CEUR-WS.org/Vol-2203/28.pdf

S. Kraj¢i (ed.): ITAT 2018 Proceedings, pp. 28—-34
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, © 2018 Matej Gallo, Lubo$ Popelinsky, and Karel Vaculik

To text summarization by dynamic graph mining

Matej Gallo, Lubos Popelinsky, and Karel Vaculik

KD Lab FI MU Brno
popel@fi.muni.cz

Abstract: We show that frequent patterns can contribute
to the quality of text summarization. Here we focus
on single-document extractive summarization in English.
Performance of the frequent patterns based model ob-
tained with DGRMiner yields the most relevant sentences
of all compared methods. Two out of three proposed meth-
ods outperform other methods if compared on ROUGE
data.

1 Introduction

Extractive summarization assigns a score to each text
unit (phrase, sentence, paragraph, passage) and then picks
the most informative ones to form a summary called ex-
tract. The selected sentences are used verbatim [1, 25].

Graph representation is a common way for represent-
ing data in automatic text summarization tasks. We intro-
duce a new method for single-document extractive sum-
marization in English language where a text is represented
as a dynamic graph and each sentence corresponds to a dy-
namic graph snapshot, i.e. the graph in a partivular time.
E.g. the first sentence is the oldest snapshot while the last
sentence of a text is the newest one. This method is based
on the principle of mining frequent patterns from such a
dynamic graph and using the resulting patterns as indica-
tors of sentence importance.

The structure of this text is following. In Section 2.
we introduce DGRMiner, a tool for mining in dynamic
graphs. Section 3. describes the algorithm. In Sections
4 we briefly introduce the data used for evaluation. Sec-
tions 5 and 6 explain a way of summarization evaluation
and sentence scoring. Section 7 displays the main results
of text summarization by means of frequent patterns mined
from dynamic graphs. Related work is a contents of Sec-
tion 8. We conclude with concluding Section 9.

2 DGRMiner

We used DGRMiner tool to extract these patterns from
the dynamic graphs. DGRMiner was proposed in [26]
for mining frequent patterns that capture various changes
in dynamic graphs in the form of predictive rules. The
found predictive graph rules express what way the graph
changes. The rules capture patterns such as addition, dele-
tion, and transformation of the subgraph. The use of rel-
ative timestamps for rules allows for mining general pat-
terns while including time information simultaneously. To

ensure that only significant rules are extracted, the al-
gorithm incorporates measuring support and confidence.
While support expresses what portion of the graph is af-
fected by the rule, confidence measures the occurrence
frequency of a specific change, given that a particular pat-
tern was observed. Time abstraction is an extension to the
DGRMiner that allows us to analyse broader class of dy-
namic graphs. The abstraction lies in the use of signum
function on relative timestamps. All the negative times-
tamps become —1, all the positive timestamps become 1
and the timestamp of 0 remains 0. DGRMiner allows for
two types of abstraction. One affects only timestamps of
vertices and should be used when most changes are caused
by edges and vertices remain static. The second one also
affects the edges and is useful when there are too few pat-
terns with exact timestamps.

3 Method

The initial idea was to take a text as a temporal (i.e. dy-
namic) graph where each sentence represent a graph snap-
shot at a particular time and tokens (a lemma together with
a part-of-speech tag) were nodes and edges connected all
pairs of tokens. The label of an edge was equal to a num-
ber of appearances of this pair of tokens. In the following
subsections we describe particular steps of the algorithm.

3.1 Transforming Text to graphs

For pre-processing we employed CoreNLP [15]. CoreNLP
provides a set of natural language analysis tools: POS
tagger, named entity recognition, parser, coreference res-
olution system, sentiment analysis, bootstrapped pattern
learning, and open information extraction. We used four
annotators: sentence split, tokenize, lemma, and POS.

Using the coreNLP package for R, we split the text into
sentences. In every iteration we removed the stop words
from a sentence, lemmatize the remaining words and as-
signed the POS tags. If a lemma-tag pair was not already
in the graph, we added it in and created edges between all
words in a same sentence. Otherwise, we only notified the
DGRMiner that a particular word had appeared again. We
parametrized context c¢. Therefore, in each step we mod-
elled at most ¢ sentences.

We will show it on simple example that contains a single
sentence.

