
On (In)Sensitivity by Two-Way Restarting Automata

Martin Plátek1, Dana Pardubská2*, and František Mráz1

1 Charles University, Department of Computer Science
Malostranské nám. 25, 118 00 PRAHA 1, Czech Republic

martin.platek@mff.cuni.cz, frantisek.mraz@mff.cuni.cz
2 Comenius University in Bratislava, Department of Computer Science

Mlynská Dolina, 84248 Bratislava, Slovakia
pardubska@dcs.fmph.uniba.sk

Abstract: We study h-lexicalized two-way restarting au-
tomaton (hRLWW(i)) that can rewrite at most i times per
cycle, for i ≥ 1. This model is useful for the study of
lexical syntactic disambiguation (a notion from linguistic)
through the formal notion of h-lexicalized syntactic anal-
ysis (hLSA). The hLSA is composed of a basic language
and the corresponding h-proper language obtained from
the basic language by mapping all non-input symbols on
input symbols. We compare the properties of input lan-
guages, which are the languages traditionally considered
in automata theory, to the properties of hLSA, i.e., to the
properties of basic and h-proper languages.

The basic and h-proper languages of hRLWW(i)-
automata fulfill the so called reduction correctness pre-
serving property, but the input languages do not. While
basic and h-proper languages are sensitive to the size of
the read/write window, the input languages are not. More-
over, the basic and h-proper languages are sensitive to the
number of rewrite steps per cycle. All that concerns a sub-
class of context-sensitive languages containing all context-
free languages (and most probably also the class of mildly
context-sensitive languages [5]), i.e., a class suitable for
studying and classifying syntactic and semantic features
of natural languages.

We work here also with the parametrized constraint of
monotonicity. While using the monotonicity of degree one
we can characterize the class of context-free languages,
the monotonicity of higher degrees can model more com-
plex syntactic phenomena of whole natural languages (like
cross-serial dependencies [5]).

Finally, we stress the constraint of weak cyclic form. It
preserves the power of hRLWW(i)-automata, and it allows
to extend the complexity results obtained for the classes of
infinite languages also into the classes of finite languages
(parametrized by the number of performed cycles). It is
useful for classifications in computational and corpus lin-
guistics, where all the (syntactic) observation are of the fi-
nite nature. The main technical novelty of the paper are the
results about the sensitivity and insensivity of finite and in-
finite hLSA and corresponding languages by hRLWW(i)-
automata.

*The research is partially supported by VEGA 2/0165/16

1 Introduction

This paper is a continuation of conference papers [13],
[14], and the technical report [15]. Its motivation is to
study lexical syntactic disambiguation, which is one of
the basic concepts of several linguistic schools, including
the schools working with dependency syntax. In order to
give a theoretical basis for lexicalized syntax, a model of
a restarting automaton that formalizes lexicalization in a
similar way as categorial grammars (see, e.g., [1]) – the
h-lexicalized restarting automaton (hRLWW), was intro-
duced in [13]. This model is obtained from the two-way
restarting automaton of [12] by adding a letter-to-letter
morphism h that assigns an input symbol to each working
symbol. Then the basic language LC(M) of an hRLWW-
automaton M consists of all words over the working al-
phabet of M that are accepted by M, and the h-proper lan-
guage LhP(M) of M is obtained from LC(M) through the
morphism h.

Further, the set of pairs {(h(w),w) | w ∈ LC(M)}, de-
noted as LA(M), is called the h-lexicalized syntactic anal-
ysis (hLSA) by M. Thus, in this setting the auxiliary sym-
bols themselves play the role of the tagged items. That is,
each auxiliary symbol b can be seen as a pair consisting
of an input symbol h(b) and some additional syntactico-
semantic information (tags).

In contrast to the original hRLWW-automaton that uses
exactly one rewrite in a cycle, here we study h-lexicalized
restarting automaton (hRLWW(i)) allowing i≥ 1 rewrites
in a cycle. Our effort is to show that this model is suited
for a transparent and sensitive modeling of the lexicalized
syntactic analysis (lexical disambiguation) of natural lan-
guages (compare to [8, 9]).

The lexicalized syntactic analysis based on analysis by
reduction is traditionally used to analyze sentences of nat-
ural languages with a high degree of word-order freedom
like, e.g., Czech, Latin, or German (see, e.g., [8]). Usually,
a human reader is supposed to understand the meaning of a
given sentence before he starts to analyze it; h-lexicalized
syntactic analysis based on the analysis by reduction sim-
ulates such a behavior by analysis of sentences, where
morphological and syntactical tags have been added to the
word-forms and punctuation marks (see, e.g., [9]). We re-
call some constraints that are typical for restarting auto-
mata, and we outline ways for new combinations of con-

S. Krajči (ed.): ITAT 2018 Proceedings, pp. 10–17
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, c© 2018 Martin Plátek, Dana Pardubská, and František Mráz

straints. We establish infinite (two-dimensional) ascend-
ing hierarchies of language classes of h-proper languages
for several subtypes of hRLWW(i)-automata with respect
to the number of allowed cycles, the number of symbols
deleted during each cycle or the length of scanning win-
dow of an automaton.

The paper is structured as follows. In Section 2, we
introduce our model and its sub-models, we define the
h-proper languages, and we state the reduction correct-
ness preserving property and the reduction error preserv-
ing property for the basic languages of deterministic h-
RLWW-automata. In Section 3, we present the achieved
results. The paper concludes with Section 4 in which we
summarize our results and state some problems for future
work.

2 Definitions

By ⊆ and ⊂ we denote the subset and the proper subset
relation, respectively. Further, we will sometimes use reg-
ular expressions instead of the corresponding regular lan-
guages. Finally, throughout the paper λ will denote the
empty word.

