
Makine Öğrenmesi Yöntemlerini Kullanarak
Özellik Kıskançlığının Otomatik Saptanması

Zeynep ÖZKALKAN1, Kübra AYDİN2, Hacı Yakup TETİK3, and Rahime
Belen SAĞLAM4

1 Ankara Yıldırım Beyazıt Üniversitesi,Ankara, Türkiye
zeynep.ozkalkan@tiga.com.tr

2 Ankara Yıldırım Beyazıt Üniversitesi,Ankara, Türkiye kubra.aydin@tiga.com.tr
3 Ankara Yıldırım Beyazıt Üniversitesi,Ankara, Türkiye haci.tetik@tiga.com.tr

4 Ankara Yıldırım Beyazıt Üniversitesi,Ankara, Türkiye rbsaglam@ybu.edu.tr

Özet Son yıllarda yazılım sistemlerindeki kusurlu kod ile ilgili çalışma-
lar kod kalitesinin iyileştirilmesi amacıyla araştırmacıların önemli ölçüde
dikkatini çekmiştir. Kusurlu kod, kötü tasarım ve hata eğilimini artıran
ve kodun anlaşılmasını zorlaştıran uygulama belirtileridir. Bu çalışmada
yaygın olarak ortaya çıkan kusurlu kodlar arasında, özellik kıskançlığını
(feature envy) seçtik ve bu kusuru tanımlamak için bir çatı geliştirdik.
Özellik kıskançlığı, bir metodun kendi bulunduğu sınıftan çok başka sı-
nıfla ilgilenmesi durumu olarak tanımlanabilir. Aynı sınıfta tanımlanan
metodların yüksek uyumlu olması ve aynı sınıfta bulunan üyelerle aktif
bir şekilde etkileşim halinde bulunması beklenirken diğer sınıflarla daha
az etkileşime sahip olmasının beklenmesi fikrine dayanır. Diğer sınıflarla
etkileşimi çok büyük olan metodlar düzgün olmayan uyumluluk ve ba-
ğımlılığa neden olurlar. Çalışmamızda problemi bir sınıflandırma görevi
olarak modelledik ve kod satır sayısı , dahili ve harici metodlara yapılan
çağrıların sayısı gibi yapısal özelliklere farklı makine öğrenimine dayalı
sınıflandırma algoritmaları uyguladık. Elde edilen sonuçlara dayanarak
makine öğrenmesi tekniklerinin özellik kıskançlığının tahmin etme yete-
ğine sahip olduğunu ve bu amaçla yazılım geliştiricileri ve araştırmacılar
tarafından kullanılabilceğini gözlemledik.

Keywords: Makine öğrenmesi · Kusurlu kod · Özellik Kıskançlığı · Sı-
nıflandırma.



Automatic Detection of Feature Envy using
Machine Learning Techniques

Zeynep ÖZKALKAN1, Kübra AYDİN2, Hacı Yakup TETİK3, and Rahime
Belen SAĞLAM4

1 Ankara Yıldırım Beyazıt University,Ankara, Turkey zeynep.ozkalkan@tiga.com.tr
2 Ankara Yıldırım Beyazıt University,Ankara, Turkey kubra.aydin@tiga.com.tr
3 Ankara Yıldırım Beyazıt University,Ankara, Turkey haci.tetik@tiga.com.tr

4 Ankara Yıldırım Beyazıt University,Ankara, Turkey rbsaglam@ybu.edu.tr

Abstract. In recent years, the studies related to code smells in software
systems have received significant attentions from the researchers with the
aim of improving the code quality. Code smells are symptoms of poor
design and implementation choices that increase fault-proneness and de-
crease code comprehension. Among the commonly occurring code smells,
we have picked feature envy and developed a framework to identify it.
Feature envy can be described as a method that is more interested in
another class than it is actually in. It is based on the idea that methods
defined in the same class must be highly cohesive and expected to actively
interact with other members in the same class while having less interac-
tions with other classes. Methods that highly interact with other classes
cause improper cohesion and coupling. We have modeled the problem as
a classification task and employed different machine learning based clas-
sification algorithms on structural features like LOCs, number of calls
made to the method internally and externally etc. Based on the results
obtained, we observed that the machine learning techniques have the
ability for predicting feature envy and can be used by software practi-
tioners and researchers for this purpose.