<sentence position = " 9 " labelers

A
ITAT

To text summarization by dynamic graph mining

29

= "1, 2, 3, 4">The great thing about
Aspen is that it has at least one of
each of the really useful stores that
you need, sellingstuff at regular
prices. </sentence>

After removing stop words and labeling words with a
lemma-tag pair, we receive a graph t # 9.

t # 9

an 74 great#ADJ
an 75 thing#NOUN
an 11 Aspen#NOUN
an 76 least#ADJ
an 77 one#NUM

an 78 really#ADV
an 79 useful#ADJ
an 66 store#NOUN
an 5 need#VERB

ae u 48 5 11 [need#VERB]-[Aspen#NOUN]
ae u 432 5 66 [need#VERB]-[store#NOUN]
ae u 433 5 67 [need#VERB]-[sell#VERB]
ae u 434 5 74 [need#VERB]-[great#ADJ]
ae u 435 5 75 [need#VERB]-[thing#NOUN]
ae u 436 5 76 [need#VERB]-[least#ADJ]
ae u 437 5 77 [need#VERB]-[one#NUM]

In the first column, an, ae stand for "add a node" and
"add an edge" respectively.

3.2 Pattern Mining

Then we applied the DGRMiner on the data from previ-
ous step to obtain predictive patterns, i.e. rules that de-
scribe frequent (or rare) changes between past and future
graphs — sentences. We received two types of patterns:
frequent single-vertex patterns corresponding to nodes and
rare patterns corresponding to edges. We modified the sup-
port parameter to change the threshold on frequency of ob-
served patterns. When the support parameter was set too
low, the DGRMiner considered a pattern anything that ap-
peared at least once in the text — every word, every possible
word combination. By setting the confidence parameter
in DGRMiner to 0, the DGRMiner assigned confidence
(as discussed in section 2) to each extracted pattern. We
also played with time abstraction which allowed us to ig-
nore the preset context ¢ as discussed in section 2. There-
fore, patterns were observed in sentences that were more
than ¢ — 2 sentences apart. Although this gave us more
patterns, many of them were uninformative. An example
of observed single-vertex pattern is "+supplies#NOUN".
This pattern indicates that the noun supplies appeared at
least n times in the text, where the 7 is determined by the
support parameter. An example of multi-vertex pattern is
[store#NOUN]-[sell#VERB], which tells us that the noun
store is frequently closely accompanied by the verb sell.
The proximity of these two words is given by context ¢
and the frequency is given by the support parameter.

4 Data

To assess the performance of our method we used the Blog
summarization dataset [10, 11, 23]. It consists of 100 posts
annotated in XML that were randomly chosen from two
blogs (half from each blog), Cosmic Variance and Inter-
net Explorer Blog. Each of the four human summariz-
ers picked approximately 7 sentences to form 4 reference
summaries in total. We manually restored apostrophes for
shortened forms of to be and to have verbs, and in posses-
sive nouns. Punctuation within sentences was omitted as
the coreNLP sentence split annotator often wrongly split
the sentences in the middle. We decided not to use CNN
Dataset, nor SUMMAC dataset mentioned in [9] because
the provided reference summaries were not extracted, ver-
batim sentences. This would require us to manually find
the best matching sentence from within the document.

5 Semi-automatic evaluation

Evaluating summaries on sentence level can be done semi-
automatically by measuring content overlap with preci-
sion, recall, and F1 measure. An extracted sentence is
considered acceptable if the same sentence was extracted
in a reference summary. This process cannot be fully
automatized because reference summaries are created by
human judges. Other semi-automatic evaluation methods
used nowadays are: ROUGE, PYRAMID and BASIC ELE-
MENTS. We will discuss only the ROUGE method [25, 14]
as it was used in this work.

5.1 ROUGE

The ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) measure is based on the BLEU metrics used
in machine translation tasks. The idea is to compare the
differences between the distribution of words in the can-
didate summary and the distribution of words in the ref-
erence summaries. Given h reference summaries and a
candidate summary they are split into n-grams to calculate
the intersection of n-grams between the references and the
candidate. This process is illustrated in figure 1.

