
Approaching side-effects in pure functional programming by interpreting data
structures as recipes

Michal Štrba, Richard Ostertág

Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, Bratislava, Slovakia
faiface@ksp.sk, ostertag@dcs.fmph.uniba.sk

Abstract: We present a new approach to side-effects in
pure functional programming. The approach is not novel
in every aspect but rather in combining of multiple already
known concepts into a coherent method.

The key concept in this approach is to view some data
structures as describing a recipe of what should be done.
A program expressed in form of this data structure is then
passed to another program called ’interpreter’. An inter-
preter takes the recipe, examines it, and actually executes
all the desired side-effects.

Keeping simplicity, clarity, and avoiding introduction of
any unnecessary theory, the recipe data structures tend to
roughly conform to the CPS (continuation passing style)
model and tend to contain function values inside of them.
This means, that expressing them in code involves a lot of
anonymous functions and large “continuations” as argu-
ments to other functions. Attempting to write such code in
any of the traditional functional languages, most notably
Haskell, results in a very messy, unpleasant, and hard to
read code. We also think that it’s the main reason why
techniques described in this paper weren’t developed ear-
lier in these languages.

Therefore, we created a new language that makes such
code beautiful and pleasant to read. The subtle features of
the language that make this new approach to side-effects
viable have far reaching implications, mostly by making it
possible to write purely functional code that reads top to
bottom.

In this paper, we describe the Funky programming lan-
guage, how it facilitates writing vertical code, how we can
write interpreters for recipe data structures, and how we
can use the language to transform and combine the recipes
in purely functional code and thereby attain great expres-
sivity in writing side-effecting programs.

1 Short introduction to Funky

Funky is a simple language with a small set of orthogo-
nal features that combine very well. The language was
designed and implemented by us and was the topic of our
bachelor’s thesis. This paper is a shortened version of that
thesis. The parts left out in this paper are mainly the thor-
ough description of the language. This shouldn’t cause
any trouble to people generally familiar with functional
programming, for whom this paper is intended anyway.

Now we’ll briefly describe the important aspects of the
language so that the following sections are easy to under-

stand. The description is very dense, full comprehension
is not required.

1.1 Names and tokens

Tokens in Funky are generally separated by whitespace,
except for these special characters which are always
parsed as separate tokens, whether separated by whites-
pace or not:

() [] { } , ; \ #

Aside from these, all tokens are separated by whites-
pace. Consequentially, identifiers may contain all kinds
of symbols. For example, these are all valid identifiers:
fold>, fold<, empty?, skip-whitespace. Dashes (-)
are used to separate words in function names instead of un-
derscores or camel-case. However, type names start with
upper-case letters and use camel-case.

Tokens starting with a digit or a +/- sign followed by a
digit are numbers (valid or invalid). Any series of charac-
ters enclosed in single quotes is a character literal (valid or
invalid) and similarly, double quotes enclose a string literal
(again, valid or invalid). Escaping in characters/strings
works as expected.

1.2 Functions

A function definition is signified by the func keyword,
which is followed by a function name, a colon, the type of
the function, equals sign and finally the function body –
an expression. Function definitions cannot be nested and
expressions are only allowed as function bodies, no ex-
pressions outside functions are meaningful. For example:

func sqrt : Float -> Float = \x x ^ 0.5

func max : Int -> Int -> Int =

\x \y if (x >= y) x y

func flip : (a -> b -> c) -> b -> a -> c =

\f \x \y

f y x

As we can see, function argument names are not spec-
ified before the equals sign, instead, all arguments are in-
troduced by abstractions. Funky is very consistent with
this – literally all variables in expressions are introduced
by abstractions, there isn’t a single case otherwise.

S. Krajči (ed.): ITAT 2018 Proceedings, pp. 18–27
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, c© 2018 Michal Štrba and Richard Ostertág

Abstractions are very concise – they consist only of a
backslash followed by the name of the bound variable fol-
lowed by the body of the abstraction (function). Multi-
ple arguments are introduced simply by nesting abstrac-
tions. The body of an abstraction always spans until the
end of the scope (for example, inside parentheses it spans
until the closing parenthesis), which prevents unnecessary
parentheses in many cases.