We start with the definition of the two-way restart-
ing automaton as an extension to the original definition
from [12]. In contrast to [14], we do not introduce gen-
eral h-lexicalized two-way restarting list automaton which
can rewrite arbitrary many times during each cycle. In-
stead, we introduce two-way restarting automata which
can rewrite at most i times per cycle, for an integer i≥ 1.

Definition 1. Let i be a positive integer. A two-way
restarting automaton, an RLWW(i)-automaton for short,
is a machine with a single flexible tape and a finite-
state control. It is defined through an 9-tuple M =
(Q,Σ,Γ,¢,$,q0,k, i,δ), where Q is a finite set of states, Σ
is a finite input alphabet, and Γ(⊇Σ) is a finite working al-
phabet. The symbols from ΓrΣ are called auxiliary sym-
bols. Further, the symbols ¢,$ 6∈ Γ, called sentinels, are
the markers for the left and right border of the workspace,
respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size
of the read/write window, i ≥ 1 is the number of allowed
rewrites in a cycle (see later), and

δ : Q×PC≤k→P((Q×{MVR,MVL,W(y),SL(v)})∪
{Restart,Accept,Reject})

is the transition relation. Here P(S) denotes the powerset
of a set S,

PC≤k = (¢ ·Γk−1)∪Γk ∪ (Γ≤k−1 ·$)∪ (¢ ·Γ≤k−2 ·$)

is the set of possible contents of the read/write window
of M, v ∈PC≤k−1, and y ∈PC≤k.

Being in a state q ∈ Q and seeing u ∈PC≤k in its win-
dow, the automaton can perform seven different types of
transition steps (or instructions):

1. A move-right step (q,u) −→ (q′,MVR) assumes that
(q′,MVR) ∈ δ (q,u), where q′ ∈ Q and u /∈ {λ ,¢} ·
Γ≤k−1 · $. This move-right step causes M to shift the
window one position to the right and to enter state q′.

2. A move-left step (q,u) −→ (q′,MVL) assumes that
(q′,MVL)∈ δ (q,u), where q′ ∈Q and u 6∈ ¢ ·Γ∗ ·{λ ,$}.
It causes M to shift the window one position to the left
and to enter state q′.

3. An SL-step (q,u) −→ (q′,SL(v)) assumes that
(q′,SL(v)) ∈ δ (q,u), where q′ ∈ Q, v ∈ PC≤k−1, v
is shorter than u, and v contains all the sentinels that
occur in u (if any). It causes M to replace u by v, to
enter state q′, and to shift the window by |u|− |v| items
to the left – but at most to the left sentinel ¢ (that is,
the contents of the window is ‘completed’ from the left,
and so the distance to the left sentinel decreases, if the
window was not already at ¢).

4. A W-step (q,u) −→ (q′,W(v)) assumes that
(q′,W(v))∈ δ (q,u), where q′ ∈ Q, v ∈ PC≤k,
|v| = |u|, and that v contains all the sentinels that
occur in u (if any). It causes M to replace u by v, and
to enter state q′ without moving its window.

5. A restart step (q,u)−→ Restart assumes that Restart∈
δ (q,u). It causes M to place its window at the left end
of its tape, so that the first symbol it sees is the left
sentinel ¢, and to reenter the initial state q0.

6. An accept step (q,u) −→ Accept assumes that
Accept ∈ δ (q,u). It causes M to halt and accept.

7. A reject step (q,u) −→ Reject assumes that Reject ∈
δ (q,u). It causes M to halt and reject.

A configuration of an RLWW(i)-automaton M is a word
αqβ , where q∈Q, and either α = λ and β ∈ {¢}·Γ∗ ·{$}
or α ∈ {¢} · Γ∗ and β ∈ Γ∗ · {$}; here q represents the
current state, αβ is the current contents of the tape, and
it is understood that the read/write window contains the
first k symbols of β or all of β if |β | < k. A restarting
configuration is of the form q0¢w$, where w ∈ Γ∗; if w ∈
Σ∗, then q0¢w$ is an initial configuration. We see that any
initial configuration is also a restarting configuration, and
that any restart transfers M into a restarting configuration.

In general, an RLWW(i)-automaton M is nondetermin-
istic, that is, there can be two or more steps (instructions)
with the same left-hand side (q,u), and thus, there can be
more than one computation that start from a given restart-
ing configuration. If this is not the case, the automaton is
deterministic.

A computation of M is a sequence C =C0,C1, . . . ,C j of
configurations of M, where C0 is an initial or a restarting
configuration and Ci+1 is obtained from Ci by a step of M,
for all 0 ≤ i < j. In the following we only consider com-
putations of RLWW(i)-automata which are finite and end
either by an accept or by a reject step.

Robustness versus Sensibility by Two-Way Restarting Automata 11

Cycles and tails: Any finite computation of an RLWW(i)-
automaton M consists of certain phases. A phase, called
a cycle, starts in a restarting configuration, the window
moves along the tape performing non-restarting steps un-
til a restart step is performed and thus a new restarting
configuration is reached. If no further restart step is per-
formed, any finite computation necessarily finishes in a
halting configuration – such a phase is called a tail. It is
required that in each cycle RLWW(i)-automaton executes
at most i rewrite steps (of type W or SL) but at least one
SL-step. Moreover, it must not execute any rewrite step in
a tail.