Given its correlation with manual judgments ROUGE
almost seems to have become a standard. [13] reports
Pearson coefficient for the most commonly used variations
(ROUGE-2 and ROUGE-SU4 [14]) at a value of between
0.94 and 0.99. Generally, the ROUGE-n is calculated from
the co-occurrences of n-grams between the candidate and
reference summaries as shown by formula 1 in [25]:

Zn—grams € {Sumcan N Sumref}
Zn—grams € Sumyer

ROUGE-n =

)

where the numerator is the maximum number of co-
occurrences of n-grams in both reference and candidate

30

Matej Gallo, Lubo$ Popelinsky, and Karel Vaculik

Reference h

4

Reference 1

La]
a

roams Q@ @ .k L
2-grams u& & .
sut u& [© & su4

Summary
candidat
1-grams ‘,\ ----------- E
2-grams & ;
s k & Score ROUGE

Figure 1: The basic idea of ROUGE for evaluation of sum-
maries [25]

summary and the denominator is the total sum of the num-
ber of n-grams present in the reference summaries.

The ROUGE-SUY is an adaptation of ROUGE-2 using
skip units (SU) of a size < y. SU4 considers the bigrams
and the bigrams SU to be arbitrary in a maximum window
length of Yy = 4 words. The number of bigrams with an
arbitrary size of length ¥ is given by formula 2:

k—y

Count(k,n) = C(Z) - Y (k—yiy<i)

0

where n is the n-gram length and k is the sentence length
in words.

The ROUGE metrics are not flawless. Firstly, they have
a problem with the representation of content. Secondly,
they will not consider chains of words such as "MUNI"
= "Masaryk University" and "FI" " Faculty of Informat-
ics". A study [22] found that the system can be tricked into
generating a summary with high ROUGE score.

6 Sentence Scoring

In this step we used the observed patterns as indicators to
score the sentences. The final score was obtained accord-
ing to formula 3 as a sum of single-vertex and multi-vertex
scores:

SCOI’G(S) = Scoresingle (S) + Scoremulti(s) (3)

Three different metrics were implemented to calculate
single-vertex score.

The Jaccard coefficient (JAC) as given by formula 4,
expresses the overlap of two sets. In our case, between the
set of patterns P and the set of words in the sentence S.

sum (SN P
Scorey(s) = HSUP;)

where wg,;, assigns weight to every element of the set and
then sums over them. A question arises regarding what

weight we should assign to non-indicators. Empirically,
we received the best results for the value of 0.001.

The frequency method (FRQ) as given by formula 5,
is the simplest of the three. For a sentence s and a set of
patterns P the score is calculated as weighted average.

Scorer (s) = Y e(p)w(p) s)

pEP

where ¢(p) is the frequency of the pattern in the sentence
and w(p) is its associated weight.

The density method (DEN) as given by formula 6,
counts the patterns in a sentence and normalizes by the
length of the sentence. This method is parameter-free.

_|SnP]|

~ length(s) ©

Scorep(s)

For multi-vertex patterns we tested frequency and den-
sity methods. The only difference between the methods is
that instead of length of sentences we use the number of
all possible word pair combinations (‘g').

We built the summary in a greedy fashion. In every it-
eration we picked the highest scoring sentence. Patterns
observed in the sentence were penalized by a parameter
A. The scores were recomputed and the process continued
until a desired number of sentences was picked or until all
the sentences were used. For every method we discovered
the optimal value of A. We tuned the parameter on 10% of
the entire dataset. The optimal values for A are presented
in the tables 2 and 1. The ordering of sentences in the fi-
nal summary maintains the relative ordering in the original
document.

7 Results

We evaluated the model using the ROUGE-1 metric,
which is recommended for short summaries [14]. Every
blog post was compared against four reference summaries
as described in chapter 4. The results of all three methods
can be seen in tables 1, 2 and 3. The first three columns de-
note whether time abstraction on both vertices and edges
is used, whether the patterns were used to score sentences,
and whether the initial weights were determined by the
confidence of DGRMiner for the given pattern, respec-
tively. The last three columns correspond to the ROUGE-1
metrics — precision (what portion of sentences we selected
were part of the reference summary), recall (what portion
of sentences in reference summary we extracted), and f1
measure (harmonic mean of precision and recall).

The FRQ method marked the most accurate sentences
among all the presented algorithms as can be seen from
figure 2. JAC method picked fewer correct sentences than
FRQ method but still more than any traditional approach.
Both FRQ and DEN methods ranked first in terms of pre-
cision.

