
A Case Study to Compare Regression Test Selection

Techniques on Open-Source Software Projects

Uğur YILMAZ1 and Ayça TARHAN2

1 Aselsan A.Ş. Ankara, Turkey
uguryilmaz@aselsan.com.tr

2 Hacettepe University. Ankara, Turkey
atarhan@cs.hacettepe.edu.tr

Abstract. Regression testing is the type of testing performed on a modified soft-
ware to validate integrated parts are functioning properly. Especially with agile
development practices being increasingly used, regression testing needs to be fast
and practical enough to coexist with the nature of agile development. To satisfy
this need, Regression Test Selection (RTS) techniques are proposed to reduce
number of tests. Although there are many studies analyzing these techniques and
their effectiveness in terms of the number of reduced tests, time and cost; the
applicability and practicality aspects have been mostly neglected. To this end, in
this paper a case study is carried out to compare highly cited and mostly used
RTS techniques. Selected techniques are applied on extensively used and tested
open-source software projects, and the result of their comparison in regards of
practicality, applicability, performance and cost-effectiveness are discussed.

Keywords: Regression Testing, Regression Test Selection, Case Study, Soft-
ware Testing.

 Açık Kaynak Kodlu Yazılım Projelerinde Regresyon

Test Seçim Tekniklerininin Karşılaştırılması için Bir

Vaka Çalışması

Uğur YILMAZ1 and Ayça TARHAN2

1 Aselsan A.Ş. Ankara, Turkey
uguryilmaz@aselsan.com.tr

2 Hacettepe University. Ankara, Turkey
atarhan@cs.hacettepe.edu.tr

Özet. Regresyon testi, değiştirilmiş bir yazılımda entegre parçaların düzgün
çalıştığını doğrulamak için gerçekleştirilen test türüdür. Özellikle çevik
geliştirme tekniklerinin daha çok kullanılmasıyla birlikte, regresyon testinin
çevik geliştirme ile bir arada bulunmak için hızlı ve pratik olması gerekmektedir.
Bu ihtiyacı karşılamak amacıyla regresyon test sayısını azaltmak için regresyon
test seçme teknikleri önerilmiştir. Bu tekniklerin azaltılmış test sayısı, zaman,
maliyet gibi açılardan etkilerinin incelendiği birçok çalışma olmasına rağmen,
uygulanabilirlik ve pratiklik hususları çoğunlukla ihmal edilmiştir. Bu amaçla,
çok kullanılan RTS tekniklerini karşılaştırmak için bir vaka çalışması
düzenlenmiştir. Seçilen teknikler yaygın olarak kullanılan ve test edilen açık
kaynak kodlu yazılım projelerinde uygulanmış ve pratiklik, uygulanabilirlik,
performans ve maliyet etkinliği açısından karşılaştırmalı sonuçları paylaşılmıştır.

Keywords: Regresyon Testi, Regresyon Test Seçimi, Vaka Çalışması, Yazılım
Test.

1 Introduction

Regression testing is the type of testing performed on a modified software in order to
validate newly introduced changes function properly with the existing software [1]. The
brute-force way of regression testing is the retest all approach in which all of the tests
are rerun. Although this approach is the most simple, it is not feasible in terms of per-
formance and cost [2]. Since there is no silver bullet in regression testing, a variety of
regression test selection techniques have been proposed in the literature throughout
years (e.g. [3]–[13]). There are many techniques developed to address the different is-
sues of regression test selection such as performance, safety and cost-effectiveness, and
many empirical studies are carried out to analyze different techniques (e.g.[1], [14],
[15], [16]). To evaluate a technique, it is applied to a software with different versions
and for each version measured data such as time, number of detected faults and etc. are
acquired and then compared to different techniques [17]. However with the advent of
agile development practices, the applicability and practicality aspect of regression test-
ing techniques have been mostly neglected. Most techniques are not evaluated enough
to make an informed selection of a RTS technique [16].

In this paper, we inspected and reported several well-acknowledged and used mod-
ern RTS techniques in respect to their applicability and practicality to ensure a smooth,
headless integration to existing open-source software systems, as well as performance
and cost-effectiveness. We applied 3 techniques to 3 large open-source systems with
multiple revisions and reported as an embedded case study [18].