This induces the following relation of cycle-rewriting
by M: u ⇒c

M v iff there is a cycle that begins with the
restarting configuration q0¢u$ and ends with the restart-
ing configuration q0¢v$. The relation ⇒c∗

M is the reflex-
ive and transitive closure of ⇒c

M . We stress that the
cycle-rewriting is a very important feature of an RLWW(i)-
automaton. As each SL-step is strictly length-reducing,
we see that u⇒c

M v implies that |u| > |v|. Accordingly,
u⇒c

M v is also called a reduction by M.
An input word w ∈ Σ∗ is accepted by M, if there is

a computation which starts with the initial configuration
q0¢w$ and ends by executing an accept step. By L(M) we
denote the language consisting of all input words accepted
by M; we say that M recognizes (or accepts) the input lan-
guage L(M).

A basic (or characteristic) word w ∈ Γ∗ is accepted by
M if there is a computation which starts with the restarting
configuration q0¢w$ and ends by executing an accept step.
By LC(M) we denote the set of all words from Γ∗ that are
accepted by M; we say that M recognizes (or accepts) the
basic (or characteristic1) language LC.

Finally, we come to the definition of the central notion
of this paper, the h-lexicalized RLWW(i)-automaton.

Definition 2. Let i be a positive integer. An h-lexicalized
RLWW(i)-automaton, or an hRLWW(i)-automaton, is a
pair M̂ = (M,h), where M = (Q,Σ,Γ,¢,$,q0,k, i,δ) is an
RLWW(i)-automaton and h : Γ → Σ is a letter-to-letter
morphism satisfying h(a) = a for all input letters a ∈ Σ.
The input language L(M̂) of M̂ is simply the language
L(M) and the basic language LC(M̂) of M̂ is the language
LC(M). Finally, we take LhP(M̂) = h(LC(M)), and we
say that M̂ recognizes (or accepts) the h-proper language
LhP(M̂).

Finally, the set LA(M̂) = {(h(w),w) | w ∈ LC(M)} is
called the h-lexicalized syntactic analysis (shortly hLSA)
by M̂.

We say that for x ∈ Σ∗, LA(M̂,x) = {(x,y) | y ∈
LC(M),h(y) = x} is the h-syntactic analysis (lexicalized
syntactic analysis) for x by M̂. We see that LA(M̂,x) is
non-empty only for x from LhP(M̂).

1Basic languages were called characteristic languages in [10] and
several other papers, therefore, here we preserve the original notation
with subscript C.

Evidently, for an hRLWW(i)-automaton M̂, we have
L(M̂)⊆ LhP(M̂) = h(LC(M̂)).

Let us note that h-lexicalized syntactic analysis formal-
izes the linguistic notion of lexical disambiguation. Each
auxiliary symbol x ∈ ΓrΣ of a word from LC(M̂) can be
considered as a disambiguated input symbol h(x).

The following two facts ensure the transparency for
computations of hRLWW(i)-automata with respect to their
basic and h-proper languages.

Fact 1. (Reduction Error Preserving Property) Let M
be an hRLWW(i)-automaton. If u⇒c∗

M v and u /∈ LC(M),
then v /∈ LC(M).

Fact 2. (Reduction Correctness Preserving Property)
Let M be a deterministic hRLWW(i)-automaton. If u⇒c∗

M v
and u ∈ LC(M), then v ∈ LC(M), and h(v) ∈ LhP(M).

Notations. For brevity, the prefix det- will be used to de-
note the property of being deterministic. For any class A of
automata, L (A) will denote the class of input languages
that are recognized by automata from A, LC(A) will de-
note the class of basic languages that are recognized by
automata from A, and LhP(A) will denote the class of h-
proper languages that are recognized by automata from A.
LA(A) will denote the class of hLSA (h-lexicalized syn-
tactic analyses) that are defined by automata from A. For a
natural number k ≥ 1, L (k-A), LC(k-A), LhP(k-A), and
LA(k-A) will denote the class of input, basic, h-proper
languages, and hLSA’s, respectively, that are recognized
by those automata from A that use a read/write window of
size k.

2.1 Further Refinements and Constraints on
RLWW-Automata (hRLWW-Automata)

Here we introduce some constrained types of rewrite steps
whose introduction is motivated by different type of lin-
guistic reductions.

A delete-left step (q,u)→ (q′,DL(v)) is a special type
of an SL-step (q′,SL(v)) ∈ δ (q,u), where v is a proper
(scattered) subsequence of u, containing all the sentinels
from u (if any). It causes M to replace u by v (by deleting
excessive symbols), to enter state q′, and to shift the win-
dow by |u|− |v| symbols to the left, but at most to the left
sentinel ¢.

A contextual-left step (q,u) → (q′,CL(v)) is a spe-
cial type of DL-step (q′,DL(v)) ∈ δ (q,u), where
u = v1u1v2u2v3 and v = v1v2v3 such that v contains all the
sentinels from u (if any). It causes M to replace u by v (by
deleting the factors u1 and u2 of u), to enter state q′, and
to shift the window by |u|− |v| symbols to the left, but at
most to the left sentinel ¢.

An RLWW(i)-automaton is called RLW(i)-automaton if
its working alphabet coincides with its input alphabet, that
is, no auxiliary symbols are available for this automaton.
Note that in this situation, each restarting configuration is

12 Martin Plátek, Dana Pardubská, and František Mráz

necessarily an initial configuration. Within an abbrevia-
tion for an automata type, R denotes the use of moves to
the right, L denotes the use of moves to the left, WW de-
notes the use of both input and working alphabets, and sin-
gle W denotes the use of input alphabet only (the working
alphabet coincides with the input alphabet).

An RLW(i)-automaton is called RLWD(i)-automaton if
all its rewrite steps are DL steps, and it is an RLWC(i)-
automaton if all its rewrite steps are CL-steps. Further,
an RLWW(i)-automaton is called RLWWC(i)-automaton
if all its rewrite steps are CL-steps. Similarly, an
RLWW(i)-automaton is called RLWWD(i)-automaton if
all its rewrite steps are DL-steps. Observe that when con-
centrating on input languages, DL- and CL-steps ensure
that no auxiliary symbols can ever occur on the tape; if,
however, we are interested in basic or h-proper languages,
then auxiliary symbols can play an important role even
though a given RLWW(i)-automaton uses only DL- or
CL-steps. Therefore, we distinguish between RLWWC(i)-
and RLWC(i)-automata, and between RLWWD(i)- and
RLWD(i)-automata.