Function names consisting solely of special characters
(no letters or numbers) are infix functions. All infix func-
tions have the same precedence, which is lower than the
precedence of regular prefix function application and are
all right-associative. This is to free the programmer from
the burden of manually specifying the precedence and as-
sociativity of infix functions. Right-associativity was cho-
sen because it’s more often useful than left-associativity.

The type system is very similar to the one in Haskell.
The main difference is that Funky has no type-classes and
disallows higher-kinded types (type variables with argu-
ments), which shall not be confused with higher-order
types that are supported in Funky.

Quite unusually and very importantly, Funky supports
function overloading – defining multiple functions with
the same name, but different types. For example:

map applies a function to all elements of

a list

func map : (a -> b) -> List a -> List b =

\f

fold< ((::) . f) [] # :: is cons

map applies a function to the potential

content of a maybe

func map : (a -> b) -> Maybe a -> Maybe b =

\f \maybe

switch maybe

case nothing nothing

case just \x just (f x)

useless converts a list of maybe floats to

a list of maybe ints

^ that's a useless comment

func useless : List (Maybe Float) ->

List (Maybe Int) =

map (map int)

This comes very handy in many situations – program-
mer doesn’t have to think about names too much and sim-
ilar behavior on different types may be assigned the same
function name. Also, as we’ll see, records are thereby al-
lowed to share field names, which is something that causes
a lot of trouble in Haskell.

Function overloading is not arbitrary – overloaded func-
tions with colliding types are disallowed. Colliding types
are such types that can be specialized (their type variables
can be substituted) into the same type. This is because it
would be impossible to determine, or even easily express,
which of the colliding functions should be used in many
situations.

In the case of need or a desire for clarification, any ex-
pression can be type-annotated with a colon:

((x : Int) + (y : Int) : Int)

1.3 Records

Records are one of the three means of creating own types
in Funky (the other two are unions and aliases). Records
are similar to structs from C or records from Pascal. They
are compound types, a single value containing multiple
fields.

A record definition is signified by the record keyword,
which is followed by the record name, a list of type vari-
ables required by the record (if any), and an equals sign
followed by a comma-separated list of fields. All fields
must be type annotated.

record Pair a b = first : a, second : b

record Person =

name : String,

age : Int, # trailing comma is allowed

record Vec4D =

x : Float,

y : Float,

z : Float,

w : Float,

Funky generates a few functions per record: the con-
structor and a getter and an updater for each field. For
example, in case of the Person record, these functions get
generated:

func Person : String -> Int -> Person

func name : Person -> String

func name : (String -> String) -> Person ->

Person

func age : Person -> Int

func age : (Int -> Int) -> Person -> Person

The constructor takes the values of the record fields in
order and returns an instance of the record. A getter sim-
ply takes a record value and returns the given field. An
updater is more peculiar. It takes a function mapping the
record field to a new value and a record value. Then it re-
turns a copy of the original record where the given field is
replaced by the result of applying the function to its orig-
inal value. This approach to updaters was chosen for two
reasons: first is that this is usually what we want to do:
to update a field according to its previous value; the sec-
ond reason is that updaters compose very well in this form
(they were inspired by Lenses from Haskell).

For example, let’s work with these two records:

record Point = x : Int, y : Int

Approaching side-effects in pure functional programming by interpreting data structures as recipes 19

record Segment =

start : Point,

end : Point,

Say we have a variable seg which is a segment. We can
compose getters to access the X coordinate of the starting
point:

(x . start) seg

But we can also compose updaters to change the value
of that coordinate and get an updated segment:

(start . x) (+ 4) seg

To replace the value of a field with a value independent
of the previous value of the field, we use the const func-
tion (const x takes one argument and always returns x):

(start . x) (const 0) seg

Let’s define one more record:

record Plan = segments : List Segment

The map function can also be used as an updater on a
list, and so we can write this to update all Y coordinates of
all the end points of the segments in a plan:

(segments . map . end . y) (* 2) plan

The whole main motivation for the creation of the huge
and abstract Lens library in Haskell is avoided in Funky
simply by providing clever updater functions.

