
UML Modelleme Araçlarının Pratik Kullanım
için Analizi

Mert Ozkaya1 and Ferhat Erata2

1 Yeditepe Üniversitesi , Ataşehir, İstanbul
mozkaya@cse.yeditepe.edu.tr

2 UNIT Bilgi Teknolojileri R&D Ltd., Bornova, Izmir
ferhat.erata@unitbilisim.com

Özet. Günümüzde, Unified Modeling Language(UML) pratisyenler tarafından
en sık tercih edilen yazılım sistemi modelleme ve tasarlama notasyonu olarak
kabul edilmektedir. UML, aynı zamanda, birçok yazılım modelleme aracı tarafın-
dan desteklenmektedir, ve bu araçlar sayesinde, pratisyenler yazılım sistem-
lerini kolayca UML notasyonunu kullanarak modelleyebilir ve analiz, yazılım
kodu üretme, ve işbirliği gibi birçok faydalı değişik işlemler gerçekleştirebilirler.
Bu çalışmada, tanınan 11 farklı UML modelleme aracını pratisyenlerin UML’i
benimsemeleri açısından önemli olduğunu düşündüğümüz bir grup gereksinim
bakımından analiz ettik. Bu gereksinimler başlıca, modellerin tasarımı, model
analizi, modelden kod üretme, iş-birliği halinde modelleme, ve genişletilebilir-
lik olmaktadır. Model tasarımı gereksinimi, modelleme araçlarının UML diya-
gramlarına olan destekleri, yazılım modelleme bakış-açılarına olan destekleri,
ve büyük ve karmaşık yazılım modellerinin tasarımına olan destekleri açıların-
dan ele alınmaktadır. Model analizi gereksinimi, simülasyon ve doğrulama (hem
önceden tanımlanmış doğrulama hem de kullanıcı tanımlı doğrulama) gereksin-
imlerine olan destek bakımından incelenmektedir. İş-birliği halinde modelleme
gereksinimi ise, senkron ve asenkron olarak çoklu kullanıcı desteği, görev yöne-
timi, paydaşlar arası iletişim, ve versiyonlama destekleri açısından incelenmek-
tedir. Çalışmamızın sonuçları ile, UML modelleme araçlarının güçlü ve zayıf
yönlerinin kolayca anlaşılması ve aynı zamanda hangi UML modelleme aracının
(ya da araçlarının) göz önünde bulundurulan gereksinimler bakımından daha iyi
olduğunun ve hangi gereksinimlerin az yada çok ilgi gördüğünün ortaya çıkarıl-
ması hedeflenmektedir.

Anahtar Kelimeler. UML, Modelleme Araçları, Analiz, Otomatik kod üretme,
İş-birliği halinde modelleme, Genişletilebilirlik



Analysing UML Modeling Tools for Practical Use

Mert Ozkaya1 and Ferhat Erata2

1 Yeditepe University, Atasehir, Istanbul
mozkaya@cse.yeditepe.edu.tr

2 UNIT Information Technologies R&D Ltd., Bornova, Izmir
ferhat.erata@unitbilisim.com

Abstract. Unified Modeling Language (UML) is nowadays one of the
top used software modeling languages by practitioners. UML is supported
by many modeling tools through which practitioners can use UML for
modeling their software systems and also perform many useful opera-
tions such as analysis and code generation. In this paper, we analysed
11 different well-known UML modeling tools for a set of requirements
that we believe are highly important for the practical adoption of the
tools in software modeling. These requirements are concerned with mod-
eling, analysis, code-generation, user-collaboration, and tool extensibil-
ity. Modeling herein is considered in terms of the supported UML di-
agrams, viewpoint management, and large view management. Analysis
is considered in terms of the support for simulation and validation (i.e.,
the support for pre-defined and user-defined rules). Also, collaboration
is considered in terms of multi-user support for the synchronous and
asynchronous collaboration, task management, communication, and ver-
sioning. The analysis results of the UML tools shed light on which UML
modeling tool(s) provide better support in terms of those requirements
considered and which requirement(s) are shown a lack of interest by the
modeling tools.

