CEUR-WS.org/Vol-2203/44.pdf

S. Krajci (ed.): ITAT 2018 Proceedings, pp. 44-51
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, © 2018 Jan Motl and Pavel Kordik

Do We Need to Observe Features to Perform Feature Selection?

Jan Motl, Pavel Kordik

Czech Technical University in Prague,
Thékurova 9, 160 00 Praha 6, Czech Republic,

jan.motl@fit.cvut.cz,

Abstract: Many feature selection methods were developed
in the past, but in the core, they all work the same way —
you pass a set of features to the algorithm and get a reduced
set of the features. But can we perform a non-trivial feature
selection without first observing the features? This is an im-
portant question because if we were actually able to predict
feature importance before observing the features, we would
reduce computation requirements of all stages of machine
learning process beginning with feature engineering. In
this article, we argue that it is possible to predict feature
importance before feature vector observation. The trick is
that we use meta-features about the features to perform the
feature selection. We evaluate the concept on 15 relational
databases. On average, it was enough to generate the top
decile of all features to get the same model accuracy as if
we generated all features and passed them to the model.

Keywords: meta-learning, feature engineering, feature se-
lection, relational database, propositionalization

1 Introduction

Data in relational databases are in the form of many tables,
but common classification algorithms require input data
in the form of a single table. Propositionalization solves
this discrepancy by converting data from the form of many
tables into a single table.

But there are two significant problems with the proposi-
tionalization [3]. It produces a lot of features. And many of
them are redundant. These two issues result in high compu-
tational requirements during both, propositionalization and
classification.

Contrary to the common approach (e.g., [10], [7], [8]),
we deal with these two issues by performing feature se-
lection before the propositionalization and not after the
propositionalization. The key idea is that we collect meta-
data about the attributes in the database (e.g., attribute data
type), meta-data about the feature generative functions (e.g.,
id of the feature function), calculate landmarking features
on a small subset of all features and pass their performance
to a meta-learner, which predicts the optimal order, in which
the remaining features should be calculated.

2 Related Work

The presented work is at the border between feature en-
gineering and feature selection. Hence, we review related
work from both these disciplines.

pavel.kordik@fit.cvut.cz

2.1 Meta-learning for Feature Engineering

Meta-learning was originally concerned with algorithm
selection[21]. Nevertheless, Nargesian [16] trained a neural
network to predict, which feature transformations are going
to improve the accuracy of a classifier based on the feature
histograms.

We extend the idea of using the data-based meta-features
(in Nargesian’s case a histogram) for feature engineering
with landmarking.

2.2 Meta-learning for Feature Selection

Reif [20] applies meta-learning to accelerate forward se-
lection. The key concept is that the performance of all
candidate feature subsets in each forward step is first es-
timated with a meta-learner. And only the top x percent
of the candidates get evaluated on the data to get the true
subset performance. Based on the reported results, it is suf-
ficient to evaluate only the top 10% of all candidate subsets
on the data to get results comparable to classical forward
selection.

The difference between our approach and Reif’s ap-
proach is that Reif calculates meta-features from the fea-
tures, while we calculate meta-features directly from the
attributes that are used to calculate the features (in Figure
1 we use only the left table, while Reif uses the right ta-
ble). Consequently, in Reif’s case, we have to calculate the
features first, to perform feature selection. While in our
case, we can perform the feature selection before feature
calculation.

3 Method

A high-level schema of our approach is in Figure 2. The
whole process is divided into two phases. During the offline
phase, meta-features and feature performance are collected
on many databases and passed to a meta-learner as training
data. During the online phase, the trained meta-learner is
used to rank candidate features in the descending order
of their estimated utility. Following paragraphs define the
feature utility.

There are many properties that a feature should posses
[12], but we focus on predicting properties measurable
directly from the data: relevance to the task, redundancy to
other features and runtime of the feature calculation.

A
ITAT

Do We Need to Observe Features to Perform Feature Selection?

id class attl att2 attn id class feature

1 + 10 apple 12:03 1 + 10
feature function 1 + 12 cinnamon 7:53 4} 2 - 4

2 - 4 banana 19:21 3 _ 3

3 - 3 cherry 12:20

3 - 6 banana 8:21 feature space

attribute space

Figure 1: An example of a feature generative function min applied on attribute att/, which converts the multi-instance
problem into a single-instance problem solvable with a common attribute value classifier. In this trivial example, the feature
space contains only a single feature vector but it may generally contain thousands of feature vectors.

OFFLINE
Feature enumeration » Feature calculation » Evaluation
Databases feature meta-features,
redundancy, relevance & runtime
Meta-learning
ONLINE Feature functions trained model

v

Y

@—) Feature enumeration » Landmarking » Feature ranking A)Gature caIcuIatioD

New database

Figure 2: Flowchart of meta-learning on features.

Relevance Without loss of generality, we assume that we
want to utilize the calculated features for classification. We
use Chi2statistics [4, Section A.6.1] between the feature
and the label as the measure of the relevance (if the feature
is continuous, we first discretize the feature with equal-
width binning). But in theory, any other measure can be
used.

