
Semi-automatic annotation of e-shops

Peter Gurský, Matej Perejda ,Dávid Varga

 Institute of Computer Science

Faculty of Science, P.J.Šafárik University in Košice

 Jesenná 5, 040 01 Košice, Slovakia
peter.gursky@upjs.sk, {matej.perejda, david.varga}@student.upjs.sk

Abstract. Extraction from web pages becomes a very popular
way to acquire important data for better decision process.
Acquisition of structured data from a new web portal requires
an annotation of web pages of the portal to allocate the
location and the type of the information. We present methods
for semi-automatic annotation of e-shops' content, to create
rules for extraction. The methods are implemented in Chrome
extension named Exago. The aim of these methods is to
generate XPaths and regular expressions. We use positive and
negative examples to further specify which of the generated
XPaths should be used for extraction. The annotation methods
are tested on real data and the results show a high success
rate.

1 Introduction

Web scraping is a complex process that consists of web

pages annotation, crawling, data extraction and data

processing. This kind of data acquisition is very valuable

for decision process, because it can provide data from

various sources and process them together. Project Kapsa

[1] deals with extraction and unification of information

from web pages, focusing on products on e-shops. The aim

of the project is a creation and management of a collection

of products which are offered by e-shops. In this paper, we

focus on the first step of the web scraping process, the web

pages annotation.

The annotation has two main goals: recognition of

relevant page on portal and identification of positions of

relevant pages, where the data of our interest are.

The positions of relevant data are usually specified by

XPaths of HTML source or by regular expressions, which

are used by extractor on each relevant page. It is also

possible to extract data using a procedural script. Writing

complex XPaths or regular expressions, as well as a

creation of scripts is not an easy task. It requires the

annotator to be an IT expert.

Our goal is to make the annotation process of e-shops

easier and possible for ordinary person. We would like to

offer in our Chrome extension Exago[1] satisfactory results

of web scraping with annotation made only by mouse

clicking.

2 State of the art

Web annotation and extraction systems can be

categorized to four groups [2]. Manual systems [3, 4]

require programming in some (pseudo) language.

Automatically constructed extractors [5, 6] create

extraction system based on complete user annotation and

examples of extracted data from several pages.

Automatically constructed extractors with partial user

support [7, 8] create extraction system without the need of

extraction examples. Automatic extractors with no user

support [9, 10] analyze repeating patterns on web pages,

and extract every data that seem to be interesting. Our tool

Exago can be included in automatically constructed

extractors with partial user support.

Currently there are more than 50 web scrapers available

on the internet. We have tried to use all of them to product

data extraction from two e-shops Alza.sk and Heureka.sk.

The majority of them were not able to extract the product

data. The web scrapers that are at least partially applicable

to product data extraction are [11-28], so we examined

these web scrapers more deeply. Majority of these tools

provide the generation of one XPath by clicking on element

on the page. Some tools hide this functionality and do not

show the final XPath [12, 18, 19, 21, 22, 24, 25, 26], the

others [11, 13, 15, 17, 20, 23, 27, 28] allow the

modification of the XPath manually. The rest of them [14,

16] provides manual insertion of XPath only. None of the

tools provide regular expression generation, but some of

them allow writing regular expressions manually.

3 Methods for annotation

Having an HTML element containing the relevant data

we can easily create an XPath as a path from the root

element. The XPath points to the target element and it is

used during the extraction process on this page. However

on the similar page (e.g. the page about different product on

e-shop), the created XPath can be unsuccessful – either it

finds no element or an element with different kind of data,

because the HTML source tree can be slightly different

(e.g. missing subtree, different highlighting of texts etc.)

than the one of the annotated product.

Fortunately, many XPaths can be created that point to the

same element. The tree navigation of XPaths can be based

on elements’ attributes, order of element between its

siblings, various conditions and more. Choosing the right

navigation of XPath increases the success rate of extraction

considerably. The problem is that an unexperienced user is

not able to choose the right XPath from the hundreds of

possibilities. Therefore we provide semi-automatic XPath

and regular expression generation and interactive selection

of the right rules to make the annotation process easier.

3.1 XPath generation

XPath is a query language that is used to select nodes of

XML DOM model. All browsers create a DOM model out

of HTML file as the first step of page processing. XPath

language provides various approaches to specify a starting

node(s) and traversal of the DOM model. Creator of XPath

expression can utilize tag names, tag attributes and their

values, order of the elements, navigation functions, and

conditions with build-in functions. Such variability allows

many XPaths to localize the same node.