In the following we will use the corresponding no-
tations also for subclasses of RLWW(i)-automata, and
hRLWW(i)-automata.

Evidently, we need not distinguish between hRLW(i)-
automata and RLW(i)-automata, since for the RLW(i)-
automata the only possible morphism h is the identity.

Fact 3. (Equality of Languages for RLW(i)-automata.)
For any RLW(i)-automaton M, L(M) = LC(M) = LhP(M).

We recall the notion of monotonicity (see [3, 4]) as
an important constraint for computations of RLWW(i)-
automata. Let M be an RLWW(i)-automaton, and let
C =Ck,Ck+1, . . . ,C j be a sequence of configurations of M,
where C`+1 is obtained by a single transition step from C`,
k ≤ ` < j. We say that C is a subcomputation of M.
If C` = ¢αqβ$, then |β$| is the right distance of C`,
which is denoted by Dr(C`). We say that a sub-sequence
(C`1 ,C`2 , . . . ,C`n) of C is monotone if Dr(C`1)≥Dr(C`2)≥
·· · ≥ Dr(C`n). A computation of M is called monotone if
the corresponding sub-sequence of rewrite configurations
is monotone. Here a configuration is called a rewrite con-
figuration if in this configuration an SL- or W-step is being
applied. Finally, M itself is called monotone if each of its
computations is monotone. We use the prefix mon- to de-
note monotone types of RLWW(i)-automata. This notion
of monotonicity has been considered before in various pa-
pers (see [7]) similarly as its following generalization.

Naturally, a mon-RLWW(i)-automaton can be used to
simulate bottom-up one-pass parsers. In order to simulate
also bottom-up multi-pass parsers, a j-monotonicity for
restarting automata was introduced in [12]. For an inte-
ger j ≥ 1, a RLWW(i)- automaton is called j-monotone if,
for each of its computations, the corresponding sequence
of rewriting configurations can be partitioned into at most
j sub-sequences such that each of these sub-sequences

is monotone. We use the prefix mon(j)- to denote j-
monotone types of RLWW(i)-automata.

Here we transfer some restricted form of restarting au-
tomata called weak cyclic form (wcf) (see [3]) over to
RLWW(i)’s. An RLWW M is said to be in weak cyclic
form if |uv| ≤ k for each accepting configuration ¢uqv$
of M, where k is the size of the read/write window of M.
Thus, before M can accept, it must erase sufficiently many
letters from its tape. The prefix wcf- will be used to denote
restarting automata in the weak cyclic form.

3 Results

3.1 On the Insensitivity of Input Languages

The following characterizations, which are slight exten-
sions of known results, show that with respect to their
input languages, (monotone) RLWW(1)-automata are in-
sensitive to the size of their read/write windows. In the
following CFL is the class of context-free languages.

Theorem 4. For all k ≥ 3, the following equalities hold:
(a) CFL = L (mon-RLWW(1)),
(b) CFL = L (k-wcf-mon-RLWW(1)),
(c) L (RLWW(1)) = L (k-wcf-RLWW(1)).

Proof. It follows from [7] that CFL =
L (k-mon-RLWW(1)) for all k ≥ 3, and the equality
L (RLWW) = L (k-RLWW(1)) follows from [16].

It remains to prove that each (monotone) RLWW(1)-
automaton with a window of size three can be converted
into weak cyclic form.

Transformation into weak cyclic form for input lan-
guages. So let M1 be an RLWW(1)-automaton with win-
dow size three. A wcf-RLWW(1)-automaton M2 can sim-
ulate M1 as follows: M2 uses a new non-input symbol #
to indicate that M1 halts with accepting. At the beginning
of each cycle M2 checks the symbol in front of the right
sentinel $. If it is # there, M2 simply deletes the symbol in
front of # and restarts, except when # is the only symbol
on the tape in which case it accepts. If there is no # on
the tape, M2 simulates M1 step by step until M1 is about
to halt. If M1 rejects, then so does M2. If, however, M1
accepts, then M2 either accepts if the tape contents is of
length at most three, or, in case of longer tape contents,
instead of accepting, M2 moves its window to the right,
rewrites the last two symbols in front of the right sentinel
$ by the special symbol # and restarts.

It is easily seen that M2 is monotone, if M1 is, that it
has window size three, and that it accepts the same input
language as M1.

Theorem 5. For all k,k′, j ≥ 1, X ∈ {λ ,wc f}:
(a) L (k-X-RLWW(j)) ⊆ L (k′-X-RLWW(j′)), for all

j′ ≥ d k
k′ e · j.

(b) CFL⊂L (2-X-RLWW(j)).

Robustness versus Sensibility by Two-Way Restarting Automata 13

Proof. Case (a) follows from an easy observation that
a single rewrite operation using a window of size k
can be simulated by at most d k

k′ e rewrite operations
with a window of size k′. To prove (b) we show
that 2-wcf-RLWW(1)-automata accept all context-free lan-
guages and give a non-context-free language accepted by
2-wcf-RLWW(1)-automaton.

