
Test Gruplama ile Zaman Tasarrufu Sa§lama?

Mehmet Engin Saçan1??, Müjde Ceylan1, Aylin Ku³ku1, Rainer Heck2, Michael
Koestner2, and Daniel Schertler2

1 Siemens, AG
Esentepe Mahallesi, Yakac�k Yolu No:111, 34870 Kartal/Istanbul, Türkiye

2 Siemens
Siemensallee 75, 76187 Karlsruhe, Almanya
{engin.sacan; mujde.agra; aylin.kusku;

rainer.heck; koestner.michael; daniel.schertler}@siemens.com

Özet Test, yaz�l�m kalitesinin büyük bir parças�d�r. Testin önemi gün
geçtikçe artmaktad�r. Özellikle büyük uygulamalar� test etmek için za-
man gerçekten önemlidir. Test mimarisinde, gömülü sistemleri test etmek
için takip edilecek birçok teknik vard�r. Regresyon testi bunlardan biri-
dir. Regresyon testi, modi�ye edilmi³ ve düzeltilmi³ ortam� yeniden test
eden test tekni§i türüdür. Bu teknikle, her bir yaz�l�m versiyonuna yeni
fonksiyonlar eklenir ve eklenen her fonksiyonu test etmek zaman gerekti-
rir. Bu noktada, yeni eklenen fonksiyonlar�n uygun zaman periyotlar�nda
mevcut fonksiyonlar� bozmad�§�ndan emin olmak için her versiyonda reg-
resyon testinin uygulanmas� önemlidir.
Bu yaz�da regresyon testinin verimlili§ini art�rmak için yeni teknikler
sunulmaktad�r. Gömülü sistemlerin regresyon testi için olan yakla³�m�-
m�z, zamandan tasarruf etmek ve daha fazla test yapmak için hem test
seçim tekniklerini hem de zaman tasarrufu tekniklerini kullanmaktad�r.
Bu teknikler, test durumlar�n� benzer özelliklerine göre grupland�rmay�
ve test durumlar�nda gerçekle³tirilen yap�land�rmay� geri almay� içerir.
Sonuç olarak, önemli bir zaman tasarrufu sa§lan�r. Bu sonuç geli³tirmeye
ve düzeltmeye yüksek fayda sa§lar.

AnahtarKelimeler: Regresyon Testi, Yaz�l�m Kalitesi, Test Seçim Tek-
nikleri, Zaman Tasarrufu Teknikleri

? Supported by organization Siemens.
?? Corresponding Author



A�ects of Grouping Test Cases for Time Saving?

Mehmet Engin Saçan1??, Müjde Ceylan1, Aylin Ku³ku1, Rainer Heck2, Michael
Koestner2, and Daniel Schertler2

1 Siemens, AG
Esentepe Mahallesi, Yakac�k Yolu No:111, 34870 Kartal/Istanbul, Turkey

2 Siemens
Siemensallee 75, 76187 Karlsruhe, Almanya
{engin.sacan; mujde.agra; aylin.kusku;

rainer.heck; koestner.michael; daniel.schertler}@siemens.com

Abstract. Testing is a big part of software quality.The importance of
testing is increasing day by day. Time is really important especially for
testing big applications. In a test architecture there are many techniques
to follow for testing embedded systems. Regression testing is one of them.
Regression test is the type of testing technique, which is retesting the
modi�ed and corrected environment. With this technique, new functions
are added to each software version and every function requires time for
testing each one. At this point it will be important to apply the regression
test in each version to make sure that the newly added functions do not
corrupt existing functions at appropriate time periods.
This paper presents new techniques to increase the e�ciency of regression
testing. Our approach which is for regression testing of embedded systems
uses both test selection techniques and time saving techniques to save
time and run more tests. These techniques include grouping test cases
based on their similar features and undo con�guration which is performed
in test cases. As a consequence, signi�cant time saving has been achieved.

Keywords: Regression Testing · Software Quality · Test Selection Tech-
niques · Time Saving Techniques

? Supported by organization Siemens.
?? Corresponding Author



1 INTRODUCTION

Software development lifecycle(SDLC) is the process which includes all phases of
software development from the beginning to end like planning, analysis, design,
production and maintenance [1]. De�ned process makes software development
more orderly and foreseeable. There are many di�erent types of SDLC models
like waterfall, agile, spiral etc. All of these models should follow 6 steps to build
a good software. These steps are requirement analysis and gathering, system
analysis, system design, coding, testing and deployment.