Annotator’s goal is to specify the position of relevant

data that can be universal for all pages of the same type

(created from the same HTML template). In our case, we

S. Krajči (ed.): ITAT 2018 Proceedings, pp. 152–156
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, c© 2018 Peter Gurský, Matej Perejda, and Dávid Varga

focus primarily on pages, where the details of the products

are located. Unfortunately, when the template is combined

with the structured data of products, to create final detail

pages, the differences between result pages eventuate in

variety of HTML tree structures. They can vary in element

attributes as well as in absence of whole subtrees. Such

differences cause many XPaths, which work on one page,

fail on other page. They can point to different or no nodes,

while the corresponding data is still present somewhere on

the page.

It is impossible to know, which parts of the template are

on all result pages, without complex analysis of pages,

because the templates are not public. Therefore we don’t

know which elements or attributes can be used as

navigation points of universal XPath. Annotation experts

usually examine various HTMLs of result pages and create

the universal XPath manually.

Fig. 1. Part of HTML source example

Our approach generates several possible XPaths as

possible candidates to final universal XPath. Consider that

annotator wants to create an XPath leading to element with

value “24FDX” in HTML source on Figure 1. In this

example, the result of the method used for generating

XPaths is a set of 36 different correct XPaths, which point

to the same element. The shortest ones of them are listed

below:

 //tr[2]/td[2]

 //tr[last()]/td[last()]

 //tr[last()]/td[2]

 //tr[2]/td[last()]

 //tr[2]/*[@style="color:pink;"]

 //tr[last()]/*[@style="color:pink;"]

XPaths are generated gradually along the path from the

clicked element to a specified root element occurs. If there

is no root element specified, the root element of HTML

document is chosen to be the element where generation

stops. At every current element during the generation, all

attributes, the name and the order between siblings of this

element are combined to create different XPaths.

The extractor process, which extracts the data from all

similar pages, needs only one XPath per each value

position. Our approach in Exago tool [1] chooses the

shortest XPath as the result candidate by default. The

annotation process is a process where annotator determines

whether the candidate XPath is the most universal one, to

be chosen for extraction.

During the annotation process, the annotator can

navigate to other similar page (e.g. the page about other

product) and check out the success of the chosen XPath.

There are three possibilities:

1. The element is correctly found using the XPath and

no changes need to be done.

2. The XPath addresses no element and annotator can

mark the correct element as the positive example.

3. The XPath addresses different element and

annotator can mark the addressed element as the

negative example.

When the annotator marks the positive or negative

example, by clicking on an HTML element, the method for

generating XPaths generates new set of XPaths to this

element. Let this set of XPaths be named as B, and the

original set as A. In case of the positive example, the new

set of XPaths, that work fine on both pages is A∩B. In case

of negative example, the new set is A-B.

After some iterations of this procedure, the result set

contains only XPaths that work on all pages. The annotator

can choose any of them to be part of final extraction rule,

or just keep the default one. As it was mentioned before,

our Exago tool chooses the shortest XPath by default.

3.2 Regular expression generation

XPath is a very capable language at locating the whole

element of HTML source. There are cases, when we want

to extract a value only from a part of the element, or a value

spreads across two or more elements. In this case, XPath is

unusable.

Fig. 2. Regular expression editor

In Exago, we combine XPaths and regular expressions, if

needed. XPath localizes the HTML part in which the

regular expression can be used. It is also possible, that the

XPath localizes more than one element, and regular

<h1>Samsung 24FDX</h1>

<h2>Specification</h2>

<table id="product parameters">

 <tbody>

 <tr>

 <td style="color:powderblue;">Producer</td>

 <td style="color:pink;">Samsung</td>

 </tr>

 <tr>

 <td style="color:powderblue;">Model</td>

 <td style="color:pink;">24FDX</td>

 </tr>

 </tbody>

</table>

Semiautomatic annotation of e-shops 153

expression can be used in all of them to find out the target

value.

Regular expression is an effective tool for extraction of a

substring based on complex conditions with quite

complicated syntax. Sometimes, even IT experts have a

hard time at constructing more complex regular

expressions.

In Exago, we created regular expression editor (Fig. 2)

that generates multiple regular expressions using mouse

events. . The process of generating regular expressions can

be performed only by clicking on buttons in the editor and

highlighting the text needed for extraction. Therefore, the

editor allows a less experienced user to create regular

expressions, and see the result. On the other hand, there is

still a possibility to edit generated regular expressions or

write custom ones.

Our editor supports two approaches. First, user can select

the target text and click on the first Generate button. Exago

generates several regular expressions, collected in the

combo box. The method that generates the expressions

tries to generalize the two most common text parts:

 spaces and other whitespace characters are

converted to expression \s or \s+,

 numbers are converted to \d+ or \d+((\.|,)\d+)?,

which covers also decimal numbers.

The second approach to regular expression generation is

selection of prefix and suffix of the target value and hitting

the appropriate “Generate” button. In Figure 2, user

selected text “unit-17220>” as the prefix and “” as

the suffix and generated the related regular expressions.