1.4 Unions

Unions are just like data types in Haskell. Their definition
is signified by the union keyword followed by the name of
the union and a list of type variables, then an equals sign
followed by a | separated list of alternative forms. For
example (:: is cons, the list prepend function):

union Bool = true | false

union Maybe a = nothing | just a

union List a = empty | a :: List a

Funky generates a single constructor function for each
alternative, which takes all the arguments in the order and
returns an instance of the union. For example, these func-
tions get generated for the List union:

func empty : List a

func (::) : a -> List a -> List a

To get values out of a union value, Funky introduces a
special switch/case structure that looks like this:

func length : List a -> Int =

\list

switch list

case empty

0

case (::) \x \xs

1 + length xs

Each case is followed by the name of the alternative,
which is followed by a function that accepts the argu-
ments of the alternative and returns the final result of the
switch/case structure. The arguments in the case body
don’t have to be mentioned explicitly – the above function
could’ve been written like this:

func length : List a -> Int =

\list

switch list

case empty 0

case (::) const ((1 +) . length)

1.5 Aliases

The simplest way of making type names is by aliasing.
Alias simply defines another name for an existing type,
albeit a possibly more complex one. For example, the
String type from the standard library is defined like this:

alias String = List Char

The alias is perfectly identical to the type on right side
of the equals side. They may be used interchangeably.
Aliases may also have type variables.

2 Vertical code

No feature is useful unless the benefits of its employment
outweigh the costs – the feature must be viable. The new
approach to side-effects described in this paper is viable in
Funky, but not in Haskell, or any other traditional purely
functional language. What makes the difference? Surpris-
ingly, only two subtle syntactic differences, nothing major
at the first sight. Yet, these two syntactic differences make
code that is otherwise ugly and messy in Haskell beauti-
ful and readable in Funky. Of course, some code that is
beautiful and readable in Haskell is in its original form not
possible in Funky at all. But, we’re not talking about just
any code here: we’re talking about the kind of code that
makes the new approach to side-effects viable and that is
– vertical code.

Writing code that reads top to bottom and composes ver-
tically has always been the domain of imperative program-
ming. “Do this, then do that, then repeat this until some
other thing happens” is a very natural way of expressing
programs. Programmer reads the code top to bottom, re-
membering the invariants as they occur, until they form a
complete picture of the program in their mind.

20 Michal Štrba and Richard Ostertág

Functional programs tend to compose differently. In-
stead of a series of statements, functional programs are
mere expressions constructed mostly from function appli-
cation and abstraction. An expression has no natural “or-
der of execution”, it’s usually a function application whose
arguments are yet other expressions. The arguments can
be understood in any order. However, if the arguments are
large expressions containing more function applications
with still more large expressions as their arguments, the
whole thing becomes very inconvenient to read and un-
derstand. The reason is that humans operate with only a
finite (and fairly small) amount of working memory. Un-
derstanding an expression that is syntactically a wide and
deep tree requires a lot of working cognitive memory, so
it’s hard.

Of course, designers of functional languages are well
aware of this. Many syntactic features present in those lan-
guages are specially designed to tackle this issue. These
features include: pattern matching, guards, let bindings,
where bindings, or Haskell’s do notation. However, none
of these features solves the problem fully, because they
don’t nest very well.

The motivation for designing Funky arose from the har-
mony experienced while playing with the pure λ -calculus
and from the frustration with existing functional lan-
guages. Experimenting with the pure λ -calculus gave us
the opportunity to step back – see the bigger picture. We
saw that instead of adding new syntactic features like the
ones described above, all that was needed was to improve
the core – make writing ordinary expressions more concise
and make it possible to naturally split them into multiple
lines. It turned out that this was enough. Funky has no
pattern matching, guards, let binding syntax, nor anything
analogous to the Haskell’s do notation.

The two subtle syntactic features that make it possible
are: concise trailing lambdas and the semicolon. We’ll
demonstrate them on concrete examples: the if and the
let function in Funky.