This paper is structured as follows: Section 2 provides brief background information
on RTS techniques used in the study. Section 3 provides an outline of the overall case
study including research objectives, design and measures. Section 4 reports the results
obtained in the experiments and discussions. Section 5 presents threats to validity of
the article. Section 6 provides the conclusion and future work.

2 Background

2.1 Regression Test Selection

Graves et. al. [15] describes Regression Testing as follows: “ Let P be a procedure or
program; let P’ be a modified version of P; and let T be a test suite for P. A typical
regression test proceeds as follows:
(1) Select T’ ∈ T, a set of test cases to execute on P’.
(2) Test P’ with T’, establishing P’’s correctness with respect to T’.
(3) If necessary, create T’’, a set of new functional or structural test cases for P’.
(4) Test P’ with T’’, establishing P’’s correctness with respect to T’.” Main goal of the
Regression Test Selection is the select fewest possible tests that results in most fault
location.

A safe RTS means all the selected test cases are guaranteed to be modification-re-
vealing [19], hence a test that is omitted that could be affected by the modification could

cause faults to be not detected, but to make a technique safe may impose overall per-
formance reductions and implementation overhead.

A dynamic RTS is when the technique uses runtime information to analyze the de-
pendencies between two code revisions and select tests to run while running tests [20].

A static RTS technique uses compile time information and static analysis methods
to determine which tests to run [20].

2.2 RTS Techniques

In this study, 3 RTS techniques are used: Ekstazi (v5.2.0) [12], STARTS [5] and
RETEST [4].

Ekstazi collects test dependencies on the file level using checksums of the files.
Then, after a code change, it dynamically analyzes the bytecode and determines which
tests to select using previously determined dependencies. It can also integrate with other
test libraries and handles newly added test files adequately [12]. Ekstazi is a safe dy-
namic RTS technique.

STARTS is a safe static RTS technique operating at the class level using checksums
of the classes during compile time to build test-code dependencies like Ekstazi and uses
this information to select impacted test after a code change has occurred [5].

RETEST is a safe graph-traversal algorithm, mainly adopting Rothermel and Har-
rold’s algorithm [3] to Java systems. It constructs a Java Interclass Graph (JIG) based
on the Control Flow Graphs (CFG) of the program and iterates on the graph to obtain a
coverage matrix between code and tests. Then, when a code change is occurred JIG is
constructed again and RETEST selects new tests using new JIG and coverage matrix
created earlier [4].

There are many more RTS techniques proposed in literature that address different
platforms/languages (C, C++, Web, embedded), and this study focuses on highly
adopted/used techniques adopted to JAVA language.

3 Case Study Outline

3.1 Objective

To compare different RTS techniques applicability, practicality, performance and cost-
effectiveness, following research questions (RQ) are formed:

 RQ1: How do RTS techniques compare to each other in terms of applicability and

practicality? This research questions aims to answer how easy it is to setup RTS
technique and learn to use it with existing codebase.

 RQ2: How do RTS techniques compare to each other in terms of performance? This
research question aims to detail a comparison of the performance of different tech-
niques in terms of time, number of tests selected.

 RQ3: How do RTS techniques compare to each other in terms of cost-effectiveness?

This research question aims to study each technique’s cost-effectiveness whether it
is beneficial to use it or not.

3.2 Design

The study was designed as an embedded case study. The 3 RTS techniques applied to
large open source projects shown in the Table 1. To simplify experiment phase only 10
revisions of the projects are used regardless of total revisions on respected repositories.

Table 1. Open Source Projects Used.

Project Name kLOC Rev Tests
Apache Commons Lang 69.0 10 133

Ant 80.5 10 34-150

JBoss 116.6 10 105-361

Apache Commons Lang is a JAVA utility library that extends functionality of de-

fault java.lang packages [21]. Ten revisions are obtained from GitHub repo with the
associated tests. Approximate test numbers are given in Table 1.

Ant is a build tool developed for JAVA. It executes task defined in a XML based
configuration files [22]. Ten revisions are obtained with associated tests starting from
the first revision to the last revision.