Using the chosen regular expressions, a combined

expression is created and written in the text field on the top

of the screen. The result of the regular expression search is

emphasized on the bottom with green background.

4 Experiments

In this section we analyze the accuracy of annotation of

our new version of Exago. The new version is using the

semi-automatic annotation based on positive and negative

examples and generating regular expressions. The tests

compare our approach with the usual approach of element

localization used in other web scrapers and our previous

version of Exago, i.e. generation of one XPath per value.

This analysis has been done on 20 different e-shops.

During the testing phase, every annotation has been

realized only by clicking with mouse on HTML elements

and Exago components. No manual editing of XPaths and

regular expressions has been used, in order to compare the

old and the new approach. The table on Table 1 shows the

results of each annotation per e-shop ordered by success

rate.

We measure following aspects for both approaches:

 successful annotation of elements – the number of

successfully annotated elements or values compared

Table 1. Annotation accuracy analysis

URL of e-shop

Successful

annotation of

elements

Success rate
Use of regular

expressions

Successful

annotation of

elements

Success rate
Use of regular

expressions

gymbeam.sk 10 out of 14 71% No 11 out of 14 79% No

vivantis.sk 8 out of 12 67% No 10 out of 12 83% Yes

bestbuy.com 5 out of 14 36% No 12 out of 14 86% Yes

martinus.sk 8 out of 14 57% No 12 out of 14 86% Yes

nay.sk 10 out of 14 71% No 12 out of 14 86% Yes

insportline.cz 9 out of 14 64% No 12 out of 14 89% Yes

target.com 6 out of 9 67% No 8 out of 9 89% Yes

eshop.eta.cz 8 out of 11 73% No 10 out of 11 91% Yes

mall.sk 9 out of 11 82% No 10 out of 11 91% Yes

notino.sk 4 out of 11 36% No 10 out of 11 91% Yes

pantarhei.sk 8 out of 11 73% No 10 out of 11 91% Yes

obi.cz 3 out of 14 21% No 13 out of 14 93% Yes

andreashop.sk 9 out of 11 82% No 11 out of 11 100% No

decathlon.sk 12 out of 13 92% No 13 out of 13 100% No

hej.sk 9 out of 11 82% No 11 out of 11 100% No

heureka.sk 5 out of 12 42% No 12 out of 12 100% Yes

hornbach.sk 5 out of 10 50% No 10 out of 10 100% Yes

radioshack.com 9 out of 12 75% No 12 out of 12 100% No

rajdazdnikov.sk 0 out of 11 0% No 11 out of 11 100% Yes

zoohit.sk 5 out of 11 45% No 11 out of 11 100% Yes

Total 142 out of 240 59% - 221 out of 240 93% -

first genarated XPath our approach

154 Peter Gurský, Matej Perejda, and Dávid Varga

to the number of all elements or values that could be

annotated,

 success rate – percentage of correctly addressed

elements and values among annotated elements and

values

 use of regular expressions – information about the

use of generated regular expressions during

annotation; with every use of regular expressions in

Exago, regular expressions have been used in

combination with XPaths.

With the new approach, we have achieved success rate of

100 % in 8 internet shops. In remaining 12 e-shops we have

not been able to achieve the 100 % success rate because of

the following reasons:

 in 5 cases, the HTML structures of detail web pages

in each e-shop have varied too much,

 in 5 cases, lists of product parameters have been

divided into more elements unrelated to each other,

 in 3 cases, complications occurred during annotation

of images that used dynamic styles of their

presentation on a web page,

 in 3 cases, we have not been able to annotate prices

of products, because e-shops displayed sale prices in

different elements compared to non-sale prices,

whilst both of these prices have been present on a

web page,

 in 3 cases, we have not accomplished to annotate

product ratings represented by pictures without any

further information given, for example, amount of

stars awarded.

Success rate average of annotation of information about

products has been 59% in the case of common approach.

With the new version of Exago we have achieved the

average success rate of 93%. This growth has been

achieved with the help of generating regular expressions

and the functionality of positive and negative examples.

Some of the unsuccessful cases could be eliminated by

manual editing of XPaths and regular expressions. For

example, in the cases when internet shops presented more

lists of product parameters, we would be able to manually

create a regular expression that would address all types of

elements representing these lists.

5 Conclusions

This paper deals with improvement of the commonly

used data localization process in web annotation by

implementing the semi-automatic annotation. We have

created a plug-in module Chrome Extension named Exago

containing this functionality. With the help of methods for

generating XPaths, generating regular expressions and the

functionality of positive and negative examples, we are

able to annotate more information on detail web pages of

products, compared to the previous version of Exago.