In testing step of SDLC, defects and problems are found and testers inform
developers with details of the issue. If it is a valid defect which meets a set
of con�rmed defect de�nitions by the development team, the developer will �x
defect and create a new software version for retesting. All defects are �xed until
product reaches speci�ed requirements and quality measurements [2].

Software regression testing is one of the types of testing levels. In software,
a regression testing is performed after a new feature is implemented and �nds
if this new implementation causes unexpected results. It is necessary to perform
regression testing after version change is made in software, not just to �nd de-
fects. Because these changes made in system may have distorted the structure.
Thus, it is tested whether the functions lose their functionality or are harmed by
the newly added functions.When enough time is allocated for regression testing,
project can be tracked more closely and the success of the project is ensured
[3,4,5].

In today's world, large number of embedded applications are used in indus-
trial communication area. Their size and sophistication are increasing as a result
of their wide usage. So that, e�ective regression testing of embedded applications
have great signi�cance[6,7].

Regression testing can be used for each level of software testing. It is used
in integration part of our software development. After build is released, auto-
mated regression testing starts and validates that unchanged parts of code are
not a�ected by the code changes. Plenty of time is spent setting up the test
environment, analyzing test results, adding new features to test automation sys-
tem and dealing with the environmental issues. In this approach, maintenance
e�ort is decreased for existing test suite and more e�ort can be used for new
test cases. These all test cases will be �nished earlier and results will be covered
faster. This result, not only improves the suitability of the developments, but
also it can provide great contributions to software quality [8,9,10].



2 TEORETICAL BACKGROUND

2.1 INTEGRATION TESTING

There are three test levels as the White-box, the Black-box and the Grey-box
testings. Integration test is related with the Grey-box testing. Software mostly
consists of many modules. Integration testing shows how di�erent modules of
software product work together.

2.2 REGRESSION TESTING

Regression testing is a type of testing ensures that changed or updated code has
not broken any functionality of software. Tests of existing functionalities have
been running again to be sure that they have not damaged anything. Regres-
sion testing can be done at any type of testing (e.g., unit, integration, system,
acceptance etc.)

Regression testing is crucial for software development lifecycle; at the same
time it has some major challenges. Since it involves running all old tests, it can
consume much time comparibly other type of tests while running. It can be
complicated to maintain big amount of tests. Moreover, when the number of
tests increases, designing regression test environment is a hard task to achieve.

Test automation is an e�cient way of running regression tests since manually
running same tests repeatedly can make testers bored and less motivated. More-
over, updating tests regularly is a good way of running regression tests since it
can be more di�cult and complex later on. Furthermore, reviewing test design
and test environment periodically to �x errors and make improvements increase
e�ciency of testing.

In our testing module, we applied regression test into integration test which
means early feedbacks are given by daily builds.

2.3 QUALITY IN TESTING

According to ISO 9126-1 [ISO/IEC, 2011], while evaluating the quality of soft-
ware products, internal, external, quality in use and process attributes are mea-
sured.

� Internal quality of a product is measured with the internal quality require-
ments. Internal quality of a product stays stable except design of product is
not changed.

� External quality of a product is measured with the testing of software after
it is execution. During the testing period most errors can be found and �xed.

Process quality helps improving product quality and product quality helps
improving quality in use. External and internal quality of software product can
be classi�ed into characteristics which are functionality, reliability, usability, ef-
�cieny, maintainability, portability[11].

Regression testing is not only about the suitability of the developments, it can
also provide great contributions to software quality like reducing time consuming
and getting quick feedbacks.



2.4 REGRESSION TESTING TECHNIQUES

In the software development life cycle, maintenance is the most crucial phase
of the software delivered to the clients[3]. Software maintenance results are like
error recovery, extension or deletion of capabilities, and optimization of the sys-
tem. Regression testing is de�ned[12] as "the process of retesting the modi�ed
parts of the software and ensuring that no new errors have been introduced into
previously tested code". There are several regression testing techniques exist;

� Retest all
� Regression Test Selection
� Test Case Prioritization
� Hybrid Approach

De�nitons of these techniques are given below:

2.4.1 Retest All

Retest all is a method for regression testing that all the tests are rerun in the
existing test suite. So the retest all method is much more expensive than other
regression testing methods which requires more time and budget[13,14] .