Keywords: UML, Modeling Tools, Analysis, Code Generation, Collab-
oration, Extensibility

1 Introduction

Unified Modeling Language (UML) [6, 7, 18] has been proposed in the early
nineties as the notation set for specifying and designing software systems. Nowa-
days, UML is considered as the de-facto standard for software modeling and
widely used by practitioners in several industries [11, 13]. UML offers various
types of visual diagrams that can be used for modeling software systems from
different perspectives. That is, practitioners may use UML diagrams for docu-
menting the logical structure of systems, behaviours and interactions, software
architectures, the physical and deployment structures. The UML diagrams may
also be categorised as the static and dynamic diagrams where the static diagrams
are concerned with the structural modeling of systems from different perspectives
and the dynamic diagrams are concerned with the behavioural modeling of sys-
tems. The structural diagrams are represented with UML’s class diagram, object



Analysing UML Modeling Tools for Practical Use 3

diagram, composite structure diagram, component diagram, package diagram,
and deployment diagram. The dynamic diagrams are represented with UML’s
sequence/communication diagram, state machine diagram, timing diagram, and
activity diagram.

Several software modeling tools have been developed for UML, through which
practitioners can design their software systems in UML and perform many other
operations such as analysis, code generation, team work, task management, etc.
However, it is not so easy for practitioners to understand which UML software
modeling tool(s) are better for their needs. Therefore, in this paper, we aim
at analysing the well-known UML tools for a set of requirements that we be-
lieve are highly important for practitioners. The UML software modeling tools
that we consider in our analysis are Visual Paradigm3, MagicDraw4, StarUML5,
Modelio6, Enterprise Architect7, ArgoUML 8, BoUML 9, Obeo UML Designer10,
Eclipse Papyrus11, IBM Rational Rhapsody12, Umbrello UML13. The require-
ments for which we plan to analyse those UML tools are concerned with the
(i) modeling capabilities, (ii) analysis capabilities, (iii) code-generation, (iv)
collaboration, and (v) extensibility.

Modeling. The tool support for modeling software systems is considered in
terms of three requirements: (i) the supported UML diagrams, (ii) the view-
point management, and (iii) large view management. The supported UML dia-
grams aid in understanding the static and dynamic diagrams of UML that the
UML tools support. The software viewpoints are intended for modeling soft-
ware systems from different perspectives that each deal with a particular aspect
of the software system modeled. So, the viewpoint management management
is concerned with understanding the different viewpoints that the tools sup-
port for the modeling of software systems using UML. Kruchten [9] has initially
proposed the logical, process, development, and physical viewpoints. Later on,
Rozanski et al. [17] have proposed a comprehensive work on software viewpoints
and proposed the functional, information, concurrency, development, physical,
deployment, and operational viewpoints. Lastly, the large view management re-
quirement is concerned with modeling large software systems with many com-
ponents that are hierarchically composed of other components in an effective
way for the eased understandability and analysis. So, herein, the UML modeling
tools are intended to be analysed for determining whether they offer any means
of handling this complexity. For instance, it would be desirable to specify the

3 https://www.visual-paradigm.com/
4 https://www.magicdraw.com/
5 http://staruml.io/
6 https://www.modelio.org/
7 http://sparxsystems.com/products/ea/
8 http://argouml.tigris.org/
9 http://www.bouml.fr/

10 http://www.umldesigner.org/
11 https://www.eclipse.org/papyrus/
12 https://www.ibm.com/us-en/marketplace/rational-rhapsody
13 https://umbrello.kde.org/

https://www.visual-paradigm.com/
https://www.magicdraw.com/
http://staruml.io/
https://www.modelio.org/
http://sparxsystems.com/products/ea/
http://argouml.tigris.org/
http://www.bouml.fr/
http://www.umldesigner.org/
https://www.eclipse.org/papyrus/
https://www.ibm.com/us-en/marketplace/rational-rhapsody
https://umbrello.kde.org/


4 Ozkaya et al.

sub-architecture for any complex component by clicking on the component that
opens up a new sub-editor for the sub-architecture modeling.

Analysis. We consider model analysis in two aspects: simulation and vali-
dation. The model simulation is concerned with executing software system be-
haviours specified using UML’s dynamic diagrams (e.g., state diagram and ac-
tivity diagram) and analysing whether the system behaves as expected or not
(e.g., taking the system actions in the right sequence). The model validation is
concerned with checking the UML models against the well-definedness rules of
UML (e.g., model completeness, correctness, consistency, and compatibility) and
any other rules that practitioners deem important for their domain.