Given any context-free language L, Niemann and Otto
in [11] showed how to construct a monotone one-way
restarting automaton with window size 3 recognizing L.
As the constructed automaton rewrites at most 2 con-
secutive symbols in a cycle and RLWW(1)-automaton
can move in both directions, the constructed automaton
can be simulated by a monotone 2-RLWW(1)-automaton.
This implies CFL ⊆ L (2-X-RLWW(j)). To complete
the proof of (b) it remains to show that the inclusion is
proper. We will show that the non-context-free language
L = {anb2ncn | n ≥ 0} can be accepted by a 2-RLWW(1)-
automaton M.

The automaton M will use two auxiliary symbols X ,Y
whose role is to indicate deleted subwords ab and bc, re-
spectively. Within four cycles the automaton deletes one
occurrence of a and c and two symbols b. To do so M
scans the contents ω of the tape within the sentinels from
left to right and with the right sentinel in its window M
distinguishes six situations:

1. if ω = λ then M accepts;
2. if ω = a+b+c+, then M rewrites ab with X and

restarts;
3. if ω = a∗Xb+c+, then M rewrites bc with Y and

restarts;
4. if ω = a∗Xb∗Y c∗, then M deletes X and restarts;
5. if ω = a∗b∗Y c∗, then M deletes Y and restarts;
6. finally, in all other situations M rejects.

Obviously, M iteratively repeats a series of four cycles and
then accepts/rejects in a tail computation. From the above
description, L = L(M) and L ∈ L (2-RLWW(1))r CFL
follow easily.

The previous theorem witnesses the insensitivity of in-
put languages of RLWW(i)-automata with respect to the
size of look-ahead window.

3.2 hRLWW(i)-Automata and h-Lexicalized
Syntactic Disambiguation

In the following we will study basic and h-proper lan-
guages of hRLWW(i)-automata, and we will see that with
respect to these languages, hRLWW(i)-automata (and their
variants) are sensitive to the window size, number of SL-
operations in a cycle, etc.

The reformulated basic result from [13] follows.

Theorem 6. The following equalities hold:
CFL = LhP(mon-RLWW(1))

= LhP(det-mon-RLWW(1))
= LhP(det-mon-RLWWD(1))
= LhP(det-mon-RLWWC(1)).

The previous theorem witnesses that for any context-
free language there is a deterministic monotone analyzer
which accepts the language when each input word is com-
pletely lexically disambiguated.

3.3 Weak Cyclic Form for Basic Languages

Theorem 7. Let i ≥ 1. For each RLWW(i)-automaton
M, there is a wcf-RLWW(i)-automaton Mwcf such that
LC(M) = LC(Mwcf), and u⇒c∗

M v implies u⇒c∗
Mwcf

v, for
all words u,v. Moreover, the added reductions are in con-
textual form. If M is deterministic, j-monotone or simul-
taneously deterministic and j-monotone, for some j ≥ 1,
then Mwcf is deterministic, j-monotone or simultaneously
deterministic and j-monotone, respectively.

Proof. Transformation into wcf for basic languages.
Let M be an RLWW(i)-automaton. We describe how M
can be converted into a wcf-RLWW(i)-automaton Mwcf
with the basic language LC(Mwcf) = LC(M). Let us as-
sume that the size of the window of M is k. It is easy to
see that the language LT accepted by M in tail computa-
tions is a regular sub-language of LC(M). This means that
there exists a deterministic finite automaton AT such that
L(AT) = LT . Assume that AT has p states. For Mwcf we
now take a window of size kwcf = max{k, p+ 1}. Mwcf
executes all cycles (reductions) of M just as M. However,
the accepting tail computations of M are replaced by com-
putations of Mwcf that work in the following way:

(1) Any word w∈ LC(M) satisfying |w| ≤ kwcf is immedi-
ately accepted.

(2) On any word w satisfying |w| > kwcf, Mwcf executes
a cycle that works as follows: the window is moved
to the right until the right sentinel $ appears in the
window. From the pumping lemma for regular lan-
guages we know that if w ∈ LT , then there exists a
factorization w = xyz such that |y| > 0, |y|+ |z| ≤ p,
and xz ∈ LT . Accordingly, Mwcf deletes the factor y
and restarts.

From the construction above we immediately see that
LC(Mwcf) = LC(M). According to the definition of an
RLWW(i)-automaton, the automaton M cannot rewrite
during tail computations. Therefore, if M is determin-
istic then Mwcf is deterministic. Additionally, if M is j-
monotone, then Mwcf is j-monotone, too, as the property
of j-monotonicity is not disturbed by the delete operations
at the very right end of the tape that are executed at the
end of a computation. Moreover, all added reductions are
in contextual form.

This enables to strengthen Theorem 6 by requiring au-
tomata in weak cyclic form only.

Corollary 1. For all X ∈ {RLWW(1), RLWWD(1),
RLWWC(1)}, the following equalities hold:

CFL= LhP(mon-wcf-X) = LhP(det-mon-wcf-X).

14 Martin Plátek, Dana Pardubská, and František Mráz

Hence, we can require that analyzers for context-free
languages are not only monotone, but they also should ac-
cept without restart short words only.

3.4 On Sensitivity of hLSA by hRLWW(i)-Automata

Here we will recall that for hRLWW(1)-automata in weak
cyclic form, there are strict hierarchies of classes of finite
and infinite basic and h-proper languages that are based
on the window size and on the number of rewrites in one
cycle (one reduction) the automata are allowed to execute
in accepting computations. As the main new results we
will show similar results for hRLWW(j)-automata.

First, however, we need to introduce some additional
notions. For a type X of RLWW(j)-automata, we denote
the subclass of X-automata which perform at most i re-
ductions in any computation as fin(i)-X-automata, and by
fin-X, we denote those X-automata that are of type fin(i)-X
for some i≥ 0.

For any hRLWW(j)-automaton M, we use LC(M, i) to
denote the subset of LC(M) that consists of all words that
M accepts by computations that contain at most i reduc-
tions, and we take LhP(M, i) = h(LC(M, i)).