The frequency-based method incorporating patterns
with no confidence weighting (identified as FRQ) achieved
the highest recall, the highest f1 score, and the highest

To text summarization by dynamic graph mining

binall patterns weights precision recall fl score
0.643 0.694 0.664
0.643 0.686 0.659
0.641 0.684 0.657
0.641 0.683 0.657
0.640 0.691 0.660
0.640 0.678 0.654
0.640 0.678 0.654
0.639 0.681 0.655

e e Ml s B Mis v lieviies!
sl R e s e s B R M o
B B sl Mie s Bl e sl s!

Table 1: Results for blog summarization dataset using jaccard method with parameters A = 0.55, wy = 0.001

binall patterns weights precision recall fl score
0.645 0.702 0.668
0.645 0.700 0.667
0.644 0.701 0.665
0.643 0.693 0.662
0.642 0.691 0.661
0.642 0.691 0.661
0.642 0.690 0.660
0.642 0.688 0.660

e e Nl M s Bisslieslies!
ST a0
e B ol B e s B M s

Table 2: Results for blog summarization dataset using frequency method with parameter A = 0.20

binall patterns precision recall fl score

F T 0.651 0.514 0.562
F F 0.650 0.514 0.562
T T 0.649 0.516 0.563
T F 0.649 0.512 0.562
Table 3: Results for blog summarization dataset using density method
585 580

563 557 551 545 537
513 503 502 501 a9y 481 476 474 4es s

434
““‘3973%
o & o v

&N M <:\<§< «© & FTEL ST
&

Figure 2: Comparison of number of correctly chosen sentences — using blog summarization dataset (our algorithms are
displayed yellow)

32

Matej Gallo, Lubo$ Popelinsky, and Karel Vaculik

number of correctly chosen sentences. The highest pre-
cision was achieved by density-based method incorporat-
ing patterns with no confidence weighting (identified as
DEN). We chose these two models and the highest scoring
Jaccard method for comparison together with algorithms
presented in article [9]. We could see that FRQ behaves
similarly to Word frequency (WF) algorithm proposed in
the paper. This is not surprising, because the single vertex-
frequent patterns correspond to words that appear at least
n-times in the text. Where n is determined by the support
parameter in the DGRMiner tool as described in section
3.2. The multi-vertex patterns improved the performance
of the summarizer in density models and in one case (the
highest scoring model) in frequency model.

8 Related work

Kupiec et al. introduce in their work [12] method inspired
by Edmundson’s [7]. They approached the summarization
as a statistical classification problem. A Bayes classifier
was trained to estimate the probability that a given sen-
tence would be included in the summary. They used 6
discrete features (presented in order of importance): para-
graph feature (the position of sentence in paragraph s),
fixed-phrase feature (the sentence contains a phrase from
a list), sentence length cutoff feature (threshold u; =5,
length(s) > u;), thematic word feature (the presence of
thematic terms), uppercase word feature (the presence of
words in capital letters). The best results were obtained
using the first three features.

Aone et al. [2] built on Kupiec’s work [12] and ex-
panded the feature set of their system, called DIMSUM,
with signature terms, which indicate key concepts for a
given document. Another advantage over [12]’s system
is the use of multi-word phrases — statistically derived
collocation phrases (e.g. "omnibus bill", "crime bill",
"brady bill") and associated words ("camera" and "ob-
scura", "Columbia River" and "gorge"), as well as the use
of WordNet [16] to identify possible synonyms of found
signature terms. He applied a shallow discourse analysis to
resolve co-references and maintain cohesion — only name
aliases were resolved such as UK to United Kingdom.

Osborne in his work [18] disagrees with the traditional
assumption of feature independence and shows empiri-
cally that the maximum entropy (MaxEnt) model produces
better extracts than the naive Bayes model with similarly
optimized prior appended to both models. Unlike naive
Bayes, MaxEnt does not make unnecessary feature inde-
pendence assumptions. Let ¢ be a binary label (binary:
part of summary or not), s the item we are interested in la-
beling, f; the i-th feature, and @; the corresponding feature
weight.

Hidden Markov Models (HMM), similar to MaxEnt,
have weaker assumptions of independence. There are
three types of dependencies: positional dependence, fea-
ture dependence, and Markovity dependence. A first-order

Markov model allows modeling these dependencies. Con-
roy and O’leary [6] use a joint distribution for the features
set, unlike the independence-of-features assumption used
in naive Bayesian methods. The HMM was trained us-
ing five features: position of the sentence in the document
(number of states); number of terms in a sentence, and
likeliness of the sentence terms given the document terms.