Code-generation. Code-generation is concerned with the ability of trans-
forming UML models into software implementation. So, practitioners can au-
tomatically have the executable software code that precisely reflect their UML
models.

Collaboration. Collaboration is concerned with the collaborative modeling
of software systems that promote fast and high-quality modeling. We consider
collaboration in terms of multi-user support for synchronous (i.e., at the same
time) and asynchronous (i.e., offline) collaborations, (i) task management (e.g.,
assigning/removing tasks to/from the developers, prioritising the tasks, etc.),
(ii) communications among stakeholders (e.g., instant messaging for discussing
over UML diagrams), and (iii) versioning.

Extensibility. Extensibility is concerned with the ability of modifying the
software tool with some extra capabilities that practitioners need (e.g., translator
for some additional programming languages, translators for model checker tools,
new tool windows, and menu bars).

2 Research Methodology

In this study, 11 different UML modeling tools are considered, which have been
determined from the list of the UML modeling tools maintained by Wikipedia14.
Due to the space limit, we were not able to consider every single UML modeling
tool in the list, and instead, focussed on the UML tools that are highly popular
among the practitioners and academics. Indeed, based on wide our experiences on
UML modeling [12,14] and the connections that we maintain with the industry
and academia, the UML modeling tools considered in this study are among the
top preferred tools used for the UML-based software modeling by practitioners
and academics.

To analyse the UML modeling tools, we considered Lago et al.’s language
requirements [10], which are grouped into the language definition, language
features, and tool support. In this study, we focussed on the tool support re-
quirements, which are concerned with the large-view management, the model
analysis, code-generation, collaboration, and extensibility. Moreover, we also ex-
tended the list with the support for UML diagram types and multiple-viewpoint

14 The list of the existing UML modeling tools: https://en.wikipedia.org/wiki/List_of_Unified_
Modeling_Language_tools

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools


Analysing UML Modeling Tools for Practical Use 5

Table 1. The UML tools and their support for the static UML diagrams

UML Tools Class
Diagram

Package
Diagram

Object
Diagram

Component
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Profile
Diagram

Visual Paradigm Yes Yes Yes Yes Yes Yes Yes
MagicDraw Yes Yes Yes Yes Yes Yes Yes
StarUML Yes Yes Yes Yes Yes Yes Yes
Modelio Yes Yes Yes Yes No Yes No
Enterprise
Architect Yes Yes Yes Yes Yes Yes Yes

ArgoUML Yes No No No No Yes Yes
BoUML Yes No Yes Yes No Yes Yes
Obeo UML
Designer Yes Yes Yes Yes Yes Yes Yes

Eclipse Papyrus Yes Yes Yes Yes Yes Yes Yes
Rational
Rhapsody Yes Yes Yes Yes Yes Yes Yes

Umbrello UML Yes No Yes Yes No Yes No

Table 2. The UML tools and their support for the dynamic UML diagrams

UML Tools Activity
Diagram

Sequence
Diagram

Use Case
Diagram

State
Diagram

Comm.
Diagram

Timing
Diagram

Visual Paradigm Yes Yes Yes Yes Yes Yes
MagicDraw Yes Yes Yes Yes Yes Yes
StarUML Yes Yes Yes Yes Yes No
Modelio Yes Yes Yes Yes Yes No
Enterprise Architect Yes Yes Yes Yes Yes Yes
ArgoUML Yes Yes Yes Yes Yes No
BoUML Yes Yes Yes Yes Yes No
Obeo UML Designer Yes Yes Yes Yes Yes No
Eclipse Papyrus Yes Yes Yes Yes Yes Yes
Rational Rhapsody Yes Yes Yes Yes Yes Yes
Umbrello UML Yes Yes Yes Yes Yes No

management support. Indeed, these two requirements are also highly crucial for
practitioners and, in our experience, not all the UML modeling tools provide full
support for them.

In our analysis of the tools for the pre-determined sub-set of requirements,
we initially determined the resources for each tool that consist of the tool web-
site, user-manual, tutorials, and any publications (if available). Each of us has
analysed the tools using the resources available separately and recorded the
results in an excel file. Then, we compared our analysis results to determine
any discrepancies. For each discrepancy determined, we re-analysed the tools in
question and conducted discussions together until no more conflicts left.