Keywords: Machine Learning · Code Smell · Feature Envy · Classifica-
tion.

1 Introduction

Today, the need for delivering high quality and maintainable software has in-
creased due to the growing complexity and dependency of the software systems.
However, it is a non-trivial task to keep quality of software systems stable. Struc-
tural degradation that appear in the form of modules, components and interfaces
not acting in accordance to the design-time architecture is inevitable. There are
several undesirable characteristics, which are also called code smells, that may
appear over time within a software project. Code smells have been defined by
Fowler [9] as symptoms of poor design and implementation choices that may
originate from activities performed by developers while in a hurry, or by simply



making poor design choices. Most common code smells can be given as Blob,
Spaghetti Code, Functional Decomposition, Data Class, Shotgun Surgery and
Feature Envy. In this study, we focused on Feature Envy (also known as In-
tensive Coupling or Disperse Coupling) which appears when a method accesses
the data of another object more than its own data or calls more methods from
other classes than from itself. The method might be heavily using attributes
from one or more external classes, directly or via accessor operations. Since such
a method is tightly coupled to other classes, it seems to be misplaced in the
current one and should be identified and corrected by the development team
as early as possible for maintainability and evolution considerations. This smell
can be removed via Move Method refactoring operations which is achieved by
creating a new method in the class that uses the method the most, then mov-
ing code from the old method to there. However, it is hard to identify such a
code smell manually. Although human involvement reduces uncertainties in de-
tection process, manual techniques are infeasible for large software systems. In
addition to this, it has been argued in the literature that code smells could be
subjectively interpreted by humans and even by the automated tools [7]. Even
though well-known object-oriented metrics are computed, detection rules may
differ or different thresholds can be used for the same metrics. These thresh-
olds can change the number of code smells found and can decrease accuracy
by detecting false positive smells. Such rules based approaches do not consider
the information related to the domain, the size and the design of the system
analyzed. For all these reasons, machine learning offers better targeted solutions
subjective to the particular user or community by supporting a learn-by-example
process [8].

In this study, we have modeled the problem as a classification task and em-
ployed different machine learning based classification algorithms on structural
features extracted from the source code. It has been observed that the machine
learning based classifiers have the potential to be used for this purpose.

2 Related Work

Code smells have been identified by Fowler et. al in 1999 as low-level design
flaws related to the implementation of functionalities within the components [9].
They identified 22 code smells and explained how to fix them. Since then several
researchers developed code smell detection techniques that perform static or dy-
namic analysis to achieve this goal. Static analysis include manual approaches,
metrics based, symptom based, probabilistic based, visualization based, cooper-
ative based and search based approaches. Recent studies do not rely on manual
techniques since they are error prone and time consuming.

Metric-based approaches are based on defining symptoms that characterize
smells and proposing set of metrics to measure these symptoms. Having this
information, thresholds are defined to classify the class as affected or not by the
defined symptoms. One of those studies was proposed by Marinescu with the
aim of finding deviation from good design principles and heuristics [13]. The



researchers identified symptoms and proposed some metrics characterizing the
smells.

Another metric-based study was conducted by Munro for detection of two
smells namely Lazy Class and Temporary Field [14]. A set of thresholds is applied
to the measurement of some structural metrics to identify those smells. In the
study three metrics have been used: number of methods, line of code, weight
methods per class, and coupling between objects.

Kwankamol proposed a metric-based technique to detect Feature Envy based
on the idea that methods defined in the same class must be highly cohesive and
actively interact with other members in the same class (internal interactions)
while having less interactions with other classes (external interactions) [15]. The
researcher checked whether external interactions were stronger than internal
interactions by a scoring feature envy factor based on number of internal and
external method calls and reported promising results. Even though metric-based
studies dominate the literature for code smell detection, they have the difficulty
to define threshold values for metrics manually. In order to address the limita-
tions of metric-based studies M. Kessentini et al. used heuristic search algorithms
such as Harmony Search, Particle Swarm Optimization, and Simulated Anneal-
ing to define metrics and thresholds automatically. They leveraged the knowledge
from previously manually inspected projects in order to detect design defects to
generate new detection rules where the detection rules are automatically derived
by an optimization process[11].