JBoss is a JAVA cross-platform application server targeting web-based applications.
10 revisions is obtained with associated tests starting from first revision to last revision
[23].

The following measures are computed during experiments:

 End-to-end runtime of tests including regression test selection and testing
phases, and

 Number of tests selected.

The experiment steps are shown in Fig 1. Each one of the three RTS technique is
applied to each project consecutively in a separated manner and required measures are
calculated in each revision of the project. The average values of calculated measures
are taken and reported in Section 4.

Fig. 1. Experiment Steps

4 Results

4.1 RQ1: How do RTS techniques compare to each other in terms of

applicability and practicality?

Ekstazi has different integration options available (Maven, Gradle, Java Agent, Ant
target) [12]. All of the options are well documented and easy to use. In addition, Ekstazi
could integrate itself into Junit test process meaning there is zero work to be carried out
when integrating Ekstazi into an established testing cycle using Junit. However, while
running Ekstazi, only two options were available namely, ekstazi (selects and runs tests)
and clean (cleans previously collected dependencies). This resulted in a limited availa-
ble functionality, i.e., if, only selecting the tests were needed it couldn’t be performed
without also running the tests.

STARTS has only Maven integration which cripples it to work with Non-Maven
repositories. STARTS couldn’t integrate itself to test frameworks like Ekstazi so spe-
cific commands needed to be run while running tests with STARTS. However, unlike
Ekstazi STARTS has well documented and different functionalities (only select, only
get difference between test, only run tests, etc.) which makes it easier to integrate third
party build tools.

RETEST is not available off the shelf line Ekstazi/STARTS so we implemented the
algorithm ourselves which was an unsure task which introduced an overhead imple-
mentation time and uncertainty about the correct implementation of the technique. Alt-
hough the implementation is a one-time task, the implementer should consider usage
with other build tools or third-party test tools which also introduces maintaining/testing
times with supported third party tools.

Table 2. Summary of RTS Techniques’ features

Technique/Feature Availability Documentation Functionality Dependen-
cies*

Ekstazi High High Low Low

STARTS Medium High Medium Low

RETEST Low Low N/A Low

* Low is better
The results are given as a summary in Table 2. Overall, the applicability and practi-

cality of the already available tools is a huge benefit to adopters. While presenting new
RTS techniques, the main objective heavily focuses on the technique itself but it is
observed that with a broader spectrum of third-party integration support from RTS tech-
niques and easy to implement structures, the usage of the technique would improve.

4.2 RQ2: How do RTS techniques compare to each other in terms of

performance?

RTS techniques are assessed in the performance with respect to retest all approach to
better visualize each technique’s outcome.

Table 3. Time relative to retest all approach

Project Name Time (%)
Ekstazi STARTS RETEST

Apache Commons Lang 55 45 412

Ant 61 55 520

JBoss 64 60 590

Average 60 53 567

Table 3 summarizes the time percentage that took each technique to select and run

tests relative to retest all approach (%100). In each project the average time of 10 revi-
sions are reported. Ekstazi runs %60 fast compared to retest all approach. STARTS has
close results to Ekstazi and runs almost twice as fast compared to retest all approach.
RETEST runs 5.5 times slower on average compared to retest all approach but this
result could be connected to its JIG generation on each revision. This process introduces
a high overhead time especially in large software projects.

Table 3. Number of Tests

Project Name Tests (%)
Ekstazi STARTS RETEST

Apache Commons Lang 25 32 60

Ant 40 43 55

JBoss 45 47 42

Table 3 depicts the percentage of tests selected for each project on average with

respect to the retest all approach. Ekstazi generally selected the lowest ratio of the tests.
This can be linked to it being a dynamic RTS technique. STARTS is close to Ekstazi
on selecting relatively same number of tests. This can be explained since both of the
techniques relies on test dependency on file level. RETEST is the finest-granular tech-
nique of all and expected to select the fewer tests but it selected mostly the highest
number of tests. This phenomenon could be reasoned with since it operates on much
higher sensitivity, it selects more tests that affect the modified code whereas coarser
approaches select fewer tests [19].

4.3 RQ3: How do RTS techniques compare to each other in terms of cost-

effectiveness?