During the annotation accuracy analysis, we have been

comparing the common approach with the new one, and

discovered that the success rate has grown from 59% to

93%. We consider this result as notable, but there is still a

room for improvement. One improvement could be creating

a new component, which would be able to distinguish

different types of detail web pages in one e-shop and use

appropriate XPaths and regular expressions for annotation.

Another improvement could be more intelligent

generation of XPaths by which we would generate XPaths

faster and reduce the generation of very similar XPaths.

Designing methods for annotation of product ratings

represented by pictures of stars or other objects would be

also very benefiting. The solution to this problem could be

counting matches of the regular expression addressing one

star in the element containing these stars.

Adding a sale price as a new type of known value

component would enable us to annotate sale prices as well

as non-sale prices and grow our success rate per e-shop.

The new version of Exago could also be improved by

solving a problem with image annotation, where images are

being displayed in different dynamic styles. The solution

could be some kind of a mechanism that would get all

pictures from a detail web page, show them to the user, and

the user would pick the image he wants. XPath addressing

this image would be generated and used automatically.

References

[1] Project Kapsa, web page: http://kapsa.sk/
[2] B. Liu: Web Data Mining: Exploring Hyperlinks,

contents and Using Data, Second edition, Springer
2011. ISBN 978-3-642-19459-7

[3] V. Crescenzi, G. Mecca: Grammars have exceptions.
Information Systems, 23(8): 539-565, 1998.

[4] T. Furche, G. Gottlob, G. Grasso, C. Schallhart, A.
Sellers: OXPath: A language for sca-lable data
extraction, automation, and crawling on the deep web.
The VLDB Journal 22(1): 47-72, 2013

[5] C. Hsu, M. Dung: Generating finite-state transducers
for semi-structured data extraction from the Web.
Information Systems, 1998, 23(8): p. 521-538.

[6] Muslea, S. Minton, C. Knoblock: A hierarchical
approach to wrapper induction. In Proce-edings of Intl.
Conf. on Autonomous Agents (AGENTS-1999) 1999.

[7] C.-H. Chang, S.-C. Kuo: OLERA: A semi-supervised
approach for Web data extraction with visual support.
IEEE Intelligent Systems, 19(6):56-64, 2004.

[8] Hogue, D. Karger: Thresher: Automating the
Unwrapping of Semantic Content from the World
Wide. Proceedings of the 14th International
Conference on World Wide Web (WWW), Ja- pan, pp.
86-95, 2005.

[9] V. Crescenzi, G. Mecca, P. Merialdo: RoadRunner:
towards automatic data extraction from large Web
sites. Proceedings of the 26th International Conference
on Very Large Database Systems (VLDB), Rome,
Italy, pp. 109-118, 2001.

[10] Arasu, H. Garcia-Molina: Extracting structured data
from Web pages. Proceedings of the ACM SIGMOD
International Conference on Management of Data, San
Diego, California, pp. 337- 348, 2003.

[11] Content Grabber. Web scraper available on-line:
(https://contentgrabber.com/)

[12] Data Miner. Web scraper available on-line:
(https://data-miner.io/)

[13] Helium Scraper. Web scraper available on-line:
(http://www.heliumscraper.com/)

[14] Import.io. Web scraper available on-line:
(https://www.import.io/)

[15] Mozenda. Web scraper available on-line:
(https://www.mozenda.com/)

[16] ParseHub. Web scraper available on-line:
(https://www.parsehub.com/)

Semiautomatic annotation of e-shops 155

[17] Scrapinghub (Portia) . Web scraper available on-line:
(https://scrapinghub.com/)

[18] Web Scraper. Web scraper available on-line:
(http://webscraper.io/)

[19] Agenty. Web scraper available on-line:
(https://www.agenty.com)

[20] Data Toolbar. Web scraper available on-line:
(http://datatoolbar.com/)

[21] Dexi.io. Web scraper available on-line:
(https://dexi.io/)

[22] Easy Web Extract. Web scraper available on-line:
(http://webextract.net/)

[23] Fminer. Web scraper available on-line:
(http://www.fminer.com/)

[24] GetData.IO. Web scraper available on-line:
(https://getdata.io/)

[25] Grepsr. Web scraper available on-line:
(https://www.grepsr.com/chrome-extension/)

[26] Instant Data Scraper. Web scraper available on-line:
(https://webrobots.io/instantdata/)

[27] Visual Web Ripper. Web scraper available on-line:
(http://visualwebripper.com/)

[28] Web Sundew. Web scraper available on-line:
(http://www.websundew.com)

156 Peter Gurský, Matej Perejda, and Dávid Varga

	Contents
	Peter Gurský, Matej Perejda, and Dávid Varga: Semiautomatic annotation of e-shops