Proposition 8. Let i ≥ 0, j ≥ 1 and let M be a wcf-
hRLWW(j)-automaton. Then there exists a fin(i)-wcf-
hRLWW(j)-automaton Mi such that LC(Mi) = LC(M, i),
Mi has the same window size as M, and if u⇒c

M v and
v ∈ LC(M, i−1), then u⇒c

Mi
v. In addition, if M is deter-

ministic, then so is Mi.

Proof. Obviously, for an arbitrary i ≥ 0, j,k ≥ 1
and k-fin(i)-wcf-hRLWW(j)-automaton M, the language
LC(M, i) is finite. Hence, it is accepted by a finite automa-
ton Ai. Automaton Mi cannot simply accept in tail com-
putations all words from LC(M, i), as the words can be of
length greater than k. Therefore, on input w, automaton
Mi first simulates Ai. If Ai accepts, then let v1, . . . ,vn be
all words from LC(M, i− 1) such that w ⇒c

M v`, for all
`,1 ≤ ` ≤ n. Then Mi nondeterministically selects some
`0 between 1 and n, and executes a cycle that rewrites w
into v`0 . Automaton Mi must be able to execute a cycle
w⇒c

mi
v`, for all `,1 ≤ ` ≤ n. This is possible, as both

LC(M, i) and LC(M, i−1) are finite languages.
If M is deterministic, then n = 1 and Mi is deterministic,

too.

For a positive integer k, we will use the prefix de(k)- to
denote those hRLWW-automata for which each reduction
shortens the word on the tape by at most k symbols.

From the previous ITAT-contribution [14] we have the
following hierarchies.

Theorem 9. For all types X ∈ {hRLW(1), hRLWD(1),
hRLWC(1), hRLWW(1), hRLWWD(1), hRLWWC(1)},
all prefixes pr1 ∈ {λ ,fin(i),fin}, where i ≥ 1, all pre-
fixes prefX ∈ {wcf,mon-wcf,det-wcf,det-mon-wcf}, and
all k ≥ 2, we have the following proper inclusions:

(a) LhP(k-pr1-prefX -X) ⊂LhP((k+1)-pr1-prefX -X),
(b) LhP(de(k)-pr1-prefX -X)⊂

LhP(de(k+1)-pr1-prefX -X),
(c) LA(k-pr1-prefX -X) ⊂LA((k+1)-pr1-prefX -X),
(d) LA(de(k)-pr1-prefX -X) ⊂

LA(de(k+1)-pr1-prefX -X).

3.5 On Sensitivity of LSA by hRLWW(i)-Automata

As a simple consequence of Theorem 6 and the fact
that the RLWW(1)-automaton M from the proof of Theo-
rem 5(b) is actually deterministic we obtain the following
corollary.

Corollary 2. For all i > 1, pref ∈ {λ , det,wcf,det-wcf}
and all X ∈ {hRLWW(i), hRLWWD(i), hRLWWC(i)} the
following holds:

CFL⊂LhP(pre f -X).

The previous corollary and the following results
strongly support the idea that hRLWW(i)-automata are
strong and fine enough to cover and classify the complex-
ity of the (surface and deep) syntactic features of natural
languages such as subordination (dependency), valency,
coordination etc.

Lemma 1. For all j,k ≥ 1 it holds the following:

(1) L (k-det-mon-fin(1)-wcf-RLWC(j+1))r
LhP(k-wcf-hRLWW(j)) 6= /0,

(2) L ((k+1)-det-mon-fin(1)-wcf-RLWC(j))r
LhP(k-wcf-hRLWW(j)) 6= /0.

Proof. To be able to show the lower bound we need a lan-
guage containing word(s) that are longer than the window
size.

For r ≥ 1, s ≥ 0 let L(r,s) = {b,a(r−1)sbs+1}. In order
to show L(r,s) ∈L (r-det-mon-fin(1)-wcf-RLWC(s)) con-
sider the mon-RLWW(s) automaton M(r,s) which on its
left-to-right turn distinguishes three situations:

1. if input word is b, then M(r,s) accepts;

2. if input word is not from L(r,s), then M(r,s) rejects;

3. if input word is a(r−1)sbs+1, the automaton applies s
CL operations each of which deletes ar−1b; after that
it restarts and accepts b in the next tail computation.

Realize that hRLWW(s) automaton with window size r
can delete at most rs symbols in any cycle with at most s
rewrite (W- or SL-) operations. Since |a(r−1)sbs+1|− |b|=
rs, neither wcf-hRLWW(s) automaton with window size
r−1 nor wcf-hRLWW(s−1) automaton with window size
r is able to recognize L(r,s) as its basic or h-proper lan-
guage.

Now, the languages L(k, j+1) and L(k+1, j) can be used to
prove (1) and (2), respectively.

Robustness versus Sensibility by Two-Way Restarting Automata 15

Next we show a similar hierarchy with respect to the
degree on monotonicity which is related to the number of
rewritings in a cycle. The degree of monotonicity is an im-
portant constraint which serves for better approximation of
syntax of natural languages, and their individual features.

Lemma 2. For all j,k ≥ 1 it holds the following:

(1) L (k-det-mon(j+1)-wcf-RLWWC(j+1))r
LhP(k-wcf-RLWW(j)) 6= /0;

(2) L (k-det-mon(j+1)-wcf-RLWWC(j+1))r
LhP(k-mon(j)-wcf-RLWW(j+1)) 6= /0.