Instead of structural features that are characterized by source code metrics,
Palomba et. al. made use of features characterized by how source code changes
over time [17]. In this context, they defined Feature Envy as a method of a class
that tends to change more frequently with methods of other classes rather than
with those of the same class. They proposed an approach to detect smells based
on change history information mined from versioning systems.

Kumar and Chhabra proposed a dynamic approach for feature envy detection
by considering the actual execution performance instead of the static behavior
[12]. It has been concluded that use of dynamic analysis was advantageous in
detection of feature envy.

Machine learning based approaches for code smell detection are highly lim-
ited. Kaur et al. used support vector machine algorithm for detecting different
four types of code smells which are God Class, Feature Envy, Data Class and
Long Method [10]. They used polynomial kernel because it works with non -
linearly separable data. They reported high precision and recall values. In our
study, in addition to SVM, we have also applied naive bayes and decision tree
for feature envy detection. Some other machine learning based classifiers used
for detecting code smells are random forest, J48, support vector machine etc
[8]. The researchers worked on four common code smells which are Data Class,
Large Class, Feature Envy and Long Method. They analyzed 74 software sys-
tems, with several manually validated code smell samples. It has been reported
that the highest performances were obtained by J48 and Random Forest, while
the worst performance was achieved by support vector machines.



3 Dataset

We have conducted our experiments on two open source projects that are given
in Table II. Fiware is framework of open source platform components which
can be assembled together and with other third-party platform components to
accelerate the development of Smart Solutions in multiple industries[2]. We have
covered the Authorization PDP Generic Enabler (formerly called Access Control
GE) which provides an API to get authorization decisions based on authorization
policies [1].

Apache Tomcat is the second project covered in this study .It is an open
source implementation of some specifications of Java Community Process and
has been widely used as a dataset for several similar studies. We applied JSpirit[3]
and JDeodorant[6] which are publicly available Eclipse plug-ins that have been
widely used to identify code smells in the literature [17] [16]. We have validated
code smells detected by the tools manually and labeled the data for the classifi-
cation task accordingly.

We worked on a limited dataset in which we have 20 methods 10 of which
are labeled as feature envy. We have covered 15 methods in the training set and
5 methods in the test set. In order to overcome the limitation of the data size,
we tested each model using 5-fold cross validation.

Table 1. Dataset properties

System Version Line of Codes Number of class
Apache Tomcat 7.0.2 283289 1538

Fiware AuthZForce 5.4.2 11078 42

Table 2. Project Analyze Tools

Project Tool Name
Apache Tomcat JDeodarant
AuthZForce JDeodarant, JSpIRIT

4 Proposed Work

This paper proposes a technique to detect Feature Envy for Java projects us-
ing machine learning based classifiers. For this purpose we have implemented a
framework to parse the source code and transform it into abstract syntax tree
(AST) using Plyj[4], a library written in Python which is used as a Java 7 parser
for parsing the source code. AST is tree version of the syntactical structure source



code in any programming language which enables to calculate some structural
metrics such as line of code (LOC) or number of method calls. As mentioned
above, Feature envy is a problem of improper coupling between classes and low
cohesion within the class. Consequently the number of external and internal
method calls and the number of external and internal attribute access have been
calculated to uncover relationships between methods. We have also computed
complexity of the method with the consideration that external method calls are
more acceptable for the methods with high complexity whereas they can be con-
sidered as feature envy for low complex methods. We made use of a library called
Lizard[5] for this purpose which is a free open source library for complexity anal-
ysis supporting many programming languages. LOC is another feature we cover
in our models.

We have applied three classification algorithms which are naive bayes, de-
cision tree and support vector machines and evaluated the results using recall,
precision, and accuracy.

5 Experimental Results

Four structural features have been used to detect detect feature envy methods;
code complexity, line of code (LOC), number of internal method call and the
number of external method call. Each method has been represented by a vector
with those four features. We also checked the number of internal and external
attribute accesses, however, we did not cover it since the values of this feature
were zero for all the methods in the dataset disregarding the classes they belong
to.