2.1 if and let

In Funky, if is a simple function from the standard library
(body omitted):

func if : Bool -> a -> a -> a

It takes a condition and two arguments of the same type:
then and else, and returns back the correct one. It can be
used as a simple conditional expression, just like the if
structure in Haskell, or the ternary operator in C:

func min : Int -> Int -> Int =

\x \y

if (x < y) x y

But if the expressions are more complex, this becomes
hard to read. Let’s take the factorial function as an exam-
ple (we’ll call it n! because Funky allows this):

func n! : Int -> Int =

\n

if (n <= 0) 1 (n * n! (n - 1))

This particular code isn’t too bad, but it’s easy to con-
ceive situations where using the if as a simple, one-line
conditional expression would be outright unacceptable.

Funky introduces a special syntactic concept: the semi-
colon. All it does is it puts everything that’s after it (in the
scope) inside parentheses. It works just like the $ function
in Haskell. So we can rewrite this:

if (n <= 0) 1 (n * n! (n - 1))

into this:

if (n <= 1) 1; n * n! (n - 1)

and then split it into multiple lines:

if (n <= 1)

1;

n * n! (n - 1)

A more involved example is the infamous FizzBuzz
problem. Here’s a function that returns the correct output
for each number:

func fizzbuzz : Int -> String =

\number

if ((number % 15) == 0)

"fizzbuzz";

if ((number % 3) == 0)

"fizz";

if ((number % 5) == 0)

"buzz";

string number

Here, if is used to express a series of cases terminated
by a catch-all case. The built-in if structure in Haskell is
not suitable for such purposes – one would have to use
guards instead. But as we’ve already said, guards don’t
nest so well.

In contrary, Funky’s if function nests perfectly. Both
“then” and “else” expressions may be arbitrarily large,
nested, vertical expressions.

if condition (

then

...

);

else

...

Similarly to if, let bindings (variable assignments) are
not a built-in language construct in Funky. Instead, let is
a function from the standard library. Here’s its full defini-
tion (including the body):

func let : a -> (a -> b) -> b = \x \f f x

Approaching side-effects in pure functional programming by interpreting data structures as recipes 21

The function let takes a value and then takes a function
to which it passes the value as an argument. Thanks to
the Funky’s concise function construction (lambda/back-
slash), this function is a perfectly viable replacement for a
let binding construct built directly into the language.

let "me stay by your"

(\side reverse side ++ " " ++ side)

Here we call the let function with two arguments: the
first one is the string "me stay by your" and the second
one is a function. Calling let passes the string as the ar-
gument to the function and the whole expression evaluates
to "ruoy yb yats em me stay by your".

Thanks to the Funky’s trailing lambda syntax (function
body spans until the end of scope), we can remove the
parentheses around the function:

let "me stay by your"

\side reverse side ++ " " ++ side

Furthermore, we can split the expression into two lines,
yielding a very readable piece of code:

let "me stay by your" \side

reverse side ++ " " ++ side

Now, instead of thinking in terms of function applica-
tions and abstractions, we understand the code as an as-
signment to a variable (immutable, of course) followed by
the resulting expression.

To assign multiple variables, we can just stack let as-
signments:

let (filter prime? (count 2)) \primes

let (take-while (< 100) primes) \small-primes

let (length small-primes) \count

string count ++ " small primes (< 100)"

This expression evaluates to: "25 small primes (<

100)".

2.2 Vertical functions

Some function are suitable for composing code vertically,
either with the help of the semicolon or trailing lambdas.
We’ve seen both in the previous section on the if and the
let function. Other functions aren’t suitable for that. Now
we’ll describe a small theory about these functions that al-
low vertical composition. We call them vertical functions.

There are two main kinds of vertical functions: those
that utilize the semicolon and those that involve trailing
lambdas. Both are characterized by their signature (type).

The first kind we call semicolon kind vertical functions.
Their signatures have this general form (where V is an ar-
bitrary type and ... is an arbitrary sequence of -> appli-
cations):

... -> V -> V

The last argument to a semicolon kind vertical function
can be usually understood as a continuation, analogous to
CPS (continuation passing style).

The if function is an example of a semicolon kind ver-
tical function.

In some cases, the above form is violated and the return
type doesn’t match the last argument, while the function
is still used vertically. However, the signature usually fol-
lows the mentioned form.