Proof. We provide a parametrized sequence of finite lan-
guages

{
L(k, j)

m

}∞

j,k=1
, which satisfy

(a) L(k, j+1)
m ∈L (k-det-mon(j+1)-wcf-RLWC(j+1)),

(b) L(k, j+1)
m 6∈LhP(k-wcf-hRLWW(j)), and

(c) L(k, j+1)
m 6∈LhP(k-mon(j)-wcf-RLWW(j+1)).

Let L(k, j)
m = {(ckdkek(j+1)) j,(dkek(j+1)) j}∪{ekr j | 0≤ r≤

j + 1}. We can construct a k-det-mon(j)-RLWC(j)-
automaton M(k, j)

m accepting L(k, j)
m as its input (and basic)

language. The automaton scans the word on its tape and
distinquishes the following cases:

1. if the word is of the form (ckdkek(j+1)) j, then M(k, j)
m

deletes j blocks of ck and restarts;

2. if the word is of the form (dkek(j+1)) j, then M(k, j)
m

deletes j blocks of dk and restarts;

3. if the word is of the form ekr j, for some r,1 ≤ r ≤
j+1, then M(k, j)

m deletes j blocks of ek and restarts;

4. if the word is empty, then M(k, j)
m accepts, and

5. otherwise, M(k, j)
m rejects.

It is not hard to partition the right distances of the
rewriting configurations from an accepting computation of
M(k, j)

m into at most j monotone sequences. The highest de-
gree j of monotonicity is necessary for accepting the input
word (ckdkek(j+1)) j, which is accepted by M(k, j)

m after per-
forming j+3 reductions.

For reasons similar to that ones used in the proof of
Lemma 1, the language L(k, j)

m cannot be accepted nei-
ther as an h-proper language of a k-wcf-RLWW(j′− 1)-
automaton for any j′ < j nor as an h-proper language of a
k-mon(j′)-wcf-RLWW(j)-automaton, for any j′ < j .

The sample languages from the proofs of Lemma 1 and
Lemma 2 have disjunctive alphabets and, therefore, they
can be combined in order to obtain hierarchies with com-
bined constraints. E.g., the language L(k, j) ∪ L(k′, j′)

m is a
language which can be accepted as an h-proper language
of a k̂-det-mon(j′)-wcf-RLWC(ĵ)-automaton, where k̂ =

max(k,k′) and ĵ = max(j, j′), but not as an h-proper lan-
guage of neither a k-wcf-RLWW(j− 1)-automaton, nor a
k′-mon(j′−1)-wcf-RLWWC(j′).

In a similar way, we obtain the following consequences.
We present here only such consequences which can be in-
terpreted as linguistically relevant with respect to the com-
plete lexical disambiguation.

Corollary 3. For all j,k ≥ 1, all prefixes
prefX ,prefY ∈ {det-wcf, det-fin(i)-wcf} and all
X ,Y ∈ {hRLWW,hRLWWD,hRLWWC}, the follow-
ing holds:

(a) LA(k-pre fX -X(j)) ⊂ LA(k-pre fX -X(j+1)),
(b) LA(k-pre fX -X(j+1)) r LA(k-pre fY -Y (j)) 6= /0,
(c) LA(k-pre fX -X(j)) ⊂ LA((k+1)-pre fX -X(j)),
(d) LA((k+1)-pre fX -X(j))r LA(k-pre fY -Y (j)) 6= /0.

If additionally i≥ j+3, the following holds:

(aa) LA(k-mon(j)-pre fX -X(j)) ⊂
LA(k-mon(j+1)-pre fX -X(j+1)),

(bb) LA(k-mon(j+1)-pre fX -X(j+1)) r
LA(k-pre fY -Y (j)) 6= /0,

(cc) LA(k-mon(j)-pre fX -X(j)) ⊂
LA((k+1)-mon(j)-pre fX -X(j)),

(dd) LA((k+1)-mon(j)-pre fX -X(j)) r
LA(k-pre fY -Y (j)) 6= /0.

We can see that the h-lexicalized syntactic analyses of
det-wcf-hRLWW(j)-automata are sensitive to the maximal
number of rewrite (SL- and W-) operations in a cycle and
to the size of the window. The syntax of these languages
is given directly by individual reductions, i.e., by indi-
vidual instructions of the hRLWW(j)-automata. Namely
the reductions of RLWWC(j)-automata describe (define)
the (discontinuous) syntactic constituents of the analyzed
words (sentences). Note that the monotonicity of de-
gree one means a synonymy for context-freeness of the
accepted languages by restarting automata. The mono-
tonicity of higher degree means a degree of non-context-
freeness of accepted languages. In the previous corollary
we have transferred this concept from infinite to finite lan-
guages. That can be very useful for classification of indi-
vidual syntactic features.

4 Conclusion

We have seen that monotone RLWW(i)-automata are not
sensitive to the number of deletions and to the size of
their window with respect to their input languages and that
these languages do in general not yield reduction correct-
ness preserving computations of RLWW(i)-automata. On
the other hand, hRLWW(i)-automata satisfy the reduction
correctness preserving property with respect to their basic
and h-proper languages, and consequently also with re-
spect to their lexicalized syntactic analysis. The reduction

16 Martin Plátek, Dana Pardubská, and František Mráz

correctness preserving property enforces the sensitivity to
the number of rewritings in a reduction and to the size of
the window.

We believe that the class of h-proper languages of
det-mon(2)-wcf-RLWWC(2)-automata is strong enough
to model lexicalized (surface) syntax of natural languages,
that is, to model their reduction correctness preserving lex-
icalized syntactic analysis. Namely, we strongly believe
that the class of h-proper languages of det-mon(2)-wcf-
RLWWC(2)-automata is a superclass of the class of mildly
context-sensitive languages [5, 6]. In the future we will try
to characterize the class of mildly context-sensitive lan-
guages by h-proper languages of RLWW-automata with
some constraints.