Runtime The runtime is defined as the time needed to
calculate a particular feature vector. If two feature vectors
are otherwise identical, we prefer the one that has a smaller
runtime.

Redundancy 1In the analyzed databases (discussed further
in Section 4.1), 38% of all calculated features are redundant.
We define that nominal feature f; is redundant to nominal
feature f; iff a bijection exists between values in f1 and f>.
A numerical feature f; is redundant to numerical feature f>
if a linear transformation from f; to f> and back exists.
We use this (weaker) definition of redundancy instead
of the identity of the features because it corresponds better
with the notion of redundancy in many models (e.g., in
logistic regression with one shot encoding of categorical

features). To speed up the identification of redundant fea-
tures, we use Chi” as a hash function to identify potential
redundant features [19, Section 2.1].

3.1 Feature Utility

We calculate features' in descending order of the estimated
relevance /runtime ratio [1] since we prefer to calculate
highly relevant and fast features first. Furthermore, we pe-
nalize the feature i proportionally to the estimated proba-
bility that the feature is redundant p;. Because each dataset
has a different proportion of redundant features (see Table
1) and the tested meta-learning models had difficulties to
model these differences, we employ median thresholding
instead of a fixed threshold:

relevance;
utility; = (p; > median(p)?1 —p; : 1)—————, (1)
runtime;
where redundancy is a vector of estimated redundancy
probabilities for a database.

'In the production, we would calculate only the top n features that
we would use to build a production classifier. But to demonstrate the
meaningfulness of such approach, we calculate all features.

46

Jan Motl and Pavel Kordik

4 Experiment

4.1 Data

We used 15 databases listed in Table 1 from relational
repository [15].

4.2 Features

For propositionalization, we used Relaggs [9], which
was modified to work with 31 different feature (gener-
ative) functions, listed in Figure 2. The detail descrip-
tion of the employed feature functions is at http://
predictorfactory.com.

4.3 Meta-features

We employ three sources of meta-features: landmarking fea-
tures, database meta-data and feature function meta-data.

Landmarking features Just like the accuracy of a few clas-
sifiers can be used as meta-features for the recommendation
of the best classifier on the data (e.g., [18]), we define a
subset of feature functions as landmarking feature functions
for the recommendation of the best features.

Without loss of generality, we used following set of land-
marking features: Direct field (a simple copy of the value),
Aggregate (e.g., min, max,...), WOE (Weight of Evidence),
Count (of tuples), Aggregate WOE, Time aggregate since.
These feature functions were selected for their low run-
time (see Table 11 in the appendix) and good coverage
of different data types (numerical/character/temporal) and
relationships between the label and the data (1:1/1:n). Note
that we do not use multivariate feature functions for land-
marking due to the potential combinatorial explosion.

Database meta-data Basic descriptive and statistical meta-
features are frequently employed in meta-learning (e.g.,
[11]) and we do not differ in this respect. A noteworthy
difference is that we do not calculate statistics of the at-
tributes but rather reuse statistics maintained by the rela-
tional database for query plan optimization [14]. This slight
deviation allows us to collect estimates of the statistics in
time independent on the count of tuples (records) in the
database.

Feature function meta-data Feature function meta-data
consists of feature function name (e.g., Aggregate) and
feature function parameters (e.g., min).

4.4 Measures

Anytime algorithm We formulate feature engineering as
anytime algorithm [25], which aims to deliver the best sub-
set of calculated features in any time. The quality of any-
time algorithm can be expressed with a performance profile,
where we measure quality of the solution at the given time

(see example in Figure 3). To assign a single number to
the performance profile, we calculate the area between the
archived curve a(t) and the expected random curve r(r)
(which we obtain from averaging the curve from many ran-
dom permutations), divided by the area between the perfect
curve p(t) and the expected random curve r(z):

_ Ja(t)dt— [r(t)dt
~ [p(t)dt— [r(t)dt’

where ¢ is time. The obtained ratio then represents the
“percentage of perfect” solution [2]. In our case, a(t), r(¢)
and p(t) are the Chi® of the feature calculated at time . The
only difference between these functions is then the order,
in which the features are calculated. The perfect feature
ordering is based on a complete knowledge of relevance,
redundancy and runtime of all the features. While archived
ordering is based only on the estimates of these feature
properties (the only exception are landmarking features,
which are calculated in a pseudorandom order).

POP 2)

Mutagenesis, POP=0.595

100 | e
80 | = |
(0] =o
g =
Y 60 == —e— Perfect
2 = —e— Archived
& 40 ol —Random | |
o0l e 95% Pl ||
Sz —-—- Diagonal
o0&~ , , , !
0 10 20 30 40
Runtime [s]

Figure 3: Performance profile. The shaded area represents
the 95% prediction interval for a random curve.