The second kind we call trailing lambda kind vertical
functions. Their signatures have this general form:

... -> (... -> V) -> V

The vertical function passes some arguments to the con-
tinuation, which then takes on the same role as with the
semicolon kind vertical functions. Again, some vertical
functions may violate this form, but those cases are rare.

The let function is an example of a trailing lambda
kind vertical function.

2.3 Viability

The main reason why vertical functions along with their
usage haven’t seen the light of the day in traditional func-
tional languages, such as Haskell is that they’re hardly vi-
able there. The reasons are very subtle. After all, Haskell
supports anonymous functions and has the $ function anal-
ogous to the Funky’s semicolon.

To demonstrate this, let’s take a function for generating
all permutations of a list (the code contains some functions
we haven’t discussed, and won’t discuss, in this paper, but
the understanding of what the function does is irrelevant
now):

func permutations : List a -> List (List a) =

\list

if (empty? list)

(yield []; empty);

pick (permutations (rest list)) \tail

pick (insert (first list) tail) \perm

yield perm;

empty

In Haskell, the above code could be rewritten roughly
like this:

permutations list =

if null list

then yield [] $ empty

else

pick (permutations (rest list)) (\tail ->

pick (insert (first list) tail) (\perm ->

yield perm $

empty))

In case if was a function in Haskell, instead of a built-in
construct, we can improve the code a bit:

22 Michal Štrba and Richard Ostertág

permutations list =

if (null list)

(yield [] $ empty) $

pick (permutations (rest list)) (\tail ->

pick (insert (first list) tail) (\perm ->

yield perm $

empty))

We could improve the code a little bit more by removing
the parentheses around anonymous functions and inserting
a few more dollars:

permutations list =

if (null list)

(yield [] $ empty) $

pick (permutations (rest list)) $ \tail ->

pick (insert (first list) tail) $ \perm ->

yield perm $

empty

The result is still fairly bad, though. The dollar signs all
over the place stick out too much and the arrow at the end
of the argument list of an anonymous function is similarly
detrimental to the overall aesthetics. It’s no wonder that
vertical functions weren’t in fact invented in Haskell. Of
course, one would use pattern matching or the do notation
to write a similar function in Haskell. However, neither
of those features nests very well. The approach taken by
Funky is more general.

3 Side-effects and interpreters

Funky’s approach to side-effects is unique among func-
tional languages, but after exploring it, this fact comes
rather surprising. The approach is so obvious that it’s quite
curious no other language (to our knowledge) has adopted
it before.

The idea is this: a program in Funky is just a value, a
data structure. Then there is a special program called in-
terpreter. This program interacts with the Funky’s runtime
(evaluator) to examine this data structure, which serves the
role of a recipe. A recipe then tells the interpreter what to
do. Contrary to ordinary recipes, these recipes are gen-
erated, combined, recursive, and so on, all the goods of
functional programming.

The Funky programming language itself has no intrinsic
concept of side-effects. In fact, the interpreters themselves
add no real concept of side-effects either. Everything still
remains just a value. The recipe is a value that can be trans-
formed and manipulated just like any other value. This is
where a lot of expressive power comes in as we’ll see.

There isn’t just one interpreter. In fact, any Funky pro-
grammer can make their own interpreters for their own
special purposes. Each interpreter works with a different
data structure describing the desired side-effects. One in-
terpreter is intended for command-line applications. An-
other one is for web servers. And yet another is for 2D
games. Each interprets a data structure specialized for the

given task. In this paper, we’ll examine the interpreter for
command-line applications.

3.1 Interpreters

Funky’s runtime is currently written in Go. As interpreters
need to interact with the runtime, they too must be writ-
ten in Go. This may be expanded to more languages in
the future, for example, it would be useful to write Funky
interpreters in Java or C++.

