
A Polynomial Graphical Reduction to Speed Up

the Counting of Models for Boolean Formulas

Guillermo De Ita Luna*, Meliza Contreras González+

*Universidad Autónoma de Puebla, +Universidad Angelópolis
deita@cs.buap.mx, mel 22281@hotmail.com

Abstract. In this paper, we focus on exact, deterministic algorithms for
computing the number of models in Boolean formulas in Two Conjuntive
Form (2-CF), denoted as #2-SAT problem.
We present a series of linear procedures which when they are integrated
into a main program, allow us to compute in polynomial time the number
of models of a formula F in 2-CF when the constraint graph GF holds
the following condition: GF can be reduced to one free tree joined with a
set of fundamental cycles, and such that those cyles are non-intersected
(any pair of cycles do not share edges) or, they are intersected in just
one edge. The resulting method for counting models in a 2-CF could be
used to impact directly in the reduction of the complexity time of the
algorithms for other counting problems.
Keywords: #SAT Problem, exact combinatorial algorithms.

1. Introduction

As is well known, #SAT problem is a classical #P-complete problem, and an
interesting area of research has been the identification of restricted cases for
which the #SAT problem can be solved efficiently.

#SAT is a special concern to Artificial Intelligence (AI), for example, #SAT
has applications in the estimating of the degree of reliability in a communica-
tion network, for computing the degree of belief in propositional theories, in
Bayesian inference, in a truth maintenance systems, for repairing inconsistent
databases [2, 5, 7]. The previous problems come from several AI applications
such as planning, expert systems, data-mining, approximate reasoning, etc.

#SAT looks harder than the SAT problem, for example, the 2-SAT problem
(SAT restricted to consider formulas where each clause has two literals at most),
it can be solved in linear time. However, the corresponding counting problem #2-
SAT is a #P-complete problem. On the other hand, the maximum polynomial
class recognized for #2SAT is the class (≤ 2, 2µ)-CF (conjunction of binary or
unitary clauses where each variable appears two times at most) [3, 5, 6].

The dichotomy theorem [1] for #SAT just guarantees the tractability by
affine formulas F (F is affine if the number of models of F is obtained via a
linear system over a finite field) and the problem is #P-complete otherwise. We
determine here new classes of formulas in 2-CF which are not affine and where
the #2-SAT problem is solved in polynomial time. Our proposal is based on the
topological structure of the constraint graph of the formula.

2. Notation and Preliminaries

Let X = {x1, . . . , xn} be a set of n Boolean variables. A literal is either a variable
xi or a negated variable xi. As is usual, for each xi ∈ X , x0

i = xi and x1
i = xi.

A clause is a disjunction of different literals (sometimes, we also consider a
clause as a set of literals). For k ∈ IN , a k-clause is a clause consisting of exactly
k literals and, a (≤ k)-clause is a clause with k literals at most. A variable x ∈ X
appears in a clause c if either x or x is an element of c.

A Conjunctive Form (CF) is a conjunction of clauses (we also consider a CF
as a set of clauses). We say that F is a monotone CF if all of its variables appear
in unnegated form. A k-CF is a CF containing only k-clauses and, (≤ k)-CF
denotes a CF containing clauses with at most k literals. A kµ-CF is a formula
in which no variable occurs more than k times. A (k, jµ)-CF ((≤ k, jµ)-CF) is
a k-CF ((≤ k)-CF) such that each variable appears no more than j times.

An assignment s for F is a boolean function s : υ(F) → {0, 1}. An assignment
can be also considered as a set of no complementary pairs of literals. If l ∈ s,
being s an assignment, then s makes l true and makes l false. Considering a
clause c and assigment s as a set of literals, c is satisfied by s if and only if
c ∩ s �= ∅, and if for all l ∈ c, l ∈ s then s falsifies c.

We use υ(X) to indicate the set of variables involved by the object X , where
X could be a literal, a clause or a Boolean Formula.I.e. for the clause c = {x1, x2},
υ(c) = {x1, x2}. And we will denote [[n]] = {1, 2, ..., n}.

