
DSML4BDI: A Modeling Tool for BDI Agent

Development
Baris Tekin Tezel

1,2,
Moharram Challenger

1
 and Geylani Kardas

1

1 International Computer Institute, Ege University
2 Computer Science Department, Dokuz Eylul University, Turkey

baris.tezel@deu.edu.tr;

{moharram.challenger, geylani.kardas}@ege.edu.tr

Abstract. In this paper, a modeling tool, called DSML4BDI, for the model-

driven development of Belief-Desire-Intention (BDI) agents, is introduced. As

being an implementation of a domain-specific modeling language, DSML4BDI

tool enables graphical modeling of all BDI components and relations with in-

cluding the automatic construction of logical expressions and rules required for

the system. In addition, its operational semantics, based on the Jason platform,

leads to the automatic generation of all codes and other artifacts for the exact

implementation of the modeled system. Evaluations performed by the users

showed that the tool is capable of high generation performance and its use sig-

nificantly decreases the development time.

Keywords: Domain-specific modeling language, Modeling Tool, Multi-agent

System, BDI Agents, DSML4BDI.

DSML4BDI: KİH Etmenlerinin Geliştirilmesi

için bir Modelleme Aracı
Barış Tekin Tezel

1,2,
Moharram Challenger

1
 ve Geylani Kardaş

1

1 Ege Üniversitesi Uluslararası Bilgisayar Enstitüsü
2 Dokuz Eylül Üniversitesi Bilgisayar Bilimleri Bölümü

baris.tezel@deu.edu.tr;

{moharram.challenger, geylani.kardas}@ege.edu.tr

Özet. Bu bildiride Kanı-İstek-Hedef (KİH) etmenlerinin model-güdümlü

geliştirilmesini sağlayan DSML4BDI isimli bir modelleme aracı tanıtılmak-

tadır. DSML4BDI aracı tüm KİH bileşenlerinin ve ilişkilerinin görsel model-

lenmesini ve sistemin geliştirilmesi için gerekli mantıksal ifadelerin ve ku-

ralların otomatik inşaasını sağlamaktadır. Bunlara ek olarak, aracın Jason plat-

formuna dayalı işletimsel semantiği, modellenen sistemin eksiksiz uygulanması

için gereken tüm kodların ve ürünlerin otomatik üretilmesine imkan vermekte-

dir. Kullanıcılar tarafından gerçekleştirilen değerlendirme sonuçları aracın

yüksek üretim performansına sahip olduğunu ve sistem geliştirme süresini ciddi

oranda düşürdüğünü ortaya koymuştur.

Anahtar Kelimeler: Alana-özgü modelleme dili, Modelleme Aracı, Çok-

etmenli Sistem, KİH Etmenleri, DSML4BDI.

1 Introduction

Multi-agent System (MAS) development based on the belief-desire-intention (BDI)

model [1] has found widespread adoption within Agent-oriented software engineering

(AOSE) field since this model enables a good representation of agent internals and

supports the composition of reactive and/or proactive agent behaviors. In BDI archi-

tecture, software agents constantly monitor their environment and respond to the

changes in the environment. This reaction depends on agent’s mental attitudes. An

agent has three types of mental attitudes which are belief, desire and intention. Beliefs

are information about an agent’s itself, other agents and the environment that the

agent is located. Desires express all possible states of affairs which might be achieved

by an agent. One desire is a potential trigger for an agent’s actions. Simply, desires

are often considered as options for an agent. Finally, intentions represent the states of

affairs which have been decided to work towards by the agent [2].