Our long term goal is to propose and support a for-
mal (and possibly also software) environment for a further
study and development of Functional Generative Descrip-
tion (FGD) of Czech (see [9]). We strongly believe that
the lexical disambiguation of FGD can be fully described
by (a certain refinement of) det-mon(4)-wcf-RLWWD(4)-
automata.

We stress that our current efforts cover an important
gap in theoretical tools supporting computational and cor-
pus linguistics. Chomsky grammars and the correspond-
ing types of automata do not support lexicalized syntactic
analysis, as these grammars work with categories bound
to individual constituents with respect to constituent syn-
tactic analysis. They do not support syntactic analysis
with any kind of correctness preserving property, but they
do support several types of insensitivity to the form of
individual grammar rules (see several normal forms for
context-free grammars, like Chomsky and Greibach nor-
mal form [2]), and, finally, they do not support the classi-
fication of finite phenomena of (natural) languages.

On the other hand, in corpus linguistics, only finite lan-
guage phenomena can be observed. Now the basic and h-
proper languages of hRLWW(i)-automata in weak cyclic
form allow common classifications of finite phenomena as
well as classifications of their infinite generalizations to
the corresponding parts of the Chomsky hierarchy. All
these classifications are based on the reduction correct-
ness preserving property and the weak cyclic form. Let
us recall for restarting and list automata the monotonic-
ity means a synonymy for context-freeness. Here we are
able to distinguish between finite monotone and finite non-
monotone languages (syntactic phenomena), too.

Finally, note that many practical problems in computa-
tional and corpus linguistic became decidable if we con-
sider only parametrized finite languages.

References

[1] Yehoshua Bar-Hillel: A quasi-arithmetical notation for
syntactic description. Language 29: 47–58 (1953)

[2] John E. Hopcroft, Jeffrey D. Ullman: Introduction to Au-
tomata Theory, Languages, and Computation. Addison-
Wesley, Reading, M.A. (1979)

[3] Petr Jančar, František Mráz, Martin Plátek, Jörg Vogel:
Restarting automata. In: Horst Reichel (ed.): FCT’95,
Proc., pages 283–292, LNCS 965, Springer, Berlin (1995)

[4] Petr Jančar, František Mráz, Martin Plátek, Jörg Vogel:
On monotonic automata with a restart operation. J. Au-
tom. Lang. Comb. 4: 287–311 (1999)

[5] Aravind K. Joshi, K. Vijay-Shanker, David Weir: The
convergence of mildly context-sensitive grammatical for-
malisms. In: Peter Sells, Stuart Shieber, Tom Wasow
(eds.), Foundational Issues in Natural Language Process-
ing, pages 31–82, MIT Press, Cambridge MA (1991)

[6] Aravind K. Joshi, Yves Schabes: Tree-adjoining grammars.
In: Grzegorz Rozenberg, Arto Salomaa (eds.), Handbook of
Formal Languages, vol. 3, pages 69–123, Springer, Berlin,
New York (1997)

[7] Tomasz Jurdziński, František Mráz, Friedrich Otto, Martin
Plátek: Degrees of non-monotonicity for restarting auto-
mata. Theor. Comp. Sci. 369: 1–34 (2006)

[8] Markéta Lopatková, Martin Plátek, Vladislav Kuboň:
Modeling syntax of free word-order languages: Depen-
dency analysis by reduction. In: Václav Matoušek, Pavel
Mautner, Tomáš Pavelka (eds.), TSD 2005, Proc., pages
140–147, LNCS 3658, Springer, Berlin (2005)

[9] Markéta Lopatková, Martin Plátek, Petr Sgall: Towards a
formal model for functional generative description: Anal-
ysis by reduction and restarting automata. Prague Bull.
Math. Linguistics 87: 7–26 (2007)

[10] František Mráz, Martin Plátek, Friedrich Otto: A Measure
for The Degree of Nondeterminism of Context-free Lan-
guages. In: Jan Holub and Jan Žd’árek (eds.), Proceed-
ings of CIAA 2007, pages 192–20S, LNCS 4783, Springer,
Berlin (2007)

[11] Niemann, G. Otto, F.: Restarting automata, Church-Rosser
languages, and representations of re languages. In: Devel-
opments In Language Theory: Foundations, Applications,
and Perspectives, World Scientific, 2000, 103–114

[12] Martin Plátek: Two-way restarting automata and j-
monotonicity. In: Leszek Pacholski, Peter Ružička (eds.):
SOFSEM’01, Proc., pages 316–325, LNCS 2234, Springer,
Berlin (2001)

[13] Martin Plátek, Friedrich Otto: On h-lexicalized restart-
ing automata. In: Erzsébet Csuhaj-Varjú, Pál Dömösi,
György Vaszil (eds.), AFL 2017, Proc., Open Pub-
lishing Association, EPTCS 252: 219–233 (2017),
DOI:10.4204/EPTCS.252.21

[14] Martin Plátek, Friedrich Otto, František Mráz: On h-
lexicalized automata and h-syntactic analysis. In: ITAT
2017, Proc., CEUR Workshop Proceedings Vol. 1885, pp.
40–47 (2017)

[15] Martin Plátek, Friedrich Otto, František Mráz:
On h-Lexicalized Restarting List Automata.
Technical Report, www.theory.informatik.uni-
kassel.de/projekte/RL2016v6.4.pdf, Kassel (2017)

[16] Natalie Schluter: Restarting automata with auxiliary sym-
bols restricted by lookahead size. Intern. J. Comput. Math.
92: 908–938 (2015)

Robustness versus Sensibility by Two-Way Restarting Automata 17

	Contents
	Martin Plátek, Dana Pardubská, and František Mráz: Robustness versus Sensibility by Two-Way Restarting Automata