Let F be a Boolean formula in Conjuctive Form (CF), F is satisfied by an
assignment s if each clause in F is satisfied by s. F is contradicted by s if any
clause in F is contradicted by s. A model of F is an assigment over υ(F) that
satisfies F . Given F a CF, the SAT problem consists of determining if F has a
model. The #SAT consists of counting the number of models of F defined over
υ(F). We will also denote µυ(F)(F) by #SAT(F). When υ(F) will clear from
the context, we will explicitly omit it as a subscript. #2-SAT denotes #SAT for
formulas in 2-CF, while #(2, 2µ)-SAT denotes #SAT for formulas in the class
(2, 2µ)-CF.

The Graph Representation of a 2-CF
Let Σ be a 2-CF, the constraint graph of Σ is the undirected graph GΣ =

(V, E), with V = υ(Σ) and E = {(υ(x), υ(y)) : (x, y) ∈ Σ}, that is, the vertices
of GΣ are the variables of Σ and for each clause (x, y) in Σ there is an edge
(υ(x), υ(y)) ∈ E. Given a 2-CF Σ, a connected component of GΣ is a maximal
subgraph such that for every pair of vertices x, y, there is a path in GΣ from
x to y. We say that the set of connected components of Σ are the subformulas
corresponding to the connected components of GΣ .

Let Σ be a 2-CF. If F = {G1, . . . , Gr} is a partition of Σ (over the set of
clauses appearing in Σ), i.e.

⋃r
ρ=1 Gρ = Σ and ∀ρ1, ρ2 ∈ [[1, r]], [ρ1 �= ρ2 ⇒

Gρ1 ∩ Gρ2 = ∅], we will say that F is a partition in connected components of Σ
if V = {υ(G1), . . . , υ(Gr)} is a partition of υ(Σ).

If {G1, . . . , Gr} is a partition in connected components of Σ, then:

µυ(Σ)(Σ) =
[
µυ(G1)(G1)

] ∗ . . . ∗ [
µυ(Gr)(Gr)

]
(1)

In order to compute µ(Σ), first we should determine the set of connected
components of Σ, and this procedure is done in linear time [5]. The differ-
ent connected components of GΣ conform the partition of Σ in its connected
components. Then, compute µ(Σ) is translated to compute µυ(G)(G) for each
connected component G of Σ. From now on, when we mention a formula Σ, we
suppose that Σ is a connected component graph. We say that a 2-CF Σ is a
cycle, a chain or a tree if its corresponding graph GΣ is a cycle, a chain or a
tree, respectively.

3. Basic Procedures for computing #2-SAT

Case A:
Let GΣ = (V, E) be a linear chain. Let us write down its associated formula Σ,
without a loss of generality (ordering the clauses and its literals, if it were nec-
essary), as: Σ = {c1, ..., cm} =

{
{yε1

0 , yδ1
1 }, {yε2

1 , yδ2
2 }, . . . , {yεm

m−1, y
δm
m }

}
, where

|υ(ci) ∩ υ(ci+1)| = 1, i ∈ [[m − 1]], and δi, εi ∈ {0, 1}, i = 1, ..., m.
As Σ has m clauses then |υ(Σ)| = n = m + 1. We compute µ(Σ) in base to

build a series (αi, βi), i = 0, ..., m,where each pair is associated to the variable
yi of υ(Σ). The value αi indicates the number of times that the variable yi is
’true’ and βi indicates the number of times that the variable yi takes value ’false’
over the set of models of Σ. Let fi a family of clauses of Σ builds as follows:
fi = {cj}j≤i, i ∈ [[m]]. Note that fi ⊂ fi+1, i ∈ [[m − 1]]. Let SAT (fi) = {s :
s satisifies fi}, Ai = {s ∈ SAT (fi) : yi ∈ s}, Bi = {s ∈ SAT (fi) : yi ∈ s}. Let
αi = |Ai|; βi = |Bi| and µi = |SAT (fi)| = αi + βi. From the total number of
models in µi, i ∈ [[m]], there are αi of which yi takes the logical value ’true’ and
βi models where yi takes the logical value ’false’.

For example, c1 = (yε1
0 , yδ1

1), f1 = {c1}, and (α0, β0) = (1, 1) since y0 can
take one logical value ’true’ and one logical value ’false’ and with whichever of
those values it would satisfy the clause c1 which is the only clause of Σ where y0

appears. SAT (f1) = {yε1
0 yδ1

1 , y1−ε1
0 yδ1

1 , yε1
0 y1−δ1

1 }, and (α1, β1) = (2, 1) if δ1 were
1 or rather (α1, β1) = (1, 2) if δ1 were 0.