Programming environments and platforms such as BDI4Jade [3], Jadex [4], and

JACK [5] facilitate the implementation of BDI agents. However, developers may still

encounter with some difficulties especially on both the exact representation of the

logic behind and the creation of agent beliefs and plans due to the limitations of using

an imperative programming language like Java to express BDI foundations. Lan-

guages like AgentSpeak [6] suits well in logic programming needed for constructing a

BDI architecture but this time the developers should deal with the composition of

heavy logical and mathematical rule expressions. Jason [7], a Java-based interpreter

for AgentSpeak may assist to the developers within this context, however, inefficacy

of again using Java still remains as similar to abovementioned Java-based program-

ming environments. Hence, in order to eliminate this deficiency, we present

DSML4BDI modeling tool which provides model-driven development (MDD) of

Multi-agent Systems (MAS) [8] purely based on the BDI principles, enabling the

automatic construction of the required logic structures, rules, beliefs, etc., those are all

abstract from the details of real execution environments. The tool is the implementa-

tion of a domain-specific modeling language (DSML) [9] with the same name, which

has an operational semantics on Jason platform that leads to the automatic generation

of executable Jason codes for the corresponding DSML4BDI model instances. A

short movie demonstrating the use of the tool is available at:

https://youtu.be/KrbgKBIf6us. This demonstration paper first discusses the features

and the components of DSML4BDI and then gives a brief evaluation of its use in

MAS development.

The rest of the paper is organized as follows: DSML4BDI tool is discussed in Sec-

tion 2. An empirical evaluation of using DSML4BDI is given in Section 3. Section 4

includes the related work and Section 5 concludes the paper.

https://youtu.be/KrbgKBIf6us

2 DSML4BDI Tool

Inside DSML4BDI tool [10], definition of both BDI main elements and their relations

are provided with a graphical concrete syntax originating from a BDI metamodel

introduced in [9]. Although the viewpoints of the original metamodel [9] remains

same, some of the relations between the agent meta-entities are revised and extended

in this study to provide the agent platform extensibility of the language. For instance,

it is now also possible to construct model transformations from DSML4BDI’s extend-

ed metamodel to the CArtAgO [11] infrastructure allowing artifact-based environ-

ments to be programmed and executed for MAS.

DSML4BDI tool is built on the open-source Eclipse Sirius platform [12] that ena-

bles having a graphical editor sourcing from DSML4BDI’s abstract syntax encoded

with Ecore and allowing the construction of dedicated editors including diagrams and

tables.

It is possible to design a BDI MAS with using four different diagram types of

DSML4BDI tool, each conforming to an agent-modeling viewpoint defined in the

language. A developer may create a MAS diagram that is essential to present the

MAS organization of BDI agents with including main elements and relationships. An

Agent diagram shows internal agent structure composed of plans, beliefs, rules and

goals. Properties and inner components of each agent’s plans are modeled inside Plan

diagrams. Finally, logical expressions, which can be used in any agent plan or rule,

are created in Logical Expression diagrams. Some significant graphical notations

pertaining to the abstract syntax elements, covered inside the DSML4BDI diagram

types, are listed in Table 1.

Figure 1 shows the graphical modeling environment of DSML4BDI tool. Current

screenshot depicts the view of a BDI Plan diagram. Developers can create general

MAS structures by simply drag-and-dropping required items (agents, plans, events

Table 1 Some of the concepts and their notations for DSML4BDI

etc.) from the palette residing at the right-side of the modeling environment. When the

developer double-clicks an element on the MAS diagram, corresponding diagram for

the related BDI element (e.g. agent, plan) is opened for modeling. Any change made

in a view is immediately reflected to all other models of the MAS without any addi-

tional user intervention. Constraint checks and static semantics controls are automati-

cally made by the tool. Figure 1 also contains a partial model covering BDI entities

and relations required for the implementation of the well-known garbage collector

MAS [4] in which the destructor agents inform the collector agents on the location of

garbage in an environment while the collector agents pick the garbage and bring them

to the destructor agents.

Figure 2 shows the modeling of a collector agent’s BDI plan specifications inside a

DSML4BDI plan diagram. Following the graphical modeling of MAS, DSML4BDI

tool can automatically generate software codes and artifacts including ASL files,

MAS2J specifications and Java classes which are all required for the exact implemen-

tation of the modeled BDI agents on Jason platform [7]. Generated codes for all

AgentSpeak files are complete and ready-to-use and they can be directly executed on

Jason platform without any code addition by the developers.

