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Abstract: Frequency counting of graphlets (i.e. small
connected induced subgraphs) is a prominent experimen-
tal approach to network analysis which became favorable
in bioinformatics. In this paper, we use the probabilistic
method for graphlets counting. We show that it is possible
to enumerate the graphlets (or isolated graphlets) in sparse
Erdős-Rényi graph model analytically. Obtained frequen-
cies are exploited to estimate bounds on domination num-
ber in the above mentioned random graph model.

1 Introduction

Network science which is focused on modeling and analy-
sis of real-world networks became a significant research
area in last two decades. Instances of networks un-
der study come from many fields of human activities,
e.g. electrical engineering, transportation, social sci-
ence, biology, medicine, etc. Currently, a frequently used
algorithmic-experimental method for similarity detection
and comparison of protein-protein interaction networks
(shortly PPI networks) was invented in bioinformatics by
N. Pržulj et al. [16]. It is based on frequency analysis of
small connected induced subgraphs (called graphlets) oc-
curring in networks to be compared. Such an approach
was used to show e.g., that yeast PPI networks are struc-
turally closer to geometric random graphs than to scale-
free or Erdős-Rényi random graphs [16].

Frequency counting of graphlets is a non-trivial algo-
rithmic problem which is intensively studied both from
theoretical and application point of view. One of the most
powerful softwares used for this purpose is currently the
Orbit Counting Algorithm - ORCA [8, 9]. Roughly speak-
ing, ORCA writes numbers of all graphlets (with 2 − 5
nodes) which occurred in a given input network on out-
put. This part of the graphlet-based analysis is the most
difficult since doing it without a computer program is un-
realistic even for relatively small networks. Due to high
computational complexity of the graphlet enumeration the
number of their nodes is restricted to at most 4 in some
current softwares.

In this paper, we show that the problem of frequency
counting of graphlets can be solved analytically in Erdős-
Rényi random graph model by probabilistic methods.

Some previous results regarding random graph theory
[1, 3, 10, 11, 17] are relied on this purpose. Our re-
sult is significant especially from the complexity point of
view because it might lead, in some cases, to elimination
of high requirements on computational resources needed
for graphlet frequency analysis. It means that instead of
computer-based graphlet frequency enumeration in Erdős-
Rényi random graphs one may use analytical formulas.

The organization of the paper is as follows. Sect. 2
contains definitions and preliminary facts. The threshold
functions for presence of graphlets in random graphs are
derived in Sect. 3. Average counts of graphlets are ex-
pressed in the same section as well. Average counts of
isolated graphlets and corresponding estimations in ran-
dom graphs with edge probability p = c/n are determined
in Sect. 4. Application of these results to estimation of
the domination number in sparse random graphs is out-
lined in Sect. 5. Possible direction for future research are
discussed in the last section.

2 Definitions and Preliminaries

2.1 Fundamentals

The asymptotic notation such as o,O,Θ is used in the
usual way [10], nevertheless, the most important notions
are listed below.

O(g(n)) = { f (n) | ∃c,n0 > 0 ∀n ≥ n0 | f (n)| ≤ c|g(n)| }

Ω(g(n)) = { f (n) | ∃c,n0 > 0 ∀n ≥ n0 | f (n)| ≥ c|g(n)| }
o(g(n))= { f (n) | ∀ε > 0 ∃n0 > 0 ∀n ≥ n0 | f (n)| ≤ ε|g(n)|}

f (n) = Θ(g(n))) ⇔ f (n) = O(g(n))∧ f (n) = Ω(g(n))

Moreover, for two sequences (or equivalently functions)
a = (an)

∞
n=0 and b = (bn)

∞
n=0, we will write an ≪ bn if

an ≥ 0 and an = o(bn).
Throughout this paper, all graphs are simple, undirected

and without weights. Standard notions of the graph the-
ory are used without definitions or further comments. We
address [6, 7] for references however, the usage of some
symbols is mentioned bellow. Let G = (V,E) be a graph
with a nonempty finite set of vertices V (G) (or nodes) and
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Figure 1: Graphlets g0,g1, . . . ,g9.