3 The Summary of the Analysis Results

3.1 Modeling

In Tables 1 and 2, the UML tools are analysed with regard to their support for
the UML’s static and dynamic diagrams respectively. Note that the static and
dynamic UML diagrams have been determined from UML’s OMG specification
15. Concerning the static diagrams, all the UML tools support the UML class and
deployment diagrams. UML’s component and object diagrams are only omitted
by ArgoUML. The rest of the static UML diagrams are just omitted a few UML

15 UML’s OMG specification version 2.5.1 can be accessible via the following link: https://www.
omg.org/spec/UML/About-UML/.

https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/UML/About-UML/


6 Ozkaya et al.

Table 3. The UML tools and their support
for the viewpoint management

UML Tools Viewpoint
Management

Visual Paradigm Yes
MagicDraw No
StarUML Yes
Modelio No
Enterprise Architect Yes
ArgoUML No
BoUML No
Obeo UML Designer No
Eclipse Papyrus No
Rational Rhapsody Yes
Umbrello UML No

Table 4. The UML tools and their support
for the large-view management

UML Tools Components Connectors
Visual Paradigm Yes Yes
MagicDraw Yes No
StarUML Yes Tags
Modelio Yes Attributes
Enterprise Architect Yes Constraints
ArgoUML No No
BoUML No No
Obeo UML Designer No No
Eclipse Papyrus No No
Rational Rhapsody Yes No
Umbrello UML No No

tools. Concerning the dynamic diagrams, all the UML tools support the activity,
sequence, use case, state, and communication diagrams. However, many UML
modeling tools ignore the UML timing diagram.

As shown in Table 3, the viewpoint management is supported by a few UML
tools only. Enterprise Architect offers the use-case, dynamic (i.e., behaviour),
class/component (i.e., logical), and deployment views for the UML modeling of
software systems. Also, Enterprise Architect allows practitioners to create their
own views that meet their domain constraints better. IBM Rational Rhapsody
offers the use case, requirement, component, unit, and properties views. Also,
Rational Rhapsody offers some add-ons for modeling software systems from ad-
ditional viewpoints, including operational, strategic, acquisition, and technical
viewpoints. Visual Paradigm offers practitioners a set of pre-defined viewpoints
that are specified in terms of the stakeholders involved, the purpose of the view-
point, the concerns, the particular aspects of the software architecture, and any
visual elements supported. Practitioners may modify the viewpoints, e.g., intro-
ducing new types of stakeholders. Also, practitioners may associate their models
with a viewpoint to restrict the access to the model with the viewpoint stake-
holders only. Lastly, StarUML adopts Kruchten’s 4+1 view model and promotes
the specifications of software systems in terms of the logical, process, develop-
ment, and deployment aspects. Practitioners are offered with a different set of
notations for each view and also allowed to document any viewpoint-related
information textually.

The large-view management is supported by Visual Paradigm, MagicDraw,
Enterprise Architect, StarUML, Modelio and Rational Rhapsody via sub dia-
gramming. That is, for any system unit (e.g., component, class, package, in-
terface, activity, and state) specified, practitioners may click on it that opens
up a new sub-editor for specifying the internal structure of that element as a
new UML diagram. In Table 4, the large view management has been consid-
ered in terms of the component and connector units composing the systems.
Component herein may be perceived as any computational unit specified in a
UML model (e.g., class) and connector perceived as the point of interaction
between the components (e.g., the class associations). While the tools support
the management of large components, they mainly ignore the need for modeling
the large connector units. Indeed, connectors may represent complex interaction



Analysing UML Modeling Tools for Practical Use 7

Table 5. The UML tools and their analysis support

UML Tools Simulation Validation
Pre-defined Properties User-defined Properties

Visual Paradigm No No No

MagicDraw Yes Completeness, correctness,
and well-definedness rules OCL properties

StarUML No Well-definedness rules No
Modelio Well-definedness rules Module definition in Java
Enterprise Architect Yes Well-definedness OCL constraints
ArgoUML No No No
BoUML No No
Obeo UML Designer No Well-definedness rules Validation rules in Acceleo
Eclipse Papyrus No Well-definedness rules Validation rules in OCL