2.4.2 Test Case Prioritization

This technique of regression testing prioritizes the test cases so as to increase a
test suite's rate of fault detection that is how quickly a test suite detects faults
in the modi�ed program to increase reliability.This is classi�ed as general priori-
tization and version speci�c prioritization. The meaning of general prioritization
is to select a sort of test cases for keeping the test coverage for every versions
of software orderly whereas the meaning of version speci�c prioritization does
concern a speci�c version of the software[13,15,16].

2.4.3 Hybrid Approach

There are many Hybrid Approaches and di�erent algorithms are proposed by
researchers for both Regression Test Selection and Test Case Prioritization.

1. Leon and Podgurski proposed a new hybrid approach which is combining
coverage-based and distribution based prioritisations. It is based on observ-
ing the e�ects of basic coverage maximisation and repeated coverage max-
imisation. Distribution based �ltering techniques are more e�ective methods
to reveal errors according to coverage-based �ltering techniques. These two
techniques are complementary in terms of �nding di�erent defects [17].

2. Wong et al developed hybrid technique which combines modi�cation, mini-
mization and prioritization-based selection using software changes and pre-
vious versions of test history [4].

3. Varsha and Babita proposed [18] , a new hybrid approach for regression
test case prioritization based on source code coverage, branch coverage and
mandatory user requirement coverage.



4. Silva et al [19], introduced a hybrid approach for the test case prioritization
and selection. Instead of running a full test, they proposed to create di�erent
test suite alternatives classi�ed as Prioritization, Selection and Minimization
techniques with existing test cases that run in a shorter time.

2.4.4 Regression Test Selection

In regression test selection technique, tests are selected that are deemed neces-
sary from the existing test suite to verify the validity of the modi�ed software. To
speed up and increase e�ciency of regression testing there are many algorithms
[8,20,21,22,23,24,25,26,27,28,29,30] have been proposed related to regression test
selection, but it is not possible to compare and evaluate them because the goal
of each of them is di�erent [28]. Re-running of full regression test suites every
day can be extremely time consuming. This paper outlines grouping the tests
and re-running these selected test groups in existing test suite with implemented
time-saving methods. This approach not only provides time saving but also re-
duces the cost of regression testing.

2.5 REGRESSION TESTING PROCESS COST ANALYSIS

Regression testing is a repeating and growing process so that especially for large
software programs it can be complex and costly in progress of time. Testers
spend time for the following steps in a regression test process:

� Testers develop new test cases to test new functionalities and requirements
added to software. It sometimes takes weeks to add one test to regression
test suite.

� Testers spend time in the execution of test suite. While software is becoming
larger, this costs more time and e�ort. Test automation is a good way to
decrease e�ort for this step. Moreover, test automation can be executed in
not working hours.

� Testers investigate test results from execution. Investigating failures manu-
ally may take much time. Failure may be related with both software devel-
opment and software testing.

� Testers track failures until they are �xed. This step related with issues such as
the a�ect of failure, the experience of developer and it can be time consuming.

� Testers sometimes have to execute all test suites and validate all functionality
of software. Execution and investigation of results can take long time.

Since regression testing is a time consuming process, there are many tech-
niques to decrease development and maintenance part of regression testing [5,31,32].

In the literture, there are many studies to increase e�ciency of regression
testing in terms of time, memory and cost. Data �ow technique has been used
to specify tests for retesting after a change [33,34,35,36]. Data �ow technique
�nds relations which change a�ects and select all tests to cover these relations
[8]. Semantic di�erencing technique uses system dependence graphs instead of
data �ow graphs to determine semantic di�erences between the code before and



after a change. Dependency graphs not only decrease the number of tests to
rerun and but also make code less complex by ignoring redundant relations [37].
History-based technique is based on the old test execution data. Test execution
history is analyzed to �nd tests to re-run [38]. Slicing-based technique proposes
a slicing algorithm to decrease memory and time consume. This algorithm �nds
all associations a�ected by the change or modi�cation in a program without us-
ing all data �ow history. Partial data �ow is enough for implementing algorithm
[39].
Unlike previous studies, our approach uses both test techniques and time saving
method to enhance e�ciency of regression system.