Due to the lack of fault information related to each revision of the projects used in this
study, it is impossible to compare the techniques in regards of the measures such as
Average Percentage of Fault Detection (APFD) [19]. Likewise, we couldn’t measure
the precision and safeness of each technique. Therefore, in comparison of the cost-ef-
fectiveness of each technique, other empirical analysis are investigated and reported
with the addition of qualitative experiment results.

It is observed that Ekstazi is easy to implement, fast and capable of being integrated
to third party software tools used in testing large projects, which makes it a cost-effec-
tive regression test selection technique [12], [20], [24]. In our experiment we deter-
mined that Ekstazi has negligible (in terms of milliseconds) overhead implementation
cost to large repositories.

STARTS has the ability to quickly integrate with existing software projects, alt-
hough it lacks some of the third party support of other tools. But we experimented the
overhead cost of implementing STARTS is relatively low compared to other RTS tech-
niques [20].

RETEST is hard to implement and has a high overhead of implementation/mainte-
nance/testing of the three RTS techniques. Since this technique is slower than the other
techniques, it is safe to assume that this technique has lowest cost-effectiveness among
other RTS techniques [4], [16].

5 Threats to Validity

In this section, the validity of the case study is discussed in terms of construct, internal

and external validities and reliability[18].
The construct validity is related to measurement instruments not being capturing the

correct concepts [18]. In order to alleviate this threat, time measured against retest all

approach since it could be used as a base ground to compare against.
The internal validity is related to inner instruments used in study that can affect the

authors’ judgements [18]. Since we implemented RETEST technique ourselves, it
might contain bugs that resulted in skewed outcomes. Moreover, the applicability and

practicality aspect of the techniques are evaluated considering writers’ own software
ecosystem and trends on modern software developments as of writing. Hence, if the
study is repeated in a different time or with different authors having marginally distinct
background, diverse decisions could be reached. Furthermore, to eliminate same tests
appearing on different revision due to same bug, hence, altering the result of number of
tests selected, the failed tests after each revision is reviewed to ensure the cause is not
the same fault. This threat could be erased completely by using a much larger number
of revisions.

The external validity is related to conditions that limits the researchers’ generaliza-
tion capabilities [18]. To eliminate this threat, large and highly used open source pro-
jects are selected. However, only inspecting large sized projects, the techniques’ effec-
tiveness against small sized projects is overlooked. Some techniques, especially
RETEST, could perform better on a small sized project due to having relatively omis-
sible overhead JIG computation costs. Another threat is only 10 revisions are evaluated
due to time constraints and since the definition of revision could have different meaning
for different version control systems, this could lead to ambiguity when repeating the
experiment. Some modern software projects may not run regression tests on each revi-
sion. In addition, long-time cost and performance of the RTS techniques could deviate
from found results.

The reliability requires that the study can be repeated with the same steps by other
researchers. To address the issue, the steps taken performing this study explained in
design section (3.2) and in Fig-1.

6 Conclusion and Future Work

Regression Test Selection is an important task that needs to be tackled fast and in an
effective way especially in large software projects. To satisfy this need, many RTS
techniques, each targeting different goals are proposed in the literature. In this article,
we presented the comparison of the mostly used RTS techniques in terms of applica-
bility, practicality, performance and cost-effectiveness in an embedded case study en-
vironment. Highly cited, finer-granular RTS techniques developed over years perform
worse timewise in today’s modern large software projects; on the other hand, the mod-
ern RTS techniques use coarser methods to achieve smaller number of selected tests,
better performance and easy to use approach which all result in higher adaptation rate
from industry.

Unfortunately, we could not have the chance of measuring any fault related metrics
which would give more detailed insights about each technique’s cost-effectiveness. Ad-
vancing on this topic while including more software projects (large and small), with
fault history and evaluating more RTS techniques to paint a broader picture could be a
promising direction for future work.