Rational Rhapsody Yes Completeness, correctness,
and well-definedness rules

Validation rules
in API

Umbrello UML No No No

Table 6. The UML tools and their collaboration support

UML Tools Multi-user Support Task Management Communication Versioning
Visual Paradigm -Sync. and async collaboration Yes Yes Cloud-based
MagicDraw -Sync. and async collaboration No Yes Cloud-based
StarUML No No No No
Modelio Sync. and async collaboration No No Server-based
Enterprise Architect -Sync. and async collaboration Yes Yes Server-based
ArgoUML No No No No
BoUML No No No No
Obeo UML Designer No No No No
Eclipse Papyrus -Sync. and async collaboration No No Server-based (GIT)
Rational Rhapsody -Sync. and async collaboration No No Server-based
Umbrello UML No No No No

mechanisms (e.g., adapters and distributors) that need to be modeled in terms
of sub-components and connectors. Only, Visual Paradigm offers the option for
attaching sub-diagrams for the connectors. StarUML and Modelio offer the spec-
ifications of mere attributes for the connectors. Enterprise Architect offers the
specifications of OCL constraints for connectors.

3.2 Analysis

Table 5 shows UML tools and their support for the model analysis, which are
considered in terms of the simulation and validation support. Note that the
validation support is considered in terms of the pre-defined validation rules and
user-defined rules. According to the results, Visual Paradigm and Umbrello do
not provide any support for the model simulation and validation. MagicDraw
and Enterprise Architect are the only UML tools that support the simulation
and analysis requirements together at the same time. Note Visual Paradigm
supports the simulation of behavioural models, which is however restricted with
the Business Process models and not applicable for UML diagrams.

The simulation requirement is supported by MagicDraw, Enterprise Archi-
tect, and Rational Rhapsody, which essentially allow practitioners to simulate
the behaviour of their software systems specified via the UML state diagram or
activity diagram. Concerning the model validation, all the UML tools (see Ta-
ble 5) support the pre-defined validation properties and at the same time allow
practitioners to formulate their own validation properties that can be checked
automatically - except StarUML. However, as given in Table 5, the notations
used for defining the user-defined validation properties differ among the tools.



8 Ozkaya et al.

Table 7. The UML tools and their code generation support

UML Tools Programming Languages

Visual Paradigm Java, C#, VB.NET, PhP, ODL, ActionScript, IDL, C++, Delphi, Perl, XML, Phyton,
ObjectiveC, Ada, Ruby

MagicDraw Java, C++, C#, Corba, WSDL, DDL, XML
StarUML Ruby, PhP, TypeScript, XMI, Phyton, C++, C#, Java
Modelio Java
Enterprise Architect Action Script, C, C#, C++ , Delphi, Java, PHP, Python, Visual Basic, Visual Basic .NET
ArgoUML Java, C#, C++, and PHP
BoUML Java, C, C++, Phyton, SQL, PhP, IDL
Obeo UML Designer Java
Eclipse Papyrus Java and C++
Rational Rhapsody Java, C, C++
Umbrello UML ActionScript„Ada, C++, C#, D, IDL, Java, JavaScript, MySQL and Pascal.

3.3 Collaboration

Table 6 shows the UML Tools and their support for user collaboration, which
is considered in terms of multi-user support, task management, communication,
and versioning. Concerning the multi-user support, all the tools that support
collaboration enable both the synchronous and asynchronous collaborations. So,
practitioners can work on the same UML diagrams at the same time (i.e., syn-
chronously), or they may choose to work offline (i.e., asynchronously) on the
UML diagrams. Any changes made by the practitioners are merged by the UML
tools, and in case of conflicts, the warning messages will be given to the practi-
tioners. The task management is supported by Visual Paradigm and Enterprise
Architect, which offer the necessary facilities for determining the design and
development tasks, assigning the tasks to the stakeholders, decomposing tasks
into sub-tasks, and prioritising the tasks. The communication facility is provided
only by the Visual Paradigm, MagicDraw, and Enterprise Architect tools, which
enable the stakeholders to communicate with each other via some messaging
mechanisms and leave comments on the model diagrams. Lastly, the UML tools
that enable the model versioning offer their own (sub-)tools that allow for man-
aging the model versions securely and effectively. The versioning tools provide
many facilities such as secure authenticated version access, high-performance
versioning, working offline, and web access. Note that Eclipse Papyrus adapts
the Git version control system in the Eclipse environment rather than being
supported with a new tool. The tools store the versions in two ways, i.e., either
using a server or cloud. While Visual Paradigm and MagicDraw offer cloud-based
repositories, the other tools with the versioning offer server-based repositories.
So, Visual Paradigm is the only UML tool that supports all those requirements at
the same time. Note that StarUML, ArgoUML, BoUML, Obeo UML Designer,
and Umbrello UML do not support any of the collaboration requirements.