a finite set of edges E(G). Usually |V (G)| = n, where
|.| stands for the cardinality of a given set. For a vertex
v ∈ V (G), its degree (the number of adjacent vertices of v)
is denoted by deg(v). The maximum (minimum) degree
of a graph G is denoted by ∆ (δ ). Let G = (V,E) be a
graph and let S ⊆ V (G), an induced subgraph G[S] is the
graph whose vertex set is S and the edge set of G[S] con-
sists of all edges whose endpoints are both in S. A graph
is said to be connected if there is a path joining every pair
of its vertices. A disconnected graph is not connected. A
component is a maximal connected subgraph. It is also re-
ferred to as connected component or isolated component.
Note that each disconnected graph consists of at least two
different components.

Let G = (V,E) be a graph, a graphlet is a connected
induced subgraph of G with at most 5 vertices. Two
graphlets are same if there exists an isomorphism such that
it maps one graphlet to the other one. (Two different oc-
currences of the same graphlet are usually referred to as
its copies.) In this paper, only graphlets with at most 4
vertices are considered. Their ordering (and indexing) is
shown in Fig. 1. It means that the empty graph (a single
vertex) is denoted by g0, etc. The last graphlet in Fig. 1
(i.e. g9) is the clique K4.

2.2 Random Graphs

The Erdős-Rényi random graph model (shortly E-R
model) [3] can be introduced as follows.

Let n be a positive integer and let p ∈ IR be a constant
such that 0 < p < 1. Consider that for n labeled vertices of
V (G), each unordered pair of vertices introduces one slot
available for an edge. Clearly, the total number of slots
is

(n
2

)
. Each edge exists in G independently and with the

probability p, thus Pr[{u,v} ∈ E(G)] = p, for all u,v ∈
V (G).

Given n as above, let (Ω, IF,Pr) be a probability space
where the sample space Ω consists of all (labeled) graphs
G of order n and let IF ⊆ 2Ω be a set of events. If G has
|E(G)| edges, 0 ≤ |E(G)| ≤

(n
2

)
, then the probability of

obtaining G as a result of random edge generation process
is given by:

Pr[G] = p|E(G)|(1− p)(
n
2)−|E(G)| . (1)

The probability space (Ω, IF,Pr) is denoted by G(n, p) or
Gn,p and called the probability space of all random graphs
of order n or E-R random graph model.

A statement about a random graph from G(n, p) is said
to hold asymptotically almost surely (a.a.s.) if it holds
with probability approaching 1 as n → ∞. A graph G with
n vertices is said to be dense if it has Θ(n2) edges (i.e.,
asymptotically equal to n2) and G is said to be sparse if it
has o(n2) edges (i.e., asymptotically less than n2).

If one considers p to be a non-zero constant, then ran-
dom graphs have pn(n − 1)/2 = Θ(n2) edges, hence they
are dense a.a.s. On the other hand, there are such choices
of p that random graphs are sparse. E.g. if p = p(n) is
a decreasing function on n such as p = n−ε for any con-
stant ε > 0 then random graphs have Θ(n2−ε) edges and
they are sparse a.a.s. In particular, if p = c/n = Θ(n−1) for
any constant c > 0, then random graphs have a linear num-
ber of edges (observe that ε = 1, hence random graphs are
sparse a.a.s.) and, in terms of edge set cardinality, they are
similar to real-world networks. On the other hand, some
structural properties of sparse random graphs are usually
far from real-world networks [2, 16]. Many works deal
with structural properties of real networks and quite re-
alistic models are currently represented by e.g. scale-free
or random geometric networks [2, 8, 16].

2.3 Monotonicity and Threshold Functions

In physics, a phase transition is the transformation of a
thermodynamic system from one phase to another. Dur-
ing such a transformation, some physical properties of the
system change discontinuously. An example is freezing
(or boiling) water or the emergence of superconductivity
in certain metals when cooled below the critical temper-
ature. In all phase transitions, there exists a value of a
certain quantity (often temperature) in which the physical
properties in question change.1 Such a value is said to be
a critical point.

