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Abstract: Let A be a finite alphabet, and let S be
a set of of 2-dimensional bounded prohibited pat-
terns over A . We consider the set MA ,S of ma-
trices over A that avoid the patterns from S , and
attempt to derive (closed or linear recurrence) for-
mulas for the numbers of m×n matrices in MA ,S .
We argue that different sets of prohibited patterns
require different types of formulas, with some for-
mulas recurrent in just one of the parameters m,n,
some satisfying a two-dimensional linear recur-
rence relation (depending of both m and n), and
some satisfying neither of the two types. We con-
sider characterization of classes that admit a two-
dimensional linear recurrence relation, as well as
classes that do not allow for such relation. In addi-
tion, given A and S , we address the question of
the existence of a constant a such that the number
of m×n matrices in MA ,S is asymptotically equal
to |A |amn.

We report on preliminary results for a specific class
of boolean matrices with the prohibited set consist-
ing of thirty-two 3× 3 matrices for which compu-
tational results suggest the non-existence of a two-
dimensional linear recurrence relation.

1 Introduction and preliminaries

Many classes of objects are defined via prohibit-
ing specified sub-objects. In our paper, we deal
with classes of matrices over finite alphabets that
do not contain patterns from a finite set of local
prohibited patterns. Such matrices can be viewed
as matrices recognizable via a bounded window
automaton with a finite memory that can only view
a bounded area of the matrix at a time and cannot
see (or remember) the matrix in its entirety (while
it is allowed to slide through the entire matrix
window by window, verifying each window sepa-
rately). The motivation behind considering these
classes of matrices lies in extending the theory
of ‘one-dimensional’ languages of strings avoid-
ing specified substrings to two dimensional ar-
rays. One-dimensional languages that avoid (con-
nected) substrings from a finite set of prohibited

substrings have been studied for several decades
and their enumeration is well-known to lead to ho-
mogeneous linear recurrence relations (see. e.g.,
[3, 4]), We show that a similar, although more
complicated, situation holds in the case of two-
dimensional arrays. We stress that when talking
of submatrices, we mean connected blocks.

Let A be a finite alphabet, and let S be a set of
k× ` matrices over A , k, `≥ 1. Let MA ,S denote
the set matrices over A that do not contain (avoid)
sub-matrices from S , i.e., the set of matrices
A =‖ai, j ‖m.n, ai, j ∈A , for 1≤ i≤ m, 1≤ j ≤ m,
having the property that none of the k× ` subma-
trices of A belong to S (thus, k and ` are the di-
mensions of the viewing window of the automaton
recognizing A; it accepts A if and only if it never
finds a matrix from S in its viewing window).

We illustrate this concept with a specific class of
matrices with prohibited patterns that will be used
throughout our paper.

Example 1. Let A = {0,1}, and consider the set
of boolean matrices over A not admitting 3× 3
crosses of zeroes or ones, i.e., not admitting sub-
matrices of the form

∗ 0 ∗
0 0 0
∗ 0 ∗

∗ 1 ∗
1 1 1
∗ 1 ∗

where the stars stand for arbitrary elements from
A (to avoid using stars, one could think of the set
of the 32 prohibited matrices obtained by making
all the possible choices). We will call the matri-
ces from this class noise matrices, and note that
they are often considered to be examples of chaotic,
structure-less matrices.

Given an alphabet A and a set S of prohibited k×
` submatrices over A , let NA ,S (m,n) denote the
number of m×n matrices in MA ,S . Then clearly
NA ,S (m,n) = |A |mn, for all 1 ≤ m ≤ k and 1 ≤
n≤ `, with at least one parameter smaller than the
upper bound, while

0≤ NA ,S (m,n)≤ |A |mn (1)
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in general.

In what follows, we are interested in deriving for-
mulas for NA ,S (m,n) for various alphabets A and
sets of prohibited sub-matrices S .

Example 2. Considering A = {0,1} again, taking
empty S1 yields MA ,S1 consisting of all boolean
matrices and NA ,S1(m,n) = 2mn, for all m and n.

Taking S2 to consist of the single 1×1 matrix with
a1,1 = 1 implies that MA ,S2 consists of just the
m× n zero-matrices and NA ,S2(m,n) = 1, for all
m and n.

Finally, taking S3 to consist of the 2× 2 all-ones
matrix ai, j = 1, for 1≤ i, j≤ 2, yields MA ,S3 con-
sisting of all 1×1, 1×2, 2×1 matrices, and m×n
matrices that do not contain a 2× 2 sub-matrix of
all ones, for m,n≥ 2. Thus,

NA ,S3(1,1) = 2,

NA ,S3(1,2) = NA ,S3(2,1) = 22 = 4,

NA ,S3(2,2) = 24−1 = 15,

and the Inclusion-Exclusion Principle yields that
NA ,S3(2,3) = 26−22−22 +1 = 57.