In general, we compute the values for (αi, βi) associated to each node xi,
i = 1, .., m, according to the signs: εi, δi of the literals in the clause ci, by the
next recurrence equations:

(αi, βi) =

⎧⎪⎪⎨
⎪⎪⎩

(βi−1 ,µi−1) if (εi, δi) = (0, 0)
(µi−1 ,βi−1) if (εi, δi) = (0, 1)
(αi−1,µi−1) if (εi, δi) = (1, 0)
(µi−1 ,αi−1) if (εi, δi) = (1, 1)

(2)

Note that, as Σ = fm then µ(Σ) = µm = αm + βm. We denote with ′ →′ the
application of one of the four rules of the recurrence (2).

Example 1 Let Σ = {(x0, x1), (x1, x2), (x2, x3), (x3, x4), (x4, x5)} be a 2-CF
which conforms a chain, the series (αi, βi), i ∈ [[5]], is computed as: (α0, β0) =

(1, 1) → (α1, β1) = (2, 1) since (ε1, δ1) = (1, 1), and the rule 2 have to be ap-
plied. In general, applying the corresponding rule of the recurrence (2) accord-
ing to the signs expressed by (εi, δi), i = 2, ..., 5, we have (2, 1) → (α2, β2) =
(1, 3) → (α3, β3) = (3, 4) → (α4, β4) = (3, 7) → (α5, β5) = (10, 7), and then,
#SAT (Σ) = µ(Σ) = µ5 = α5 + β5 = 10 + 7 = 17.

There are other procedures for computing µ(Σ) when Σ is a (2, 2µ)-CF [5,
6], but these last proposals do not distinguish the number of models in which
a variable x takes value 1 of the number of models in which the same variable
x takes value 0, situation which is made explicit in our procedure through the
pair (α, β) labeled by x. This distinction over the set of models of Σ is essential
when we want to extend the computing of µ(Σ) for more complex formulas, as
we have done in algorithms proposed previously [3, 4].

Case B:
Let GΣ be a free tree and Σ its Boolean formula associated which has n variables
and m clauses. Traversing GΣ in depth-first build a free tree, that we denote as
AΣ , whose root node is any vertex v ∈ V with degree 1, and where v is used for
beginning the depth-first search. We denote with (αv, βv) the associated pair to
a node v (v ∈ AΣ). We compute µ(Σ) while we are traversing GΣ in depth-first,
for the next procedure.

Algorithm Count Models for free trees(AΣ)
Input: AΣ the tree defined by the depth-search over GΣ

Output: The number of models of Σ
Procedure:
Traversing AΣ in depth-first, and when a node v ∈ AΣ is left, assign:

1. (αv, βv) = (1, 1) if v is a leaf node in AΣ .
2. If v is a father node with an unique child node u, we apply the recurrence (2)

considering that (αi−1, βi−1) = (αu, βu) and then (αi−1, βi−1) → (αi, βi) =
(αv, βv).

3. If v is a father node with a list of child nodes associated, i.e., u1, u2, ..., uk are
the child nodes of v, then as we have already visited all the child nodes, then
each pair (αuj , βuj) j = 1, ..., k has been defined based on (2). (αvi , βvi) is
obtained by apply (2) over (αi−1, βi−1) = (αuj , βuj). This step is iterated
until computes all the values (αvj , βvj), j = 1, ..., k. And finally, let αv =∏k

j=1 αvj and βv =
∏k

j=1 βvj .
4. If v is the root node of AΣ then returns(αv + βv).

This procedure returns the number of models for Σ in time O(n + m) which
is the necessary time for traversing GΣ in depth-first.

Case C:
Let GΣ be a simple cycle with m nodes, that is, all the variables in υ(Σ) appear
twice, |V | = m = n = |E|. Ordering the clauses in Σ in such a way that

| υ(ci) ∩ υ(ci+1) |= 1, and ci1 = ci2 whenever i1 ≡ i2 mod m, hence y0 = ym,

then Σ =
{
ci = {yεi

i−1, y
δi

i }
}m

i=1
, where δi, εi ∈ {0, 1}. Decomposing Σ as Σ =

Σ′ ∪ cm, where Σ′ = {c1, ..., cm−1} is a chain and cm = (yεm
m−1, y

δm
0) is the edge

which conforms with GΣ′ the simple cycle: y0, y1, ..., ym−1, y0. We can apply the
linear procedure described in (A) for computing µ(Σ′). Every model of Σ′ had
determined logical values for the variables: ym−1 and y0 Any model s of Σ′

satisfies cm if and only if (y1−εm
m−1 /∈ s and y1−δm

m /∈ s), this is, SAT (Σ′ ∪ cm) ⊆
SAT (Σ′), and SAT (Σ′ ∪ cm) = SAT (Σ′) − {s ∈ SAT (Σ′) : s falsifies cm}. Let
Y = Σ′ ∪ {(y1−εm

m−1) ∧ (y1−δm
m)}, µ(Y) is computed as a chain with two unitary

clauses, then:

#SAT (Σ) = µ(Σ′) − µ(Y) = µ(Σ′) − µ(Σ′ ∧ (y1−εm
m−1) ∧ (y1−δm

m)) (3)

Example 2 Let Σ = {ci}6
i=1 = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x5, x6},

{x6, x1}} be a monotone 2-CF which represent a cycle GΣ=(V ,E). Note that
|υ(ci)∩ υ(ci+1) |= 1, i=1,...,5. Let G′ = (V, E′) where E = E′ ∪ {c6} this is,
the new graph G′ is Σ minus the edge c6. As G′ is a chain graph with 6 nodes
then #SAT (G′) = α6 + β6 = 13 + 8 = 21. While the computing of µ(Y) is
given by the series: (0,1)→(1,0)→(1,1)→(2,1)→ (3,2)→(5,3),obtaining as last
pair associated to µ(Y) the pair (0, 3). The pair associated to the last node of Σ
is (13, 8) − (0, 3) = (13, 5). And then #SAT (Σ) = 13 + 5 = 18.

1 2 3 4 5 6X XX XX X

(α1, β1) → (α2, β2) → (α3, β3) → (α4, β4) → (α5, β5) → (α6, β6)
(1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13, 8)
(0, 1) → (1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3)

⇒ (13, 8) − (0, 3) = (13, 5)

Fig. 1. Computing #SAT (Σ) when GΣ is a cycle

Case D:
Let GΣ be a constraint graph with independent cycles. Note that the combi-
nation of the previous procedures for free trees and cyles can be applied for
computing #SAT (Σ) if GΣ is a graph where the depth-first search generates
a free tree and a set of fundamental cycles, such that any fundamental cycle is
independent with any other fundamental cycle, that is, there are no common
vertices neither common edges among any pair of fundamental cycles.

Thus, the procedures presented here, for computing µ(Σ) being Σ a Boolean
formula in 2-CF and where GΣ is a cycle, a chain, a free tree, or a free tree
union independent cycles, each one runs in linear time over the length of the
given formula, and they have a complexity time of O(m + n).

The class of Boolean formulas F such that its depth-first search builds a
free tree and a set of fundamental independent cycles, such class conforms a

new polynomial class for #2-SAT. This new class is a superclass of (2, 2µ)-CF,
and it has not restriction over the number of occurrences of a variable over the
formulas, although (2, 3µ)-CF is a #P -complete problem.

4. A Polynomial Graphical Reduction for Graphs with
Intersected Cycles

When the constraint graph GΣ of a Boolean formula Σ has intersected cyles to
compute the number of models of Σ is done using computing threads. A main
thread, denoted by Lp, is associated to the spanning tree of the graph, this
thread is always active until all the process finishes.

When a fundamental cycle is processed we have to start new computing
threads, one new thread for each one of the active threads so, the resulting
number of active threads is twice than the previous one. The general procedure
for counting the number of models in GΣ is similar to the case (C) of previous
chapter, we traversing GΣ in depth-first search. A pair (αi, βi) is associated to
each node vi when it is visited by first time. At the beginning of the procedure,
the main thread Lp is open, and new threads will be opened according to the
start nodes of a cycle.

When the traversing by a cycle is finished then its respective threads (as-
sociated to this cycle) are closed and the last pair obtained (α, β) is changed
to the pair (0, β) which has to be substracted to the corresponding pairs of the
remaining theads. This process is illustrated in Figure 3.

The procedure works over graphs G of degree 3. For example, consider the
graph G on Figure 2, the depth-first search over G builds the graph on Figure 3,
which is processed as we mention previously. But, if the graph G were transform-
ing to the equivalent graph on Figure 4, then the number of computing threads
is smaller.