Similar behavior was also observed in random graphs
(for the first time in [3]). The critical points in thermody-
namics have their counterparts in random graphs: they are
thresholds functions.

1The character of such a change is similar to a jump discontinuity
function.
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Let Kn be a clique with n > 0 vertices. Let 2Kn denote
the power set of all spanning subgraphs of Kn. Let G1,G2
be spanning subgraphs of Kn and let G1 ⊆ G2 denote that
E(G1) ⊆ E(G2). Let Q ⊆ 2Kn be a family of subsets and
note that Q contains spanning subgraphs of Kn. A family
of graphs Q is said to be increasing if G1 ⊆ G2 and G1 ∈ Q
imply that G2 ∈ Q. A family of graphs Q′ is decreasing if
2Kn \Q′ is increasing. A family which is either increasing
or decreasing is called monotone. A family of graphs G
is said to be closed under isomorphism if for all G ∈ G
and H ∼= G implies that H ∈ G . If a family of graphs from
2Kn is closed under isomorphism, it can be identified with
a graph property.

Threshold functions are usually defined for monotone
properties. In this paper, we need to introduce them only
for increasing properties. For further details see [10]. Let
Q be an increasing property of graphs from 2Kn . Let
p = p(n) be a function. A function p̂ = p̂(n) is called a
threshold function for Q iff the following condition holds:

Pr[ G(n, p) has Q ] →
{

0 if p ≪ p̂ ,
1 if p ≫ p̂ .

Threshold functions play a crucial role in examina-
tion of the phase transition phenomena in random graphs
[3, 10, 11, 15]. A typical property is the connectivity of
random graphs and more specifically, size of connected
components. The threshold function for the existence of a
giant component is p̂ = 1/n. As stated in [15], Sect. 4, a
random graph contains a.a.s. the largest component with
Θ(n2/3) vertices in its critical phase, i.e. if p = 1/n. The
subcritical phase is for p = c/n where 0 < c < 1. It repre-
sents such a state that all components are trees or unicyclic
and the largest component is of size Θ(logn) a.a.s. Other-
wise, if p = c/n where c > 1, then there is a unique giant
component of order Θ(n) a.a.s. in the supercritical phase.
The rest of the random graph consists of "small" trees and
as c increases, the giant component grows by absorbing
the trees.

3 Graphlets

Let Xgi be the random variable on G(n, p) denoting the
number of copies of graphlet gi in a random graph for i =
0, . . . ,9. In this paper, we consider 10 graphlets with at
most 4 vertices (see Fig. 1) that is why i = 0, . . . ,9.

Lemma 1 ([10]). For i = 0, . . . ,9, let ni (mi) denote the
number of vertices (edges) of gi. The expectation of the
random variable Xgi is given by

IE(Xgi) =
ni!

aut(gi)

(
n
ni

)
pmi(1− p)(

ni
2)−mi , (2)

where aut(gi) denotes the number of automorphisms of gi.

Vertices (i.e. graphlets g0) represent a trivial case, thus
we will consider only random variables Xgi for i > 0 in this

section. We shall examine the phase transition behavior of
graphlets at first. The occurrence of a given graphlet is not
a monotone property [10]. Nevertheless, such a property
has two threshold functions, one in sparse random graphs
and the second in very dense random graphs [10]. We are
interested only in the first case since almost all real net-
works are sparse.

For a given graph G, let τ(G) denote the ratio of the
number of edges to the number of vertices in the densest
subgraph of G, i.e.

τ(G) = max
{ |E(H)|

|V (H)| ; H ⊆ G, |V (H)| > 0
}

.

The following statement determines threshold functions
for graphlets.

Theorem 1 ([10]). For an arbitrary graphlet g with at
least one edge, it holds

lim
n→∞

Pr[ g occurs in G(n, p) ] =

{
0 if p ≪ n−1/τ(g) ,

1 if p ≫ n−1/τ(g) .