3 RESULTS AND DISCUSSIONS

The testing process begins in parallel with the requirement analysis in the V-
model software development projects. Testing is a continuous activity throughout
the software development process. Each software process has a corresponding test
process. For this reason, the quality of test is as important as quality of software
development process.

In our testing module, we applied regression test into integration test which
means early feedbacks are given by daily builds. Re-running of full regression
test suites every day can be extremely time consuming. This paper outlines
grouping the tests and re-running these selected test groups in existing test suite
with implemented time-saving methods. This approach not only provides time
saving but also reduces the cost of regression testing. Unlike previous studies, our
approach uses both test techniques and time saving method to enhance e�ciency
of regression system.

In this study, we propose a test automation system which provides time sav-
ings without compromising the quality of the test. In the automation system,
there are many scripts that have been automated to run every day. At the begin-
ning of every script, there is a factory restart, which means that the con�guration
is completely erased so that the next script is not a�ected by the previous con-
�guration in anyway. On average, a factory restart time lasts about 3-4 minutes,
and it covers a considerable amount of time in many automation systems. For
a quality testing process, if we get the same quality results in a short period
of time, we will save time by removing the factory restart from the scripts. If
there is a problem to con�gure device in scripts, we use again factory restart to
avoid con�guration failures. That is why factory restart could not be removed
in automation system.

At this point, scripts which are related with the same content are combined
with an .xml �le in test automation. Each feature has a "group_order" node
which is related to the "inside_group_order" node. These two nodes provide
us to list our test scripts and groups. When the �id� of each group changes, au-
tomation performs factory restart to device. These steps are given below.



<feature1 >

<test> test_1 </test>

...

<group_order > 1</group_order >

<inside_group_order >1</inside_group_order >

...

<test> test_2 </test>

...

<group_order > 1</group_order >

<inside_group_order >2</inside_group_order >

...

</feature1 >

<feature2 >

<test> test_1 </test>

...

<group_order > 1</group_order >

<inside_group_order >1</inside_group_order >

...

<test> test_2 </test>

...

<group_order > 1</group_order >

<inside_group_order >2</inside_group_order >

...

</feature2 >

Feedback is really important for the development perspective. Test results
should be as fast as it can be. It is hard to get test results faster because of
these problem. The solution for these problems are grouping them and remove
con�guration after test script �nish and do not perform restart. This grouping
gives us around 20% time reduction for running test cases more to control and
work on the test stations.(See Figure 1)

Generally, features are tested with unit test after every feature test system
should reboot to clear con�guration in devices. This helps clean start for device
to check this feature behaviour.

Perl is one of the most powerful and practical programming language that can
be used in the case of intensive text processing. The Perl programming language
works in almost all operating systems. This specialty helps to work in indepen-
dent environment.That's why we used Perl in test automation system. It starts
with reading a XML �le and create a run list by order in "group_order" node
than check "inside_group_order" lists that XML and runs test scripts. Au-
tomation uses Tool Command Line (TCL) to see the serial connection responses.
TCL programing language uses �expect� extension to get responses from a ter-
minal and sending commands to terminal. Generally, testing approach for test
scripts ; even test script failed or passed, test automation send device to factory
restart to eliminate con�guration failure in new test script. This causes a lot of
time loss. during unit tests. Avoiding this problem, automation perform restart



Fig. 1. Our grouping algorithm for time saving.

with factory settings between each group. If there is a failure in the script in
same group of tests, factory restart is applied and total run would not be e�ected
by this failure. There could be an alternative for this approach which is:

Never use factory restart and try to undo con�guration even test is failed.
Continuing all test scripts with this method, could save time on factory restart.
The one big problem about this situation is undo the con�guration in failed
scripts. There should be unexpected con�guration change and this will e�ect all
other test scripts.

Another bene�t of this method is, we can �nd more related errors like even
undo con�guration about one test script would be an e�ect on other features
and this situation decreases our vulnerability(Table 1 and Table 2 ). Device run
duration be tested also with our approach with this technique, we will observe
whether there is an error in the case of continuous operation.We also �nd 10
failures in scripts which are in the same group because of undo con�guration
e�ect in the �rmware.