To write an interpreter we need to import the
"github.com/faiface/funky" package and call the
funky.Run function. This function does all the job re-
garding command-line flags, reading, parsing, and compil-
ing source files, and returns a runtime value representing
the data structure, the recipe, back to the programmer.

package main

import "github.com/faiface/funky"

func main() {

program := funky.Run("main")

}

The funky.Run function takes one argument: the
name of the function containing the recipe value.
The return type of the funky.Run function is
*runtime.Value. The runtime package is located
at "github.com/faiface/funky/runtime". The
*runtime.Value type provides several methods we can
use to interact with the value:

func (*runtime.Value) Char() rune

func (*runtime.Value) Int() *big.Int

func (*runtime.Value) Float() float64

func (*runtime.Value) Field(i int)

*runtime.Value

func (*runtime.Value) Alternative() int

func (*runtime.Value) Apply(

arg *runtime.Value) *runtime.Value

// these three are implemented using the

// above six

func (*runtime.Value) Bool() bool

func (*runtime.Value) List() []*runtime.Value

func (*runtime.Value) String() string

The Char, Int, and Float methods are used to retrieve
values of Funky’s built-in types. The Field function re-
turns the i-th field of a record, or the i-th argument to a
union constructor. The Alternative method returns the
index of the union constructor of the value. And lastly, the
Apply function takes another runtime value and applies it
to the function in the receiving runtime value and returns
the result of this application.

All the above functions crash if they’re used on values
of wrong types. For example, calling Alternative on
a record value crashes, and calling Char on a float value
likewise.

Approaching side-effects in pure functional programming by interpreting data structures as recipes 23

The last three functions are just for convenience because
booleans, lists, and strings are very widely used types.

The interpreter sometimes needs to fabricate new run-
time values not originating in the Funky program. For
example, when a command-line interpreter loads a char-
acter from the input, it needs to make a character value
and pass it to the program. These functions are provided
in the "github.com/faiface/funky/runtime" pack-
age for this purpose:

func MkChar(c rune) *runtime.Value

func MkInt(i *big.Int) *runtime.Value

func MkFloat(f float64) *runtime.Value

func MkRecord(fields ...*runtime.Value)

*runtime.Value

func MkUnion(alt int, fields ...*runtime.Value)

*runtime.Value

// these three are, again, implemented using

// the above five

func MkBool(b bool) *runtime.Value

func MkList(elems ...*runtime.Value)

*runtime.Value

func MkString(s string) *runtime.Value

Their meaning is clear, so we’ll avoid explaining that.

3.2 Interactive command-line programs

The data structure serving the role of a recipe we chose for
simple interactive command-line programs is strikingly
simple:

union IO =

done |

putc Char IO |

getc (Char -> IO) |

It is a kind of a linked list, with three types of nodes.
One signals the end of the program: done. The next one
– putc – says that a character should be printed and the
program should continue in some way. The first argument
to putc is the character to be printed. The other argument
is the rest of the program – a continuation. The last node
– getc – is requesting a character from the input. It has
one argument: a function. The interpreter should read the
character and pass it as an argument to this function. The
function then returns the rest of the program.

Funky always generates constructor functions for a
union and these are the ones generated for IO (bodies omit-
ted, internal to the compiler/runtime):

func done : IO

func putc : Char -> IO -> IO

func getc : (Char -> IO) -> IO

The imporant thing to notice is that putc is a semicolon
kind vertical function and getc is a trailing lambda kind
vertical function. This makes it easy to compose interac-
tive command-line programs in a natural, imperative-like
style.

For example, here’s a “cat” program, a program that
simply copies the input to the output:

func main : IO =

getc \c

putc c;

main

This program has no done node, it’s an infinite data
structure. Before we run it, though, we need an interpreter.
Here it is (badly formatted, because the lack of horizontal
space):

package main

import (

"bufio"

"io"

"os"

"github.com/faiface/funky"

"github.com/faiface/funky/runtime"

)

func main() {

program := funky.Run("main")

in := bufio.NewReader(os.Stdin)

out := bufio.NewWriter(os.Stdout)

defer out.Flush()

loop:

for {

switch program.Alternative() {

case 0: // done

break loop

case 1: // putc

out.WriteRune(program.Field(0).Char())

program = program.Field(1)

case 2: // getc

out.Flush()

r, _, err := in.ReadRune()

if err == io.EOF {

break loop

}

program = program.Field(0).

Apply(runtime.MkChar(r))

}

}

}

The interpreter enters a loop where it checks the pro-
gram node type and acts accordingly, always proceeding
to the continuation until reaching the done node.