As a consequence, we obtain Tab. 1 in which the thre-
sholds functions for all nontrivial graphlets are listed. De-
termination of threshold functions is straightforward be-
cause none of graphlets (for i = 1, . . . ,9) contains a denser
subgraph than itself. Clearly, τ(g1) = 1/2 and τ(g2) =
τ(P3) = 2/3. By the same argument, τ(g3) = τ(△) =
3/3 = 1, etc.

Table 1: Threshold functions of nontrivial graphlets.

Graphlet Description Threshold
gi function
g1 Edge n−2

g2 Path P3 n−3/2

g3 Triangle △ n−1

g4 Path P4 n−4/3

g5 3-star n−4/3

g6 Cycle C4 n−1

g7 △+edge n−1

g8 Chordal-C4 n−4/5

g9 Clique K4 n−2/3

If we consider sparse random graphs with p = c/n, then
it is possible to deduce from Tab. 1 which graphlets occur
more or less frequently. We can see that the presence of
trees (i.e. graphlets g1,g2,g4 and g5) is the most probable
of all graphlets in G(n,c/n). On the other hand, dense
graphlets (such as the clique g9) rarely occur in G(n,c/n).

The expected number (or "average counts") of graphlets
can be derived from Lemma 1. The probabilities of
graphlets and corresponding expectations of the random
variable Xgi are listed in Tab. 2. The numbers of automor-
phisms aut(gi) for these small graphs are well-known (see
[19] for the details).

Probabilistic Analysis of Graphlets in Sparse E-R Random Graphs 173



Table 2: Graphlets, numbers of their automorphisms,
probabilities of graphlets and values of IE(Xgi).

Graphlet aut(gi) Probability IE(Xgi)
gi of gi
g1 2 p

(n
2

)
p

g2 2 p2(1− p) 3!
2

(n
3

)
p2(1− p)

g3 6 p3 3!
6

(n
3

)
p3

g4 2 p3(1− p)3 4!
2

(n
4

)
p3(1− p)3

g5 6 p3(1− p)3 4!
6

(n
4

)
p3(1− p)3

g6 8 p4(1− p)2 4!
8

(n
4

)
p4(1− p)2

g7 2 p4(1− p)2 4!
2

(n
4

)
p4(1− p)2

g8 4 p5(1− p) 4!
4

(n
4

)
p5(1− p)

g9 24 p6 4!
24

(n
4

)
p6

4 Isolated Graphlets

Given a graph G = (V,E), a graphlet is said to be an iso-
lated graphlet if it is a component in G. Let Ygi be the
random variable on G(n, p) denoting the number of copies
of isolated graphlet gi in a random graph for i = 0, . . . ,9.
It will be seen later (in Tab. 3) that it is meaningful to take
into account the isolated graphlet g0 as well.

Lemma 2 ([10]). For i = 0, . . . ,9, let ni (mi) denote the
number of vertices (edges) of gi. The expectation of the
random variable Ygi is given by

IE(Ygi) = IE(Xgi) · (1− p)(n−ni)ni . (3)

In order to express an asymptotic estimation for "a-
verage counts" of isolated graphlets in random graphs, the
following lemma is necessary.

Lemma 3. Let α,β ,c be constants (i.e. α ,β ,c ≪ n) such
that α,c > 0 and let p = c/n. It holds

(1− p)αn+β ∼ e−αc as n → ∞ .

Proof. By assumptions of Lemma,

(1− p)αn+β =
(

1− c
n

)αn
·
(

1− c
n

)β
.

Thus

(1− p)αn+β =

(
1+

1
− n

c

)−αnc
−c

·
(

1− c
n

)β
∼ e−αc

since

lim
n→∞

(
1+

1
− n

c

)− n
c

= e

and

lim
n→∞

(
1− c

n

)β
= 1 .

By Lemma 2 and 3, we derive the following statement.
It determines the asymptotic estimation for expected num-
ber of isolated graphlets in random graphs with p = c/n.

Lemma 4. Let c > 1 be constant. There exists a function
ψc(n) = O(n−1) such that for each gi (with ni vertices and
mi edges) in G(n,c/n) it holds

IE(Ygi) ∼





ncni−1e−cni/aut(gi) if mi = ni −1,

cnie−cni/aut(gi) if mi = ni,

ψc(n) if mi ≥ ni +1.