Summarizer NetSum presented by Svore et al. [24] uses
an artificial neural network (ANN) called RankNet to rank
the sentences. RankNet is a pair-based neural network al-
gorithm for ranking a set of inputs. It is trained on pairs
of sentences (S;,5;), such that the ROUGE score for S;
should be higher than S;. Pairs are only generated in a
single document, not across documents. The cost function
for RankNet is the probabilistic cross-entropy cost func-
tion. Training is performed using a modified version of
back-propagation algorithm for two-layer networks, which
is based on optimizing the cost function by gradient de-
scent. The system significantly outperforms the standard
baseline in the ROUGE-1 measure. No past system could
outperform the baseline with statistical significance.

A system for generating product category-based (topic-
based) extractive summarization was proposed by [4, 5].
The collection of 45 news items corresponding to various
products are pre-processed using standard techniques: to-
kenization, stopword removal, stemming. The final corpus
contains around 1500 features and is represented by a bag-
of-words VSM based on these features. To identify the
topics, the news items about specific categories of prod-
ucts are segregated into separate clusters using K-Means
and then an extractive summary is generated from each of
these topical clusters. The K number of cluster is deter-
mined by a Self-Organizing Map (SOM).

Chakraborti and Dey [S5] assigned a score to the en-
tire summary as a single unit. The total summary score
(TSS) is taken as a combination of cosine similarity be-
tween centroid of corpus and the summary as a whole;
relative length of the summary; and redundancy penalty.
To maximize TSS constrained by the number of lines in
summary (T =5 —7%), they opted for quick Artificial Bee
Colony optimization, a global optimization technique, for
sentence selection. The summary with the highest score is
then chosen.

In Muresan’s paper [17], a system called GIST-IT used
for email-summarization task is discussed. First, noun
phrases (NPs) are extracted as they carry the most content-
ful information. Subsequently, machine learning is used to
select the most salient NPs. A set of nine features, divided
into three categories (head of the NP, whole NP, combina-
tion of head and modifiers of NP) were used: head of the
NP TF*IDF, position of first occurrence (focc) of the head
in text, TF*IDF of entire NP, focc of entire NP, length of
the NP in words, length of the NP in characters, position
of the NP in the sentence, position of the NP in the para-
graph, and combination of the TF*IDF scores of head of
the NP and its modifiers.

To find the most salient NPs, three machine learning al-

To text summarization by dynamic graph mining

33

gorithms were applied: decision trees (axis-parallel trees —
C4.5 and oblique trees — OC1), rule induction (production
rule — C4.5rules and propositional rules — RIPPER), and
decision forests (DFC using information gain ratio).

Muresan claims that shallow linguistic filtering applied
to NPs improved the classifiers accuracy [17]. The filter-
ing consisted of four steps: grouping inflectional variants,
removing unimportant modifiers, filtering stopwords, and
removing empty nouns.

A modification of PageRank algorithm called LexRank
is used to weight sentences. The undirected graph of sen-
tences is constructed from symmetrical similarities (mod-
ified cosine measure). The score of each vertex s is cal-
culated iteratively until the values of the vertices have not
been modified by more than € = 0.0001. LexRank algo-
rithm is used as a component of the MEAD [8].

Unlike LexRank, TextRank uses the similarities of
edges to weight the vertices. The score of each sentence s;
is calculated iteratively until convergence is reached.

As the graph is constructed from inter-sentence sim-
ilarity measure, the choice of the method for sentence-
weighting has significant impact. One approach is to use
a bag-of-words to represent the sentences. The similarity
is obtained by calculating the cosine similarity weighted
by inverse document frequency [1] between their vectorial
representations. Another approach suggests using word
overlap between sentences instead. The weak point of all
similarity measures that use words (cosine similarity, word
overlap, longest common subsequence) is the dependency
on the lexicon of the document. The solution to this is
its combining with similarity measure based on chains of
characters. Therefore, sentences that do not share a single
word but contain a number of words that are close mor-
phologically can be compared [25].

Patil [19] proposed a new graph-based model called
SUMGRAPH. First the text is pre-processed (stemmed)
and represented as a VSM with TF*IDF weights. He then
computes pair-wise cosine similarities and subtracts the
values from 1 to obtain dissimilarities. The resulting ma-
trix of intra-sentence dissimilarities is then used to model
the document as graph. The vertices represent the sen-
tences and edges are weighted by intra-sentence dissimi-
larities.