Now we can run the “cat” program (user input is em-
phasized, funkycmd is the name of the interpreter):

$ funkycmd cat.fn stdlib/*.fn stdlib/

funkycmd/*.fn

hello, cat!

hello, cat!

do you cat?

do you cat?

you do cat!

you do cat!

^D

24 Michal Štrba and Richard Ostertág

At the end, the user pressed the Ctrl+D combination to
signal the end of file which caused the program to finish.

We can’t do much with just done, putc, and getc, not
at least conveniently. That’s why we’ll now show how to
define more complex functions on top of the basic ones to
get a more powerful – and sometimes surprisingly power-
ful – behavior.

3.3 print, println, scanln

The first function with a more complex behavior that we’re
going to tackle is print. The print function prints a
whole string instead of a single character as putc does
(it doesn’t do it, but it instructs the interpreter to do it, and
similarly, print instructs the interpreter to print a string).

func print : String -> IO -> IO =

\s \next

if (empty? s)

next;

putc (first s);

print (rest s);

next

The print function takes a string and a continuation
– the rest of the program. Then it recursively describes
how to print the string – print the first character and then
continue printing the rest until we printed the whole string.
Alternatively, print can be defined with a right fold:

func print : String -> IO -> IO =

\s \next fold< putc next s

Now we can use print to create a convenience
println function, which additionally prints a newline at
the end of the string:

func println : String -> IO -> IO =

print . (++ "\n")

The next function we’re going to define is scanln,
which scans a whole line from the input (excluding the
newline character) and passes its content. While print

and println prepended some putc nodes to the contin-
uation, scanln prepends some getc nodes, accumulates
the line and passes it to the continuation, which accepts
one argument: the line string. It’s a trailing lambda kind
vertical function.

func scanln : (String -> IO) -> IO =

\f

"" |> fix \loop \s

getc \c

if (c == '\n')

(f (reverse s));

loop (c :: s)

The body makes use of the fix function (fix-point op-
erator, fix f = f (fix f)) to insert inline recursion.

This is a common pattern in Funky. It’s used to avoid cre-
ating unnecessary helper functions in places where the re-
cursion needs to remember more arguments than the orig-
inal function has. The recursion in our case has to remem-
ber the accumulated string starting from an empty string.
The |> function (x |> f = f x) passes the empty string
as the initial value to the recursion.

With the help of print, println, and scanln, we can
make more involved programs. Here’s a number guessing
game:

func main : IO =

println "Think a number from 1 and 100.";

100 |> 1 |> fix \loop \min \max

let ((min + max) / 2) \mid

print (string mid ++ "? ");

scanln \response

if (response == "less")

(loop min (mid - 1));

if (response == "more")

(loop (mid + 1) max);

if (response == "yes")

(println "Yay!"; done);

println "Say one of less/more/yes.";

loop min max

And here’s an example running of the program:

Think a number from 1 and 100.

50? no

Say one of less/more/yes.

50? nope

Say one of less/more/yes.

50? less

25? more

37? more

43? less

40? more

41? more

42? yes

Yay!

3.4 ungetc, skip-whitespace, scan

The print, println, and scanln functions only
“prepend” operations to the continuation. But since IO is
a fully transparent data structure, we can define transfor-
mations that penetrate it, twist it around, or transform it in
any other way.

The first and a very useful example of such a function
is ungetc. It is used to “push a character back on the in-
put”, so that the next getc call will get it. The plain IO

data structure has no such functionality and we can’t get
any similar behavior just by sequencing done, putc, and
getc. What we need is we need to write a function that
takes a character and a continuation, then searches through
the continuation until it finds the first getc node, and fi-
nally passes the character to that node. Since IO is just a
transparent data structure, this is quite easy:

Approaching side-effects in pure functional programming by interpreting data structures as recipes 25

func ungetc : Char -> IO -> IO =

\c \io

switch io

case done

done

case putc \d \jo

putc d;

ungetc c;

jo

case getc \f

f c

The ungetc function examines the top node of the con-
tinuation and recursively propagates itself down the data
structure until it finds a getc node. When it does, it passes
the character to the function of the getc node and turns it
into its result.