One of the main conjectures concerning the asymp-
totic behavior of the numbers NA ,S (m,n) states
the following:

Conjecture 1. Let A be a finite alphabet, and let
S be a set of prohibited k×` submatrices over A .
Then there exists a constant 0≤ a≤ 1 such that

lim
m→∞,n→∞

NA ,S (m,n)
|A |amn = 1.

If the a from the above conjecture exists for a spe-
cific pair A and S , we say that a is the critical ex-
ponent for the pair. The sets S1 and S2 defined in
Example 2 constitute extremal cases with the criti-
cal exponents a1 = 1 and a2 = 0, respectively.

The paper [1] contains the following information
about the asymptotic behavior of the enumeration
function of the noise matrices.

Theorem 1 ([1]). Let A and S be those defined in
Example 1. For every m≥ 3, there exists a constant
0≤ am ≤ 1 such that

lim
n→∞

NA ,S (m,n)
|A |ammn = 1.

Furthermore, there exist two constants 0 < b1 <
b2 < 1 such that

2b1mn < NA ,S (m,n)< 2b2mn,

for all m,n≥ 3.

While computer experimentation appears to sup-
port Conjecture 1, in principle, it cannot be used
to prove the claim for any specific pair A and S .
However, it usually fairly quickly provides for es-
timates for the value of a. In particular, finding
the numbers NA ,S (m,n) for a large range of pairs

m,n allows one to calculate
log|A |(NA ,S (m,n))

mn for
each such pair. The actual values for large pairs
often match for a considerable number of decimal
places. For example, calculations concerning the
enumeration of noise matrices reported in [6] yield
that the corresponding a (if it exists!) lies in the
range:

0.9068≤ a≤ 0.947564.

2 One-dimensional linear recurrence
relations

Let A and S be a finite alphabet and a set of k×`
prohibited matrices over A . In this section, we
prove that for any given m ≥ k there exists a lin-
ear recurrence formula tying together the numbers
NA ,S (m,n), n ≥ 1. We use a generalization of a
technique used in [1] for noise matrices.

Example 3. To illustrate the basic idea of this ap-
proach, suppose we extend a 3× n matrix ending
in a specific triple of columns by adding a spe-
cific new column which results in a 3× (n+1) ma-
trix ending in a new triple of columns (but sharing
two columns with the original triple). We may en-
counter two different situations:

. . .
0 1 1
1 1 1
0 0 1

+
0
0
1

= . . .
1 1 0
1 1 0
0 1 1

or

. . .
0 1 1
1 1 1
0 0 1

+
0
1
1

= . . .
1 1 0
1 1 1
0 1 1

When considering the noise matrices defined in
Example 1, these two situations differ as follows.
Any noise matrix ending in the first triple remains
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a noise matrix after adding the specified column,
while the matrix formed from a noise matrix by
adding the second specified column ceases being
a noise matrix.

With regard to the above example, it is important
to point out that the entire situation only depends
of the last three columns, and the actual number of
columns of the matrices is irrelevant with regard to
the above claims.

In view of these observations, let A be a finite al-
phabet and S be a set of k× ` prohibited matrices
over A , and let us fix the number m ≥ k of rows.
Let {M1,M2, . . . ,M|A |m`} be the set of all m× `
matrices over A (listed in an arbitrary but fixed or-
der). For each n ≥ `, divide the m× n matrices in
MA ,S with regard to their last ` columns, and let
αn

i denote the number of m×n matrices in MA ,S

ending in the matrix Mi, 1 ≤ i ≤ |A |m`. Denote
α(n) = (αn

1 ,α
n
2 , . . . ,α

n
|A |m`), and note that

α(n) ·1T =
|A |m`

∑
i=1

αn
i = NA ,S (m,n), (2)

(where 1T stands for the column of all ones).

As observed above, if we expand an m× n matrix
ending in Mi by adding a column, we obtain an
m× (n+ 1) matrix ending in M j having the prop-
erty that the first `− 1 columns of M j match the
last `− 1 columns of Mi. If this is the case, we
will say that M j is a successor of Mi. Moreover,
if n ≥ `, the question whether an m× n matrix in
MA ,S ending in Mi remains in MA ,S after a col-
umn is added to it so that it ends in M j depends of
Mi and M j only and it is independent of the num-
ber of columns n. Therefore, for 1 ≤ i, j ≤ |A |m`,
let ai, j = 1 if M j is a successor of Mi having the
property that if an m× n matrix ending in Mi be-
longs to MA ,S then so does the m×(n+1) matrix
ending in M j (constructed from the smaller matrix
by adding a column). Let ai, j = 0 otherwise, and
denote A=‖ai, j ‖. Since every m× (n+1) matrix
in MA ,S is obtained from a specific m×n matrix
in MA ,S , it follows that

α(n+1) = α(n)A, (3)

for all n≥ `.