The novel idea is the use of link reduction technique
known as Pathfinder Network Scaling (PFnet) [21, 20] to
scale the graph. PFnet models the human aspects of se-
mantic memory. The centrality of a sentence and its po-
sition in a document are used to compute the importance
of sentences. Four different centrality measure were tested
and closeness centrality showed to perform best. Finally,
the sentences are ranked according to their importance and
first n highest-scoring sentences were picked.

The approaches based on similarity graphs solely model
the similarity between pairs of sentences with no clear rep-
resentation of word relations. Therefore, it is not clear
if they adequately cover all topical information. The
hypergraph-based approach is to remedy this problem by

capturing the high-order relations between both sentences
and words. [3] proposed a hypergraph-based model for
generic summarization based on [27]’s hypergraph-based
model for query-focused summarization. The ranking
uses a semi-supervised approach to order sentences. They
model the words as vertices and sentences as hyperedges
and then approach the problem as a random walk over hy-
peredges.

9 Conclusion

We showed that frequent patterns can contribute to the
quality of text summarization. The comparison supports
our statement that the performance of our frequent patterns
based model is comparable to the simpler word frequency
method and yielded the most relevant sentences of all com-
pared methods. Our methods outperformed other methods
in precision but lacked in recall. We attribute the similarity
to word frequency method to inadequate graph represen-
tation — instead of interconnecting all the words within a
sentence, suggest connecting them according to the parse
tree. Another consideration is to use a graph mining tool
that searches for more specific types of patterns than DGR-
Miner.

Acknowledgments

This work has been supported by Faculty of Informatics,
Masaryk University. We would like to thank to ITAT re-
viewers for their suggestions and comments.

References

[1] Charu C. AGGARWAL and ChengXiang ZHAI. Mining
Text Data. Springer, New York, 2012.

[2] Chinatsu AONE, James GORLINSKY, and Bjornar
LARSEN. A trainable summarizer with knowledge ac-
quired from robust nlp techniques. Advances in Automatic
Text Summarization, 71, 1999.

[3] Abdelghani BELLAACHIA and Mohammed AL-
DHELAAN. Multi-document hyperedge-based ranking
for text summarization. In Proceedings of the 23rd ACM
International Conference on Conference on Information
and Knowledge Management, pages 1919-1922, New
York, 2014 [cit. 2016-05-10]. ACM.

[4] Swapnajit CHAKRABORTI. Multi-document text summa-
rization for competitor intelligence: A methodology based
on topic identification and artificial bee colony optimiza-
tion. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing, pages 1110-1111, New York, 2015
[cit. 2016-05-10]. ACM.

[5] Swapnajit CHAKRABORTI and Shubhamoy DEY. Prod-
uct news summarization for competitor intelligence using
topic identification and artificial bee colony optimization.
In Proceedings of the 2015 Conference on Research in
Adaptive and Convergent Systems, pages 1-6, New York,
2015 [cit. 2016-05-10]. ACM.

34

Matej Gallo, Lubo$ Popelinsky, and Karel Vaculik

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

John M. CONROY and Dianne P. O’LEARY. Text sum-
marization via hidden markov models. In Proceedings of
the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages
406-407, New York, 2001 [cit. 2016-05-10]. ACM.
Harold P. EDMUNDSON. New methods in automatic ex-
tracting. J. ACM [online], 16(2):264-285, april 1969 [cit.
2016-05-10].

Giines ERKAN and Dragomir R. RADEV. Lexrank:
Graph-based lexical centrality as salience in text summa-
rization. J. Artif. Int. Res. [online], 22(1):457-479, decem-
ber 2004 [cit. 2016-05-11].

Rafael FERREIRA, Luciano CABRAL, and Rafael D.
LINS. Assessing sentence scoring techniques for extrac-
tive text summarization. Expert Systems with Applications
[online], 40(14):5755 — 5764, october 2013 [cit. 2016-05-
10].

Meishan HU, Aixin SUN, and Ee-Peng LIM. Comments-
oriented blog summarization by sentence extraction. In
Proceedings of the Sixteenth ACM Conference on Confer-
ence on Information and Knowledge Management, pages
901-904, New York, 2007 [cit. 2016-05-10]. ACM.