The ungetc function is particularly useful for imple-
menting the scan function. We’ve already implemented
scanln, which scans whole lines. The scan function, on
the other hand, scans the next full word (a continuous se-
quence of characters not containing any whitespace) on the
input. To do that it first needs to skip all the whitespace
preceding the word, then scan the word, but avoid scan-
ning the first whitespace character after the word. We’ll
see how ungetc comes to help with this.

First, we’ll make a general function for skipping whites-
pace on the input:

func whitespace? : Char -> Bool =

\c

any (c ==) [' ', '\t', '\n', '\r']

func skip-whitespace : IO -> IO =

\next

getc \c

if (whitespace? c) (

skip-whitespace;

next

);

ungetc c;

next

The skip-whitespace function continuously reads
characters from the input until it reaches a non-whitespace
character. It wasn’t supposed to read this character, but it
needed to in order to determine whether to stop skipping
or not. So it uses ungetc to put it back on the input.

With the help of skip-whitespace, here’s scan:

func scan : (String -> IO) -> IO =

\f

skip-whitespace;

"" |> fix \loop \s

getc \c

if (whitespace? c) (

ungetc c;

f (reverse s)

);

loop (c :: s)

It uses the skip-whitespace at the beginning, then it
enters a loop where it accumulates the word until it reaches
a whitespace again. This whitespace wasn’t supposed to
be read by scan, so it’s put back on the input by ungetc.

Here’s a simple calculator program demonstrating the
scan function:

func main : IO =

print "> ";

scan \x-str

scan \op

scan \y-str

float x-str returns Maybe Float

hence the call to extract

let (extract (float x-str)) \x

let (extract (float y-str)) \y

println (

if (op == "*") (string (x * y));

if (op == "/") (string (x / y));

"invalid operation: " ++ op

);

main

And here’s its running:

> 10 / 3

3.3333333333333335

> ^D

3.5 reverse-lines

The last example in our exploring of the possibilities of the
IO data structure is a rather peculiar one: not practically
useful, but quite showing of the potential present here.

The function is called reverse-lines and its job is
to reverse all the lines on the output. Lines come to the
output in two ways: either a sequence of putc nodes ter-
minated by a putc of a newline, or a sequence of putc
nodes terminated by a getc node – all the pending output
must be shown to the user before requesting input and the
user input will be entered by a newline.

func reverse-lines : IO -> IO =

\io

io |> "" |> fix \loop \s \(io : IO)

switch io

case done

done

case putc \c \jo

if (c == '\n') (

println s;

loop "";

jo

);

loop (c :: s);

jo

case getc \f

print s;

getc \c

loop "";

f c

26 Michal Štrba and Richard Ostertág

The reverse-lines function starts a loop using inline
recursion with fix to accumulate the line to be reversed.
It removes the original putc nodes from the data structure
and keeps accumulating until reaching one of the above-
mentioned conditions for terminating a line. When one
of the conditions occurs, it transforms the accumulated re-
versed line into a proper series of putc calls using print

or println.
Here’s the small program augmented by

reverse-lines:

func main : IO =

reverse-lines;

print " What's your name? ";

scan \name

println ("Hello, " ++ name ++ "!");

done

And here’s its running:

?eman ruoy s'tahW

!lahciM ,olleH

Unimportant to this paper, this reverse-lines func-
tion isn’t perfect. For example, it fails to reverse the lines
of the “cat” program, because that one has a getc before
each putc and so no full line ever gets accumulated. The
solution to this problem is left as an exercise to the reader.

4 Conclusion

Combining the concept of vertical code with the new ap-
proach to side-effects in a language that makes it viable
resulted in a whole new approach to structuring purely
functional code. We saw that purely functional programs
can be expressed in a way that is familiar to an imperative
programmer. In Funky, this doesn’t come from artificially
implanted syntactic features, but instead stems naturally
from the core, general concepts in the language itself.

At the moment, Funky is virtually unknown. We will
make all the efforts to get the word out there, because we
believe we’ve got something worthy in our hands.

Approaching side-effects in pure functional programming by interpreting data structures as recipes 27

	Contents
	Michal Štrba and Richard Ostertág: Approaching side-effects in pure functional programming by interpreting data structures as recipes