The main purposes of the reduction between equivalent graphs is to build a
graph where two intersected cycles has a common start node, and then each new
thread carry on the values for both cycles at the same time, avoiding with this,
to duplicate the number of computing threads. As we can see in Figure 4.

This polynomial graphical reduction is sketching in the following procedure.
Procedure Graph Reduction
Input: The graph G built by the depth-first search, and where ∆(G) = 3
Output: A new graph with cycles with an initial common node

Procedure:

1. if there are no intersected cycles then apply the case D
2. if the cycles start with a common node then exit
3. Let C1 and C2 be the intersected cycles
4. If both cycles do not have a common edge then exit
5. Begin the traversing by the back edge of C1 and continue traversing by the

nodes of degree 2 of the cycle C1

6. when arrive to the other node of the back edge (the node of degree 3)

 2

3 4

 5 6

 1

Fig. 2. An initial graph G

 2 3 4 5 6

C1

C2

 1

Nodes : Node1 Node2 Node3 Node4 Node5 Node6

Lp : (1, 1) → (2, 1) → (3, 2) → (5, 3)
C1 : (0, 1) → (1, 0) → (1, 1) → (2, 1) closed

C2 → Lp : (0, 2) → (2, 0)
C2 → C1 : (0, 1) → (1, 0) closed

Lp : (5, 3) − (0, 1) = (5, 2) → (7, 5) → (12, 7)
C2 : (2, 0) − (0, 1) = (2, 0) → (2, 2) → (4, 2) closed

⇒ (12, 7) − (0, 2) = (12, 5)

Fig. 3. Computing #SAT (GΣ) with intersected cycles

 14 3 6 5

C1

C2

 2

Nodes : Node4 Node5 Node6 Node3 Node2 Node1

Lp : (1, 1) → (2, 1) → (3, 2) → (5, 3)
C1&C2 : (0, 1) → (1, 0) → (1, 1) → (2, 1) C1 is closed

Lp : (5, 3) − (0, 1) = (5, 2) → (7, 5) → (12, 7)
C2 : (2, 1) − (0, 1) = (2, 0) → (2, 2) → (4, 2) closed

⇒ (12, 7) − (0, 2) = (12, 5)

Fig. 4. Computing #SAT (GΣ) with intersected cycles and with a common start node

7. traversing by the back edge of the cycle C2

8. continue traversing by the nodes of degree 2 until arrive to the first node of
the total traversing

9. added the lack edges of the original graph G

This polynomial procedure builds a new graph where the original intersected
cycles are rewriter with a common start node.

5. Conclusions

We present different linear procedures to compute #SAT for subclasses of 2-CF.
Let Σ be a 2-CF where GΣ (the constraint undirected graph of Σ) is acyclic
or, a free tree union independent cycles, or if there exists intersected cycles they
have at most one egde common, in all those cases, we show that #SAT (Σ) is
computed in polynomial time over the length of the formula Σ.

This new polynomial classes of 2-CF contains to the class (2, 2µ)-CF, and it
does not have restrictions over the number of occurrences of a variable in the
given formula, although (2, 3µ)-SAT is a #P -complete problem. Then, this new
polynomial classes for #2-SAT brings us a new paradigm for solving #SAT, and
would be used to incide directly over the complexity time of the algorithms for
other counting problems.

References

1. Creignou N., Hermann M., Complexity of Generalized Satisfiability Counting Prob-
lems, Information and Computation 125, (1996), 1-12.

2. Darwiche Adnan, On the Tractability of Counting Theory Models and its Appli-
cation to Belief Revision and Truth Maintenance, Jour. of Applied Non-classical
Logics, 11(1-2), (2001), 11-34.

3. De Ita G., Polynomial Classes of Boolean Formulas for Computing the Degree of
Belief, Advances in Artificial Intelligence LNAI 3315, 2004, 430-440.

4. De Ita G., Tovar M., Applying Counting Models of Boolean Formulas to Proposi-
tional Inference, Advances in Computer Science and Engineering, Vol 19, 2006, pp.
159-170.

5. Roth D., On the hardness of approximate reasoning, Artificial Intelligence 82,
(1996), 273-302.

6. Russ B., Randomized Algorithms: Approximation, Generation, and Counting, Dis-
tingished dissertations Springer, 2001.

7. Vadhan Salil P., The complexity of Counting in Sparse, Regular, and Planar Graphs,
SIAM Journal on Computing, Vol. 31, No.2, (2001), 398-427.