3.4 Code-generation

Table 7 shows the UML tools that support code generation and gives the pro-
gramming languages used for code generation. So, according to the results, all
the UML tools enable the automatic code generation from UML models. Java
is the top popular programming language that is supported by all the UML



Analysing UML Modeling Tools for Practical Use 9

Table 8. The UML tools that support extensibility

UML Tools Extensibility
Visual Paradigm Plug-in development in Java API
MagicDraw Plug-in development in Open Java API
StarUML Plug-in in COM-compatible languages
Modelio Module definition
Enterprise Architect ActiveX Plug-in
ArgoUML No
BoUML Plug-in in Java/C++
Obeo UML Designer No
Eclipse Papyrus No
Rational Rhapsody Plug-in Java API
Umbrello UML No

tools, and it is followed by C++. Visual Paradigm offers the greatest number of
alternative programming languages for code generation.

3.5 Extensibility

Table 8 shows the UML tools’ support for extensibility. So, ArgoUML, Obeo
UML Designer, Eclipse Papyrus, and Umbrello UML cannot be extended with
some new features. Visual Paradigm, MagicDraw, Rational Rhapsody, and BoUML
offer Java APIs for developing plug-in applications that can be used for extend-
ing the tools. StarUML offers an API for developing plug-ins in COM-compatible
languages (e.g., C++, C#, Visual Basic, etc.). Modelio offers its own module
notation for extending the UML tool, where modules are developed in the com-
bination of Java and XML languages. To facilitate developing tool extensions,
Modelio also provides template code. Lastly, Enterprise Architect prompts the
practitioners to develop their extensions as ActiveX COM objects in any sup-
porting platform, e.g., Microsoft Visual Studio.

4 Related Work

The literature essentially includes many empirical studies on UML. Most of those
approaches focus on the UML language itself. Indeed, some approaches (e.g.,
[1, 5]) compare UML with other software modeling languages (e.g., architecture
description languages), and some (e.g., [2, 3]) compare the UML-based software
modeling languages that extend UML for different purposes (e.g., the needs of
particular domains, non-functional properties) with each other. However, none
of those studies consider the existing UML modeling tools. Among the very few
empirical studies that compare the UML modeling tools, none of them consider
(i) the requirements focussed in this study (i.e., multiple viewpoints, large view
management, model analysis, code generation, collaboration, and extensibility)
and (ii) as many UML tools as is considered in this study.

In [19], Safdar et al. surveyed among the university students to understand
how productive the students are in their usage of the three UML tools (i.e., Ra-
tional Software Architect, MagicDraw, and Papyrus) for their software modeling.
Safdar et al. compared the three tools based on the students’ effort required for
performing a UML modeling correctly, the tool learnability, the number of clicks
required during the modeling, and the memory consumed by the tool.



10 Ozkaya et al.

In [8], Khaled compared four well-known UML tools (i.e., Rational Rose,
ArgoUML, MagicDraw, and Enterprise Architect) for three features, which are
the support for HTML documentation, UML notation, and reverse engineering.

In [15], Rajoo et al. compared four well-known UML tools (i.e., Dia, UM-
Let, MagicDraw, and Rational Rose) with regard to their support for the health
informatics domain. Rajoo et al. focus on the key properties that health infor-
matics systems are concerned with, which are performance, security, usability,
and reliability, and analysed the tools for modeling these properties.

In [4], Cabot et al. compared five different UML tools (i.e., Poseidon, Rational
Rose, MagicDraw, Objecteering/UML, Together) to understand how well they
support the software code generation and the transformation of the integrity
constraints specified in the models into software implementation code.

In [16], Rani et al. analysed four UML tools (i.e., ArgoUML, StarUML, Um-
brello UML, and Rational Rose), discussing their features in general and deter-
mining the advantages and disadvantages of the tools depending on the sup-
ported features (e.g., particular languages for code generation, UML notation
support, and formatting options).