Table 1. Before this implementation test duration time

Device Total Test Run Duration

X device 332 1 Day 06 hours 04 minutes
50 seconds

Table 2. After this implementation test duration

Device Total Test Run Duration

X device 332 1 Day 21 minutes 26 seconds

4 CONCLUSION

This paper describes a regression test technique that uses both test selection
method and time saving method. Our professional experience demonstrates that
this technique helps testers about giving feedback about failures on time and
also prove that related failures could be found even in integration part of the
testing. This approach signi�cantly outperforms that easy applied time reducing
technique with grouping related test cases. Testers could better understand and
create better reproduction steps for defects in versions. Undo the con�guration
for test cases also can be a fundemental technique for our future work like mesur-
ing software version stability without performing the factory settings to device.

References

1. N. B. Ruparelia, �Software development lifecycle models,� ACM SIGSOFT Soft-
ware Engineering Notes, vol. 35, no. 3, pp. 8�13, 2010.

2. Y. Bassil, �A simulation model for the waterfall software development life cycle,�
arXiv preprint arXiv:1205.6904, 2012.

3. G. Duggal and B. Suri, �Understanding regression testing techniques,� in Proceed-
ings of 2nd National Conference on Challenges and Opportunities in Information
Technology, 2008.

4. W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, �A study of e�ective regres-
sion testing in practice,� in Software Reliability Engineering, 1997. Proceedings.,
The Eighth International Symposium on, pp. 264�274, IEEE, 1997.

5. A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma, �Regression testing in
an industrial environment,� Communications of the ACM, vol. 41, no. 5, pp. 81�86,
1998.

6. W.-T. Tsai, L. Yu, F. Zhu, and R. Paul, �Rapid embedded system testing using
veri�cation patterns,� IEEE software, vol. 22, no. 4, pp. 68�75, 2005.

7. P. Liggesmeyer and M. Trapp, �Trends in embedded software engineering,� IEEE
software, vol. 26, no. 3, 2009.

8. Y. Chen, R. L. Probert, and D. P. Sims, �Speci�cation-based regression test se-
lection with risk analysis,� in Proceedings of the 2002 conference of the Centre for
Advanced Studies on Collaborative research, p. 1, IBM Press, 2002.



9. H. Srikanth, L. Williams, and J. Osborne, �System test case prioritization of new
and regression test cases,� in Empirical Software Engineering, 2005. 2005 Interna-
tional Symposium on, pp. 10�pp, IEEE, 2005.

10. B. Korel, L. H. Tahat, and B. Vaysburg, �Model based regression test reduction
using dependence analysis,� in Software Maintenance, 2002. Proceedings. Interna-
tional Conference on, pp. 214�223, IEEE, 2002.

11. I. O. for Standardization and I. E. Commission, Software Engineering�Product
Quality: Quality model, vol. 1. ISO/IEC, 2001.

12. K. Aggarwal and Y. Singh, �Software engineering programs documentation, oper-
ating procedures,� New Age international publishers, 2001.

13. S. Kadry, �A new proposed technique to improve software regression testing cost,�
arXiv preprint arXiv:1111.5640, 2011.

14. H. K. Leung and L. White, �Insights into regression testing (software testing),� in
Software Maintenance, 1989., Proceedings., Conference on, pp. 60�69, IEEE, 1989.

15. N. Dhamija et al., �Test cases prioritization using model based test dependencies:
A survey,� International Journal of Innovation and Applied Studies, vol. 6, no. 2,
p. 144, 2014.

16. R. Pradeepa and K. VimalDevi, �E�ectiveness of testcase prioritization using apfd
metric: Survey,� in IJCA Proceedings on International Conference on Research
Trends in Computer Technologies, pp. 1�4, 2013.

17. D. Leon and A. Podgurski, �A comparison of coverage-based and distribution-
based techniques for �ltering and prioritizing test cases,� in Software Reliability
Engineering, 2003. ISSRE 2003. 14th International Symposium on, pp. 442�453,
IEEE, 2003.