Suppose now that the square matrix A is a root of
a monic polynomial p(x) = a0+a1x+a2x2+ . . .+
as−1xs−1 + xs in Z[x], i.e.,

a0I+a1A+a2A2 + . . .+as−1As−1 +As =O,

where I stands for the identity matrix and O for the
all-zeroes matrix. Thus,

As =−a0I−a1A−a2A2− . . .−as−1As−1, (4)

and after multiplying by α(n) on the left and by 1T

on the right we obtain

α(n)As1T =

−a0α(n)1T −a1α(n)A1T −a2α(n)A21T −
. . .−as−1α(n)As−11T .

Applying equations (2) and (3) finally yields

NA ,S (m,n+ s) =

−a0NA ,S (m,n)− . . .−as−1NA ,S (m,n+ s−1),
(5)

which is a linear recurrence relation.

The above arguments allow us to prove the follow-
ing generalization of Theorem 2 to all sets of ma-
trices over finite alphabets with prohibited bounded
patterns.

Theorem 2 ([1]). Let A be a finite alphabet and
S be a set of k× ` prohibited matrices over A .
For every m ≥ k, there exists a linear recurrence
relation such that

NA ,S (m,n+ s) =

−a0NA ,S (m,n)− . . .−as−1NA ,S (m,n+ s−1),

as well as a constant 0≤ cm ≤ 1 such that

lim
n→∞

NA ,S (m,n)
|A |cmmn = 1.

Proof. Let A and S be as stated, and suppose
that m ≥ k. The matrix A defined in the dis-
cussion preceding the statement of our theorem is
an |A |m` × |A |m` boolean matrix which (by the
Cayley-Hamilton theorem) is the root of its char-
acteristic polynomial charA(x), which belongs to
Z[x], and is either monic when |A |m` is even or
can be made monic by multiplying by −1 when
|A |m` is odd. This yields a linear recurrence rela-
tion of order |A |m` for the numbers NA ,S (m,n),
n ≥ `. Since A is a boolean (i.e., non-negative)
matrix, using the Perron-Frobenius theorem yields
that its spectral radius ρ(A) is its eigenvalue of the
largest modulus. Consequently, ρ(A) determines
the magnitude of any sequence satisfying the re-
currence relation determined by charA(x) [2, 5],
therefore NA ,S (m,n) = θ(ρ(A)n), and the second
claim of our theorem follows.
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3 One-dimensional linear recurrence
relations of smallest order

Even though we have proved the existence of an
one-dimensional linear recurrence relation for each
A ,S , and m ≥ k, the orders |A |m` of these re-
lations are rather large. The key problem when
using such relations lies in the need to find the
first |A |m` elements of the corresponding sequence
by brute force. Thus, in order to start using the
above described recurrence relation for the num-
bers NA ,S (3,n) in the case of noise matrices (for
which the prohibited matrices are of dimension
3×3), one first needs to find the numbers

NA ,S (3,3),NA ,S (3,4), . . . ,NA ,S (3,29),

which turns out to be a computationally demanding
task simply because of the sheer size of the search
spaces and the corresponding frequency numbers.
For example, NA ,S (3,55000)≈ 20.970956·3·55000 ≈
2160207, and 640 MB of memory space were needed
to store the first 55,000 members of the sequence
NA ,S (3,n) [6]. (Clearly, in order to obtain the cor-
rect recurrence relation, one needs to calculate and
store the exact numbers.)

Finding recurrence relations of smaller degrees is
therefore of utter importance. The first obvious
choice for reducing the degree of the obtained re-
currence relation is to use the minimal polynomial
for A over C instead of its characteristic polyno-
mial. However, while calculating the character-
istic polynomial for A is a computationally de-
manding but simple determinant calculation, find-
ing the minimal polynomial for A requires finding
the roots for charA(x) or its irreducible divisors.
Moreover, the minimal polynomial over C most
likely does not belong to Z[x], making the exact
calculation of the coefficients of the corresponding
recurrence relation impossible. While this prob-
lem can be remedied by considering the minimal
polynomial over Q (which does belong to Z[x]), in
general, this would be of higher degree than the
minimal polynomial over C, and still hard to find.

In [6], the third author under the supervision of
the second author of this article considered the
noise matrices and chose a much simpler computa-
tional approach. Using essentially brute force, he
found the numbers of noise matrices NA ,S (3,n)
for 1 ≤ n ≤ 55000. Having the numbers from this
list, he created a list consisting of the numbers
log2(N(3,n))

3n , looking for a pattern. An easy inspec-

tion reveals that log2(N(3,1500))
3·1500 ≈ 0.970992, while

log2(N(3,55000))
3·55000 ≈ 0.970956; the critical exponent

for m = 3 becomes exact up to the first four dec-
imal digits fairly quickly.