We computed the average accuracy, precision and recall values for the ex-
periments conducted using 5-fold cross validation. The results are displayed in
Table 3.

Table 3. Experimental Results

SVM Decision Tree Naive Bayes
ACCURACY 0.733 0.467 0.6
PRECISION 0.8 0.633 0.667
RECALL 0.867 0.767 0.867

As observed from Table 3. SVM outperforms the other classifiers which is in
line with the findings in [10]. The results of SVM show that proposed approach
has a potential to systematically and efficiently detect feature envy methods in
an object oriented Java based systems.



6 Conclusion

Detection of code smells is a hard task for large software projects, however they
need to be identified to improve quality of the source code and to simplify mainte-
nance. In this paper, we proposed a machine learning technique to detect Feature
Envy. Several experiments has been conducted on two open source projects to
show how classifiers work for the detection of Feature Envy. The results show
that SVM outperforms naive bayes and decision tree. In future, we are planning
to generalize this technique on different code smells using different features and
different machine learning algorithms on projects which are bigger in terms of
size and number of developers. We are also planning to extend the model to
suggest appropriate refactoring techniques for the detected code smells.

References

1. Authorization pdp - authzforce | fiware catalogue. https://catalogue-
server.fiware.org/enablers/authorization-pdp-authzforce. (Accessed on
06/18/2018).

2. Home - fiware. https://www.fiware.org/. (Accessed on 06/18/2018).
3. Jspirit - santiago vidal. https://sites.google.com/site/santiagoavidal/projects/jspirit.

(Accessed on 06/18/2018).
4. musikk/plyj: A java parser written in python using ply.

https://github.com/musiKk/plyj. (Accessed on 06/18/2018).
5. terryyin/lizard: A simple code complexity analyser without caring about the

c/c++ header files or java imports, supports most of the popular languages.
https://github.com/terryyin/lizard. (Accessed on 06/18/2018).

6. Welcome to jdeodorant. https://users.encs.concordia.ca/ nikolaos/jdeodorant/.
(Accessed on 06/18/2018).

7. Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic detection
of bad smells in code: An experimental assessment. Journal of Object Technology,
11(2):5–1, 2012.

8. Francesca Arcelli Fontana, Mika V Mäntylä, Marco Zanoni, and Alessandro
Marino. Comparing and experimenting machine learning techniques for code smell
detection. Empirical Software Engineering, 21(3):1143–1191, 2016.

9. Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: improving the design of existing code. Addison-Wesley Professional, 1999.

10. Amandeep Kaur, Sushma Jain, and Shivani Goel. A support vector machine based
approach for code smell detection. In Machine Learning and Data Science (MLDS),
2017 International Conference on, pages 9–14. IEEE, 2017.

11. Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Manuel Wimmer.
Search-based design defects detection by example. In International Conference on
Fundamental Approaches to Software Engineering, pages 401–415. Springer, 2011.

12. Swati Kumar and Jitender Kumar Chhabra. Two level dynamic approach for
feature envy detection. In Computer and Communication Technology (ICCCT),
2014 International Conference on, pages 41–46. IEEE, 2014.

13. Radu Marinescu. Detection strategies: Metrics-based rules for detecting design
flaws. In Software Maintenance, 2004. Proceedings. 20th IEEE International Con-
ference on, pages 350–359. IEEE, 2004.



14. Matthew James Munro. Product metrics for automatic identification of" bad smell"
design problems in java source-code. In Software Metrics, 2005. 11th IEEE Inter-
national Symposium, pages 15–15. IEEE, 2005.

15. Kwankamol Nongpong. Feature envy factor: A metric for automatic feature envy
detection. In Knowledge and Smart Technology (KST), 2015 7th International
Conference on, pages 7–12. IEEE, 2015.

16. Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and Kalyanmoy
Deb. Multi-criteria code refactoring using search-based software engineering: An
industrial case study. ACM Trans. Softw. Eng. Methodol., 25(3):23:1–23:53, June
2016.

17. Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys
Poshyvanyk, and Andrea De Lucia. Mining version histories for detecting code
smells. IEEE Transactions on Software Engineering, 41(5):462–489, 2015.


