coffee, iceCream
← iceCream, tea,¬x1

1

← coffee, cake,¬x1
2

← tea, cake,¬x2
1

A is the following set of atoms: {x1
1, x

1
2, x

2
1}; and f : A → {1, 2} is the function

f(xi
j) = i. We can verify that their MEG answer sets correspond to the preferred

answer sets {iceCream, tea} and {coffee, cake}.

References

1. J. Alferes and L. Pereira. Logic programming updating: a guided approach, 2002.
2. M. Balduccini and M. Gelfond. Logic Programs with Consistency-Restoring Rules.

In P. Doherty, J. McCarthy, and M.-A. Williams, editors, International Symposium
on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Sympo-
sium Series, Mar 2003.

3. G. Brewka. Logic Programming with Ordered Disjunction. In Proceedings of the
18th National Conference on Artificial Intelligence, AAAI-2002. Morgan Kaufmann,
2002.

4. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming, 2(6):711–767,
2002.

5. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming, pages
1070–1080. MIT Press, 1988.

6. M. Osorio and V. Cuevas. Updates in answer set programming: An approach based
on basic structural properties. Accepted in Theory and Practice of Logic Program-
ming, 2006.

7. F. Zacarias, M. O. Galindo, J. C. A. Guadarrama, and J. Dix. Updates in Answer
Set Programming based on structural properties. In Proceedings of the 7th Interna-
tional Symposium on Logical Formalizations of Commonsense Reasoning. Dresden
University Technical Report (ISSN 1430-211X), 2005.

8