18. V. Kaushik and B. Yadav, �A new approach for regression test case prioritization
using branch coverage, code coverage and mandatory requirement coverage,�

19. D. Silva, R. Rabelo, M. Campanha, P. S. Neto, P. A. Oliveira, and R. Britto, �A
hybrid approach for test case prioritization and selection,� in Evolutionary Com-
putation (CEC), 2016 IEEE Congress on, pp. 4508�4515, IEEE, 2016.

20. R. A. Haraty, N. Mansour, and B. Daou, �Regression testing of database applica-
tions,� in Proceedings of the 2001 ACM symposium on Applied computing, pp. 285�
289, ACM, 2001.

21. D. Binkley, �Semantics guided regression test cost reduction,� IEEE Transactions
on Software Engineering, vol. 23, no. 8, pp. 498�516, 1997.

22. D. Willmor and S. M. Embury, �A safe regression test selection technique for
database-driven applications,� in Software Maintenance, 2005. ICSM'05. Proceed-
ings of the 21st IEEE International Conference on, pp. 421�430, IEEE, 2005.

23. G. Rothermel and M. J. Harrold, �A safe, e�cient regression test selection tech-
nique,� ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 6, no. 2, pp. 173�210, 1997.

24. T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, �An empir-
ical study of regression test selection techniques,� ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 10, no. 2, pp. 184�208, 2001.

25. G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, �Prioritizing test cases
for regression testing,� IEEE Transactions on software engineering, vol. 27, no. 10,
pp. 929�948, 2001.

26. M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A.
Spoon, and A. Gujarathi, �Regression test selection for java software,� in ACM
SIGPLAN Notices, vol. 36, pp. 312�326, ACM, 2001.



27. A. Orso, N. Shi, and M. J. Harrold, �Scaling regression testing to large software
systems,� in ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 241�251,
ACM, 2004.

28. G. Rothermel and M. J. Harrold, �Analyzing regression test selection techniques,�
IEEE Transactions on software engineering, vol. 22, no. 8, pp. 529�551, 1996.

29. S. Bates and S. Horwitz, �Incremental program testing using program dependence
graphs,� in Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pp. 384�396, ACM, 1993.

30. G. Rothermel, M. J. Harrold, and J. Dedhia, �Regression test selection for c++
software,� Software Testing Veri�cation and Reliability, vol. 10, no. 2, pp. 77�109,
2000.

31. J. A. Jones, M. J. Harrold, and J. Stasko, �Visualization of test information to
assist fault localization,� in Proceedings of the 24th international conference on
Software engineering, pp. 467�477, ACM, 2002.

32. D. S. Rosenblum and E. J. Weyuker, �Using coverage information to predict the
cost-e�ectiveness of regression testing strategies,� IEEE Transactions on Software
Engineering, vol. 23, no. 3, pp. 146�156, 1997.

33. M. J. Harrold and M. Sou�a, �An incremental approach to unit testing during
maintenance,� in Software Maintenance, 1988., Proceedings of the Conference on,
pp. 362�367, IEEE, 1988.

34. M. J. Harrold, �An approach to incremental testing,� 1988.
35. T. J. Ostrand and E. J. Weyuker, �Using data�ow analysis for regression testing,�

in Proceedings of the Sixth Annual Paci�c Northwest Software Quality Conference,
pp. 233�47, 1988.

36. A.-B. Taha, S. M. Thebaut, and S.-S. Liu, �An approach to software fault local-
ization and revalidation based on incremental data �ow analysis,� in Computer
Software and Applications Conference, 1989. COMPSAC 89., Proceedings of the
13th Annual International, pp. 527�534, IEEE, 1989.

37. D. Binkley, �Using semantic di�erencing to reduce the cost of regression testing,�
in Software Maintenance, 1992. Proceerdings., Conference on, pp. 41�50, IEEE,
1992.

38. J.-M. Kim and A. Porter, �A history-based test prioritization technique for re-
gression testing in resource constrained environments,� in Proceedings of the 24th
international conference on software engineering, pp. 119�129, ACM, 2002.

39. R. Gupta, M. J. Harrold, and M. L. So�a, �Program slicing-based regression testing
techniques,� Journal of Software Testing Veri�cation and Reliability, vol. 6, no. 2,
pp. 83�111, 1996.