5 Discussions and Conclusion

We have analysed 11 well-known UML modeling tools for a sub-set of require-
ments that we determined using Lago et al.’s framework [10]. The analysis results
are expected to be useful for the practitioners and academics who wish to use the
UML modeling tools for modeling their software systems in UML. Also, the tool
developers may use the results for developing a UML-based software modeling
toolset that bridges the gap(s) of the existing tools. The results clarify on the
tools’ level of support for (i) different types of UML diagrams, (ii) different soft-
ware viewpoints, and (iii) managing the large software systems. Moreover, the
results also give clues about the tool support for model analysis, model-to-code
transformation, collaborative modeling, and tool extensibility.

Among the analysed UML tools, Obeo UML Designer, ArgoUML, and Um-
brello are accessible as free and open-source. Also, BoUML and Eclipse Papyrus
are free but their source-code is not open. The rest of the UML tools considered
offer a free evaluation version with limited period of use (mostly 30 days) and
only certain basic facilities are made available in the evaluation version.

Enterprise Architect is the only UML tool that supports all the require-
ments considered in our study. Most of the tools support UML’s all static and
dynamic diagrams. So, the UML tools (except one or two) allow for choosing
among the alternative diagrams depending on their domain constraints. How-
ever, many of the UML tools ignore the separation of UML models into different
viewpoints for modular and understandable model specifications. The tools (ex-
cept Visual Paradigm, StarUML, Enterprise Architect, and Rational Rhapsody)
lead to the UML models where it is difficult to understand which diagram de-
scribe the system from which perspective(s). Managing large UML models is
quite popular, supported by more than half of the UML tools. The tools sup-



Analysing UML Modeling Tools for Practical Use 11

port sub-diagramming for the model components (e.g., classes, packages, and
activities). The tools however do not support sub-diagramming for the connec-
tors (e.g., class associations) - except Visual Paradigm, which might be needed
when complex interactions were employed. Concerning the model analysis, the
model simulation is supported by MagicDraw, Enterprise Architect, and Ra-
tional Rhapsody only. Most of the UML tools support the model validation -
except ArgoUML, BoUML, and Umbrello UML. Those UML tools define their
well-definedness rules for UML that can be checked automatically and allow for
modeling the system requirements in the form of OCL or some other notation
and checking the UML models for those requirements. Note here that none of the
UML tools enable the formal verification of UML models for proving the model
correctness. Another requirement considered is the user collaboration, which is
supported by most of the tools in terms of the synchronous/asynchronous user
collaborations and the model versioning via their cloud-based or server-based
repository systems. ArgoUML, BoUML, Obeo, and Umbrello do not provide
any collaboration support. Other collaboration requirements such as task man-
agement and an instance messaging system are rarely supported though. The
automatic generation of software code from UML models is also supported by
all the UML tools, and Java is the top popular programming language. Lastly,
many of the UML tools offer the plug-in development support for extending the
tools with the new features of their interests.

While the analysis results shed light on the weak and strong points of the
well-known UML modeling tools, the results may essentially be considered as
the preliminary work that is to be followed by a more comprehensive analysis.
Indeed, due to the space limitation, we were not able to consider every single
UML modeling tool existing. Moreover, the requirements for the tool analysis can
be extended with some other expectations of the practitioners following a survey
that may be later on conducted on practitioners with the goal of understanding
their expectations from the UML modeling tools.

References

1. Andersson, P., Höst, M.: UML and SystemC – A Comparison and Mapping Rules
for Automatic Code Generation, pp. 199–209. Springer Netherlands, Dordrecht
(2008). https://doi.org/10.1007/978-1-4020-8297-914, https://doi.org/10.1007/
978-1-4020-8297-9_14

2. Bendraou, R., Jezequel, J., Gervais, M., Blanc, X.: A comparison of six uml-based
languages for software process modeling. IEEE Transactions on Software Engineer-
ing 36(5), 662–675 (Sept 2010). https://doi.org/10.1109/TSE.2009.85

3. Brisolara, L., Becker, L., Carro, L., Wagner, F., Pereira, C.E., Reis,
R.: Comparing high-level modeling approaches for embedded system de-
sign. In: Proceedings of the ASP-DAC 2005. Asia and South Pacific De-
sign Automation Conference, 2005. vol. 2, pp. 986–989 Vol. 2 (Jan 2005).
https://doi.org/10.1109/ASPDAC.2005.1466505