References

1 S. Yoo and M. Harman, “Regression Testing Minimisation, Selection and Prioritisation :

A Survey,” Test. Verif. Reliab, vol. 00, pp. 1–7, 2007.
2 J.-M. Kim and A. Porter, “A history-based test prioritization technique for regression

testing in resource constrained environments,” Proc. 24th Int. Conf. Softw. Eng. - ICSE

’02, p. 119, 2002.
3 G. Rothermel and M. J. Harrold, “A safe, efficient regression test selection technique,”

ACM Trans. Softw. Eng. Methodol., vol. 6, no. 2, pp. 173–210, 1997.
4 M. J. Harrold et al., “Regression test selection for Java software,” ACM SIGPLAN Not.,

vol. 36, pp. 312–326, 2001.
5 O. Legunsen, A. Shi, and D. Marinov, “STARTS: STAtic regression test selection,”

ASE 2017 - Proc. 32nd IEEE/ACM Int. Conf. Autom. Softw. Eng., no. iv, pp. 949–954,
2017.

6 D. Willmor, S. M. Embury, S. E. -, 2005. ICSM’05. Proceedings of The, and U. 2005,
“A safe regression test selection technique for database-driven applications,” in
ieeexplore.ieee.org, 2005, vol. 2005, pp. 421–432.

7 M. Ruth et al., “A Safe Regression Test Selection Technique for Web Services,” in
Proceedings of the 31st Annual International Computer Software and Applications

Conference - Volume 02, 2007, pp. 0–5.
8 W. S. A. El-hamid, S. S. El-etriby, and M. M. Hadhoud, “A General Regression Test

Selection Technique,” pp. 893–897, 2010.
9 N. Mansour and W. Statieh, “Regression Test Selection for C# Programs,” Adv. Softw.

Eng., vol. 2009, pp. 1–10, 2009.
10 R. Malhotra, A. Kaur, and Y. Singh, “A Regression Test Selection and Prioritization

Technique,” J. Inf. Process. Syst., vol. 6, no. 2, pp. 235–252, 2010.
11 T. Yu, X. Qu, M. Acharya, and G. Rothermel, “Oracle-based Regression Test

Selection,” 2013 IEEE Sixth Int. Conf. Softw. Testing, Verif. Valid., pp. 292–301, 2013.
12 M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight Test Selection,” Proc.

- Int. Conf. Softw. Eng., vol. 2, pp. 713–716, 2015.
13 R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective Regression Test

Case Selection,” ACM Comput. Surv., vol. 50, no. 2, pp. 1–32, 2017.
14 H. Do and G. Rothermel, “An Empirical Study of Regression Testing Techniques

Incorporating Context and Lifetime Factors and Improved Cost-Benefit Models,”
Sigsoft’06/Fse-, pp. 141–151, 2006.

15 T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, “An empirical
study of regression test selection techniques,” ACM Trans. Softw. Eng. Methodol., vol.
10, no. 2, pp. 184–208, 2001.

16 E. Engström, P. Runeson, and M. Skoglund, “A systematic review on regression test
selection techniques,” Inf. Softw. Technol., vol. 52, no. 1, pp. 14–30, Jan. 2010.

17 G. Rothermel and M. J. Harrold, “A framework for evaluating regression test selection
techniques,” Proc. 16th Int. Conf. Softw. Eng., pp. 201–210, 1994.

18 R. K. Yin, Case Study Research. Design and Methods., vol. 5, no. 5. 2009.
19 S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, “Regression test selection

techniques: A survey,” Inform., vol. 35, no. 3, pp. 289–321, 2011.
20 O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An extensive study

of static regression test selection in modern software evolution,” Proc. 2016 24th ACM

SIGSOFT Int. Symp. Found. Softw. Eng. - FSE 2016, pp. 583–594, 2016.

21 “Apache Commons Lang,” 2018. [Online]. Available:
https://github.com/apache/commons-lang. [Accessed: 20-May-2018].

22 “Ant.” [Online]. Available: http://sir.unl.edu/content/bios/ant.php. [Accessed: 20-May-
2018].

23 “jBoss.” [Online]. Available: http://sir.unl.edu/content/bios/jboss.php. [Accessed: 20-
May-2018].

24 N. Dini, A. Sullivan, M. Gligoric, and G. Rothermel, “The Effect of Test Suite Type on
Regression Test Selection,” 2016 IEEE 27th Int. Symp. Softw. Reliab. Eng., pp. 47–58,
2016.