3 Evaluation

Usability of DSML4BDI tool was evaluated by benefiting from the MAS DSML

evaluation framework proposed in [13] for the systematic assessment of both lan-

guage constructs and tool usage. Our evaluation had two parts: (1) quantitative analy-

sis including generation performance and development time measurement; and (2)

qualitative assessment including user feedbacks via a questionnaire. We followed the

study protocol again described in [13] for our case study preparation (including case

study design, team selection and team preparation), case study execution, analysis and

reporting. Development of a garbage collector MAS was considered as the case study.

Two evaluator groups were employed each including four graduate students having at

least 2 years MAS design and implementation experience. Group A utilized

DSML4BDI while Group B did not use any domain-specific modeling tool during the

case study. We compared the results considering generated code and development

time for both groups to complete part (1) of the evaluation. Group A also filled a

questionnaire for the usability assessment (for part (2)). Due to the space limitations,

the results are briefly reported in this paper.

Varying from minimum 75% to maximum 100%, the average rate of generated

Lines of Code (LoC) is 89% comparing with a complete implementation. It is also

worth indicating that the distribution of the generation performance is directly related

to the composition of MAS models created by each developer. Moreover, 92.7% of

the overall required artifacts were automatically generated on average among Group

A by just modeling with DSML4BDI. Group A completed the whole development

process about 3 times faster than Group B on average. Gain in speed up was much

more when specifically, implementation/generation and test phases are considered on

where it was approximately 6 and 9 times respectively.

Figure 1. DSML4BDI graphical modeling environment.

Figure 2. Modeling agent plans in DSML4BDI.

Group A developers, who experienced the use of DSML4BDI, were asked to fill a

questionnaire (mixed with marking and open-ended questions) for evaluating usabil-

ity, comprehensiveness and easiness of the tool. For marking questions, average result

was 4.30 out of 5 (0 is nothing and 5 is at most level) indicating the tool was generally

found handy and easy-to-use. An extended discussion of this evaluation and achieved

results can be found in [9].

4 Related Work

AOSE researchers have significant efforts on model-driven MAS development

[14]. While various agent metamodel proposals [15-17] and MDD approaches [8, 18,

19] exist, perhaps the most popular way of MDD of MASs is based on providing

DSMLs (e.g. [20–25]) in which both MAS modeling and implementation can be per-

formed. Within these studies, some of them [21-23, 25] specifically considers MDD

of BDI agents. However, most of them are not supported with proper tools and the

remaining ones with tool support [21, 23] mostly do not evaluate both the user’s

adoption and the generation performance of the tool. Our evaluation results indicate

that the developers found DSML4BDI providing an all-embracing model of BDI ele-

ments and the use of the tool both led to automatic generation of most BDI artifacts

required for exact MAS implementation and substantial decrease in time needed for

developing a MAS from scratch.

5 Conclusions

An MDD tool for developing BDI agents was introduced. The tool both provides

modeling all MAS structures and relations visually and is capable of achieving the

MAS implementation via automatic code generation for Jason platform. Comparative

evaluations showed the tool has a high generation performance and causes significant

decrease in the development time. Feedbacks gained from the users also supported the

claim on its usability in general. Our future work is to enhance DSML4BDI’s organi-

zation and environment modeling capabilities by integrating it with JaCaMo platform

[26].

Acknowledgements
This work was funded by the Scientific and Technological Research Council of Tur-

key (TUBITAK) under grant 115E591.

References
1. Rao, A.S. and Georgeff, M.P.: Decision procedures for BDI logics. J Logic Comput, 8(3):293-

343, (1998).

2. Tezel, B. T., Challenger, M., and Kardas, G.: A Metamodel for Jason BDI Agents. In Proceed-

ings of the 5th Symposium on Languages, Applications and Technologies (SLATE 2016), pages

8:1-8:9, June 20-21 (2016).

3. BDI4JADE. http://www.inf.ufrgs.br/prosoft/bdi4jade

4. Jadex. https://www.activecomponents.org/#/project/news

5. JACK. http://aosgrp.com/products/jack/

6. Rao, A. S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In Proceed-

ings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World

(MAAMAW 1996), pages 42-55, January 22–25, (1996).

7. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in

AgentSpeak using Jason. John Wiley & Sons, Ltd, Chichester, UK (2007).

8. Kardas, G.: Model-driven development of multi-agent systems: a survey and evaluation. The

Knowledge Engineering Review, 28(4): 479-503, (2013).

9. Kardas, G.,Tezel, B.T., Challenger, M.: Domain-specific modelling language for belief–desire–

intention software agents. IET Softw., 12(4): 356-364 (2018).

10. DSML4BDI. http://serlab.ube.ege.edu.tr/Bundles/dsml4bdi.zip

11. CArtAgO. http://cartago.sourceforge.net/

12. Sirius Modeling Platform. https://eclipse.org/sirius/

13. Challenger, M., Kardas, G., Tekinerdogan, B.: A systematic approach to evaluating domain-

specific modeling language environments for multi-agent systems. Softw. Qual. J., 24:755–795,

(2016).

14. Kardas, G., Gomez-Sanz, J.J.: Special issue on model-driven engineering of multi-agent systems

in theory and practice, Comput. Lang. Syst Str. 50, 140-141 (2017).

15. Omicini, A., Ricci, A., and Viroli M.: Artifacts in the A&A meta-model for multi-agent sys-

tems. Autonomous Agents and Multi-Agent Systems, 17(3): 432-456, (2008).

16. Hahn, C., Madrigal-Mora, C., and Fischer, K.: A Platform-Independent Metamodel for Multia-

gent Systems. Auton Agent Multi-Ag, 18(2): 239-266, (2009).

17. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J. J., Pavon, J., and

Gonzalez-Perez, C.: FAML: A Generic Metamodel for MAS Development. IEEE Transactions

on Software Engineering, 35(6): 841-863, (2009).

18. Pavon, J., Gomez-Sanz, J. J., and Fuentes, R.: Model driven development of multi-agent sys-

tems. In Proceedings of the 2nd European Conference on Model Driven Architecture – Founda-

tions and Applications (ECMDA-FA 2006), pages 284–298, July 10-13, (2006).

19. Bergenti, F., Iotti, E., Monica, S., and Poggi, A.: Agent-oriented model-driven development for

JADE with the JADEL programming language. Comput Lang Ssyt Str, 50: 142-158, (2017).

20. Hahn, C.: A Domain Specific Modeling Language for Multiagent Systems. In: 7th Int.'l Conf.

on Autonomous Agents and Multiagent Systems, pp. 233–240 (2008).

http://www.inf.ufrgs.br/prosoft/bdi4jade
http://serlab.ube.ege.edu.tr/Bundles/dsml4bdi.zip

21. Gascueña, J.M., Navarro, E., Fernández-Caballero, A.: Model-driven engineering techniques for

the development of multi-agent systems. Eng. Appl. Artif. Intell. 25, 159-173 (2012).

22. Cossentino, M., Chella, A., Lodato, C., Lopes, S., Ribino, P., Seidita, V.: A Notation for Model-

ing Jason-Like BDI Agents. In: 6th International Conference on Complex, Intelligent, and Soft-

ware Intensive Systems. pp. 12–19 (2012).

23. Challenger, M., Demirkol, S., Getir, S., Mernik, M., Kardas, G., Kosar, T.: On the use of a do-

main-specific modeling language in the development of multiagent systems. Eng. Appl. Artif.

Intell. 28, 111–141 (2014).

24. Gonçalves, E.J.T., Cortés, M.I., Campos, G.A.L., Lopes, Y.S., Freire, E.S.S., da Silva, V.T., de

Oliveira, K.S.F., de Oliveira, M.A.: MAS-ML 2.0: Supporting the modelling of multi-agent sys-

tems with different agent architectures. J. Syst. Softw.108,77-109 (2015)

25. Wautelet, Y., Kolp, M.: Business and model-driven development of BDI multi-agent systems.

Neurocomputing. 182, 304–321 (2016).

26. JaCaMo. http://jacamo.sourceforge.net/