4. Cabot, J., Teniente, E.: Constraint support in mda tools: A survey. In: Rensink,
A., Warmer, J. (eds.) Model Driven Architecture – Foundations and Applications.
pp. 256–267. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

https://doi.org/10.1007/978-1-4020-8297-9_14
https://doi.org/10.1007/978-1-4020-8297-9_14
https://doi.org/10.1007/978-1-4020-8297-9_14
https://doi.org/10.1109/TSE.2009.85
https://doi.org/10.1109/ASPDAC.2005.1466505


12 Ozkaya et al.

5. Dori, D., Wengrowicz, N., Dori, Y.J.: A comparative study of lan-
guages for model-based systems-of-systems engineering (mbsse). In:
2014 World Automation Congress (WAC). pp. 790–796 (Aug 2014).
https://doi.org/10.1109/WAC.2014.6936160

6. Eriksson, H.E., Penker, M., Lyons, B., Fado, D.: UML 2 Toolkit. Wiley Publishing
(2003)

7. Fowler, M., Scott, K.: UML distilled - a brief guide to the Standard Object
Modeling Language (2. ed.). notThenot Addison-Wesley object technology series,
Addison-Wesley-Longman (2000)

8. Khaled, L.: A comparison between uml tools. In: 2009 Second International
Conference on Environmental and Computer Science. pp. 111–114 (Dec 2009).
https://doi.org/10.1109/ICECS.2009.38

9. Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(6), 42–
50 (1995). https://doi.org/10.1109/52.469759, http://dx.doi.org/10.1109/52.
469759

10. Lago, P., Malavolta, I., Muccini, H., Pelliccione, P., Tang, A.: The road
ahead for architectural languages. IEEE Software 32(1), 98–105 (2015).
https://doi.org/10.1109/MS.2014.28, http://dx.doi.org/10.1109/MS.2014.28

11. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: A survey. IEEE Transactions on Software Engineer-
ing 99 (2012)

12. Ozkaya, M.: Analysing uml-based software modelling languages. Journal of Aero-
nautics and Space Technologies 11(2), 119–134 (2018), http://www.rast.org.tr/
JAST/index.php/JAST/article/view/326

13. Ozkaya, M.: Do the informal & formal software modeling notations satisfy prac-
titioners for software architecture modeling? Information & Software Technology
95, 15–33 (2018). https://doi.org/10.1016/j.infsof.2017.10.008, https://doi.org/
10.1016/j.infsof.2017.10.008

14. Ozkaya, M., Kose, M.A.: Sawuml – uml-based, contractual software architectures
and their formal analysis using spin. Computer Languages, Systems Structures
54, 71 – 94 (2018). https://doi.org/https://doi.org/10.1016/j.cl.2018.04.005, http:
//www.sciencedirect.com/science/article/pii/S1477842417301550

15. Rajoo, M., Noor, N.M.M.: Important evaluation factors of uml tools for health
informatics. Journal of Telecommunication, Electronic and Computer Engineering
9(3), 191–195 (2017)

16. Rani, T., Garg, S.: Comparison of different uml tool - tool approach. International
Journal Of Engineering And Computer Science 2(6), 1900–1908 (June 2013)

17. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley Professional, 2 edn.
(2011)

18. Rumbaugh, J.E., Jacobson, I., Booch, G.: The unified modeling language reference
manual. Addison-Wesley-Longman (1999)

19. Safdar, S.A., Iqbal, M.Z., Khan, M.U.: Empirical evaluation of uml modeling tools–
a controlled experiment. In: Taentzer, G., Bordeleau, F. (eds.) Modelling Founda-
tions and Applications. pp. 33–44. Springer International Publishing, Cham (2015)

https://doi.org/10.1109/WAC.2014.6936160
https://doi.org/10.1109/ICECS.2009.38
https://doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
https://doi.org/10.1109/MS.2014.28
http://dx.doi.org/10.1109/MS.2014.28
http://www.rast.org.tr/JAST/index.php/JAST/article/view/326
http://www.rast.org.tr/JAST/index.php/JAST/article/view/326
https://doi.org/10.1016/j.infsof.2017.10.008
https://doi.org/10.1016/j.infsof.2017.10.008
https://doi.org/10.1016/j.infsof.2017.10.008
https://doi.org/https://doi.org/10.1016/j.cl.2018.04.005
http://www.sciencedirect.com/science/article/pii/S1477842417301550
http://www.sciencedirect.com/science/article/pii/S1477842417301550

	UML Modelleme Araçlarının Pratik Kullanım için Analizi
	Analysing UML Modeling Tools for Practical Use