This lemma allows for asymptotic estimation of ex-
pected numbers of isolated graphlets in random graphs
G(n,c/n). Corresponding estimations are listed in Tab.
3. One may observe that the frequency of isolated trees
(i.e. graphlets g0,g1,g2,g4,g5) growth linearly with n, the
frequency of isolated graphlets g3,g6,g7 (i.e. trees with
one additional edge) is constant with respect to n and the
frequency of other isolated graphlets (g8 and g9) is neg-
ligible. The intuition behind this result is, similarly as in
the previous section, that the contribution of sparse iso-
lated graphlets is more significant (even in magnitude)
than of denser ones. Unless as in the previous section,
the frequency distribution of isolated vertices g0 can be
expressed by the asymptotic formula which depends on n
and c. (Note that the count of graphlets g0 is trivially n.)

Table 3: Asymptotic estimations of expected number for
isolated graphlets in G(n,c/n) as n is large enough.

Gra- IE(Ygi) Estimation of
phlet IE(Ygi) for

gi p = c/n
g0 n(1− p)n−1 ne−c

g1
(n

2

)
p(1− p)2(n−2) 1

2 nce−2c

g2
3!
2

(n
3

)
p2(1− p)3(n−3)+1 1

2 nc2e−3c

g3
3!
6

(n
3

)
p3(1− p)3(n−3) 1

6 c3e−3c

g4
4!
2

(n
4

)
p3(1− p)4(n−4)+3 1

2 nc3e−4c

g5
4!
6

(n
4

)
p3(1− p)4(n−4)+3 1

6 nc3e−4c

g6
4!
8

(n
4

)
p4(1− p)4(n−4)+2 1

8 c4e−4c

g7
4!
2

(n
4

)
p4(1− p)4(n−4)+2 1

2 c4e−4c

g8
4!
4

(n
4

)
p5(1− p)4(n−4)+1 1

4 n−1c5e−4c

g9
4!
24

(n
4

)
p6(1− p)4(n−4) 1

24 n−2c6e−4c

5 Domination Number in Sparse Random
Graphs

A dominating set of a graph G = (V,E) is a set D ⊆ V (G)
such that every vertex not in D is adjacent to at least one
vertex of D. The domination number, denoted by γ(G), is
the minimum cardinality of a dominating set of G.
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Results regarding domination problems and domination
number are surveyed in [7]. Due to significant applica-
tions in social, engineering and PPI networks, the area
of domination became recently attractive and fast growing
[5, 12, 13, 14, 18].

It was shown in [18] that the domination number of ran-
dom graphs for a constant p may attain one of only two
possible values. Such a property is called the two-point
concentration. The two-point concentration result was re-
cently extended for random graphs G(n, p) with p ≫ ln2 n√

n
(in this case, p = p(n) is assumed to be a function). How-
ever, it does not hold if p = O(logn/n) [5]. As mentioned
in [5], the detailed analysis of the domination number be-
havior for random graphs with p ≪ 1√

n is still an interest-
ing open problem.

In order to pursuit this problem, we suggest to use a
method based on isolated graphlet counting. Recall that a
random graph consists of a single giant component and
small isolated trees a.a.s. in its critical and supercriti-
cal phase if p = Θ(n−1). Roughly speaking, our idea re-
sides in exact counting of domination numbers for isolated
trees and its estimation for the giant component. Resulting
bounds could be obtained by a combination of all partic-
ular estimations. Our preliminary results exploiting the
early version of this idea have been published in [14].

6 Concluding Remarks

One possible extension of this work may involve analy-
sis for graphlets with 5 vertices. Although the idea is the
same as for smaller graphlets, detailed calculations need
an additional effort because there are 21 graphlets with 5
vertices.

Comparing actual networks to random graphs might be
a meaningful goal for future research. A resulting know-
ledge might be helpful to better understanding of real-
world networks structure.

As regards the problem of the domination number esti-
mation, the author is currently working on more accurate
formulas of results published in [14]. The corresponding
analysis is based on the idea which was explained in the
previous section.
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