Similarly, calculating the numbers NA ,S (4,n) for
1≤ n≤ 35000 determined the critical exponent for
m = 4 equal to 0.959452; the numbers NA ,S (5,n)
for 1≤ n≤ 50000 determined the critical exponent
for m = 5 equal to 0.952307; and finally calculat-
ing the numbers NA ,S (6,n) for 1≤ n≤ 25000 de-
termined the critical exponent for m = 6 equal to
0.9475645.

As for the recurrence relation of minimal degree,
having the actual values of the corresponding se-
quence allows one to find the minimal degree ex-
perimentally. Specifically, let k ≥ 2, and suppose
an equivalence relation of degree k exists. If that
were the case, the solution a0,a1,a2, . . . ,ak−1 of
the k× k system of linear equations

a0NA ,S (m, `)+ . . .+ak−1NA ,S (m, `+ k−1)
= NA ,S (m, `+ k)

a0NA ,S (m, `+1)+ . . .+ak−1NA ,S (m, `+ k)

= NA ,S (m, `+ k+1)
. . .

a0NA ,S (m, `+ k−1)+ . . .+ak−1NA ,S (m, `+2k−2)
= NA ,S (m, `+2k−1)

would have to satisfy all the ‘latter’ systems, i≥ 1,

a0NA ,S (m, `+ i)+ . . .+ak−1NA ,S (m, `+ k−1+ i)

= NA ,S (m, `+ k+ i)

a0NA ,S (m, `+1+ i)+ . . .+ak−1NA ,S (m, `+ k+ i)

= NA ,S (m, `+ k+1+ i)

. . .

a0NA ,S (m, `+ k−1+ i)+ . . .+ak−1NA ,S (m, `+2k−2+ i)

= NA ,S (m, `+2k−1+ i).

This can be experimentally tested starting from
k = 2, and looking for the first k that satisfies these
requirements (which will necessary be the smallest
degree of a linear recurrence relation for the con-
sidered sequence).

Relying on [6] again reveals the following. The
minimal degree of a linear recurrence relation for
NA ,S (3,n) is 2, the minimal degree of a lin-
ear recurrence relation for NA ,S (4,n) is 4, the
minimal degree of a linear recurrence relation for
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NA ,S (5,n) is 8, and the minimal degree of a linear
recurrence relation for NA ,S (6,n) is 20.

In particular,

NA ,S (3,n+2) = 4NA ,S (3,n)+7NA ,S (3,n+1),

for all n≥ 3.

4 Two-dimensional linear recurrence
relations

The results obtained for the noise matrices men-
tioned in the previous section suggest that the de-
gree of the minimal linear recurrence relation in-
creases with increasing number of rows. This is,
however, not a universal fact concerning all ma-
trices with prohibited bounded patterns. For ex-
ample, all the numbers NA ,S2(m,n) for the ma-
trices from Example 2 are equal to 1, and hence
satisfy the recurrence relation NA ,S2(m,n+ 1) =
NA ,S2(m,n). Nevertheless, we feel that the fol-
lowing conjecture might turn out to be true.

Conjecture 2. Let A be a finite alphabet and S
be a set of k× ` prohibited matrices over A with
k, `≥ 2. Then the minimal degree of a linear recur-
rence relation for the sequence

NA ,S (m,n),NA ,S (m,n+1),NA ,S (m,n+2), . . .

m≥ k, increases with increasing m.

In view of Conjecture 2, instead of looking for one-
dimensional linear recurrence relations, we pro-
pose to search for two-dimensional recurrence re-
lations.

Specifically, let rm,n be a two dimensional sequence
of reals (i.e., a function from N×N to R). We
say that a two-dimensional sequence rm,n satis-
fies a two-dimensional linear recurrence relation
provided there exist coefficients ai, j, 0 ≤ i ≤ t,
0≤ j ≤ s, with at,s = 0, such that

rm+t,n+s =

a0,0rm,n +a0,1rm,n+1 + . . .+a0,srm,n+s +

a1,0rm+1,n +a1,1rm+1,n+1 + . . .+a1,srm+1,n+s +

. . .+

at,0rm+t,n +at,1rm+t,n+1 + . . .+at,srm+t,n+s,

for all m,n ∈ N.

Our preliminary results suggest the following two
conjectures.

Conjecture 3. Let A be a finite alphabet and S
be a set of k×` prohibited matrices over A with at
least one of the numbers k, ` equal to 1. Then the
two-dimensional sequence NA ,S (m,n), m,n ≥ 1,
satisfies a two-dimensional recurrence relation.

Conjecture 4. Let A be a finite alphabet and
S be a set of k× ` prohibited matrices over A
with k, ` ≥ 2. Then the two-dimensional sequence
NA ,S (m,n), m,n ≥ 1, does not satisfy a two-
dimensional recurrence relation.
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