Meishan HU, Aixin SUN, and Ee-Peng LIM. Comments-
oriented document summarization: Understanding docu-
ments with readers’ feedback. In Sung-Hyon MYAENG,
Douglas W. OARD, Fabrizio SEBASTIANI, Tat-Seng
CHUA, and Mun-Kew LEONG, editors, Proceedings of the
31st Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages
291-298, New York, 2008 [cit. 2016-05-10]. ACM.

Julian KUPIEC, Jan PEDERSEN, and Francine CHEN. A
trainable document summarizer. In Proceedings of the 18th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 68-73,
New York, 1995 [cit. 2016-05-10]. ACM.

Chin-Yew LIN. Rouge: a package for automatic eval-
uvation of summaries. In Stan SZPAKOWICZ Marie-
Francine MOENS, editor, Workshop Text summarization
Branches Out (ACL °04) [online], pages 74-81, Barcelona,
2004 [cit. 2016-05-10]. ACL.

Petr MACHOVEC. Automatickd sumarizace textu [on-
line]. Master’s thesis, Masaryk University, Faculty of In-
formatics, Brno, 2015 [cit. 2016-05-10].

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky. The
Stanford CoreNLP natural language processing toolkit. In
Association for Computational Linguistics (ACL) System
Demonstrations, pages 55-60, 2014.

George A. MILLER. Wordnet: A lexical database for en-
glish. Commun. ACM [online], 38(11):39-41, november
1995 [cit. 2016-05-12].

Smaranda MURESAN, Evelyne TZOUKERMANN, and
Judith L. KLAVANS. Combining linguistic and machine
learning techniques for email summarization. In Proceed-
ings of the 2001 Workshop on Computational Natural Lan-
guage Learning - Volume 7, pages 19:1-19:8, Stroudsburg,
2001 [cit. 2016-05-10]. Association for Computational Lin-
guistics.

Miles OSBORNE. Using maximum entropy for sentence

(19]

(20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

extraction. In Proceedings of the ACL’02 Workshop on Au-
tomatic Summarization, Stroudsburg, 2002 [cit. 2016-05-
10]. Association for Computational Linguistics.

Kaustubh PATIL and Pavel BRAZDIL. Text summariza-
tion: Using centrality in the pathfinder network. Int. J.
Comput. Sci. Inform. Syst [online], 2:18-32, 2007 [cit.
2016-05-12].

Roger W. SCHVANEVELDT, editor. Pathfinder Associa-
tive Networks: Studies in Knowledge Organization. Ablex
Publishing Corp., Norwood, 1990.

Roger W. SCHVANEVELDT, D.W. DEARHOLT, and ET.
DURSO. Graph theoretic foundations of pathfinder net-
works. Computers & mathematics with applications [on-
line], 15(4):337-345, 1988 [cit. 2016-05-11].

Jonas SIOBERGH. Older versions of the rougeeval sum-
marization evaluation system were easier to fool. Inf.
Process. Manage., 43(6):1500-1505, november 2007 [cit.
2016-05-12].

Dr. Aixin SUN.

oriented document summarization,
http://www.ntu.edu.sg/home/axsun/datasets.html,
ited 2016-05-20.

Krysta M. SVORE, Lucy VANDERWENDE, and Christo-
pher J.C. BURGES. Enhancing single-document summa-
rization by combining RankNet and third-party sources.
In Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL),
pages 448-457, Prague, 2007 [cit. 2016-05-10]. Associa-
tion for Computational Linguistics.

Juan-Manuel TORRES-MORENO. Automatic Text Sum-
marization. ISTE, London, 2014.

Karel Vaculik and Lubomir Popelinsky. Dgrminer:
Anomaly detection and explanation in dynamic graphs. In
Knobbe-A. Soares C. Papapetrou P. Bostrom, H., editor,
Advances in Intelligent Data Analysis XV - 15th Interna-
tional Symposium, IDA 2016, pages 308-319, Neuveden,
2016. Springer.

Wei WANG, Furu WEI, Wenjie LI, and Sujian LI. Hy-
persum: Hypergraph based semi-supervised sentence rank-
ing for query-oriented summarization. In Proceedings
of the 18th ACM Conference on Information and Knowl-
edge Management, pages 1855-1858, New York, 2009 [cit.
2016-05-10]. ACM.

Comments-
2015.
Vis-

	Contents
	Matej Gallo, Luboš Popelínský, and Karel Vaculík: To text summarization by dynamic graph mining