Individual models To assess the ability of relevance and
runtime prediction models to rank, we use Spearman corre-
lation (p). The quality of redundancy estimation (a classifi-
cation task) is evaluated with area under receiver operating
characteristic curve (AUROC).

4.5 Methodology

Algorithms were evaluated with leave-one-out validation,
where all but the tested database was used for the training
of the models. Obtained accuracies are reported for three
different algorithms: generalized linear model (GLM), gra-
dient boosting machine (GBM) and deep learning (DL), all
from H20.

Permutation testing To assess, whether the obtained per-
formance profiles are significantly better than random, we
generate 1,000 random orderings of the features to estimate
95% prediction intervals.

Do We Need to Observe Features to Perform Feature Selection?

47

Table 1: Used databases. The range of relevant features is estimated with forward & backward selection with a decision
tree (the percentage of features when meta-learning feature selection reaches accuracy corresponding to accuracy obtained

on all the features).

Database Domain Attributes ‘ Features Redundant [%] Relevant [%]
Accidents Government 43 305 39 2-12 (7)
AustralianFootball ~ Sport 77 794 45 1-6 (1)
BasketballMen Sport 195 865 41 1-49 (1)
Biodegradability Medicine 17 71 25 6-66 (4)
Chess Sport 45 127 16 65-72(91)
Financial Financial 55 493 32 1-59 (7)
Hepatitis Medicine 26 152 42 4-42 (5)
Mondial Geography 167 1524 45 -9 (1)
Mutagenesis Medicine 14 65 40 6-46 (6)
Nations Geography 118 191 76 2-21 (3)
PremierLeague Sport 217 667 23 2-27 (7)
PTE Medicine 76 691 58 1-33 (1)
StudentLoan Education 15 41 7 15-66 (21)
VisualGenome Education 20 42 64 10-10(14)
Walmart Retail 27 545 19 1-22 (4)
average 74 | 438 38 8-36(11)
5 Results 5.3 Percentage of Perfect

First, we report the accuracy of the individual models. Sec-
ond, we comment on the meta-feature importance as re-
ported by L1 & L2 regularized GLM. Third, we report the
obtained POPs.

5.1 Accuracy

The obtained accuracies are depicted in Table 3. Since the
difference between the models is not significant, we use
GLM for all following experiments.

5.2 Feature Importance

Relevance The most important meta-features for feature
relevance prediction is the average relevance of the land-
marking features on individual attributes and the type of
the employed feature function (see Table 4).

Redundancy There are two main sources of redundant fea-
tures [10]: redundancy in the input data and redundancy in-
troduced by the feature functions. The redundancy in the in-
put data is covered by landmarking landmark_is_redundant
and data_type. While the introduced redundancy is ex-
plained with feature_function and feature_parameters (see
Table 5).

Runtime The runtime of a feature function calculation is a
function of two factors: the type of the feature function and
data property. Nevertheless, these two factors are dominated
by the landmarking landmark_runtime (see Table 6).

The quality of anytime learning for all 15 datasets is re-
ported in Table 7 in the penultimate column.

6 Discussion

6.1 What is the contribution of the individual models
to POP?

To evaluate the contribution of the individual models to
POP, we performed an experiment with a 2-level full fac-
torial design for presence/absence of runtime, relevance
and redundancy models (8 combinations in total) on all
databases. To deal with the variability across databases
(some are easier than others), we treat the database name
as a random factor.

Conclusion: The result of the factor analysis is in Table 8.
As expected, the intercept is not significantly different from
zero, since POP measure should on average be 0 when we
randomly rank the features. The biggest contributions to
the accuracy are from redundancy and relevance prediction.
The interaction between redundancy and relevance has a
negative estimate because we do not reward calculation of
redundant features even if they are highly relevant. Hence,
prediction of the relevance helps only on the subset of
unique features from the set of all candidate features.

6.2 What is the effect of meta-learning on model
accuracy?

To evaluate the effectivity of the meta-learning, we itera-
tively train a classification model on increasing percentage

48

Jan Motl and Pavel Kordik

Table 2: Taxonomy of feature functions (data type they work on: c-character, n-numeric, t-temporal). The horizontal axis
differentiates between feature functions working on a single attribute and multiple attributes. The vertical axis differentiate
between feature functions working on a single tuple and multiple tuples.

Table 3: Leave-one-out accuracy of individual models.

Univariate Multivariate
Direct field (any) Time diff (t+t)
Text length (c)

1:1 Time day part (t)

: Time is weekend (t)

Time part (t)
Time since (t)
WOE (c)
Aggregate (n) Existential count (any) Aggregate frame (n-+t)
Aggregate distinct (n) Log product (n) Correlation (n+t)
Aggregate range (n) Null ratio (any) Intercept (n+t)
Aggregate text length (c) Time aggregate (t) Slope (n+t)

1:n Aggregate WOE (c) Time aggregate since (t) Time aggregate diff (t+t)
Coefficient of variation (n) Time aggregate since event (t)
Count (any) Time frequency (t)
Distinct count (any) Time range (t)
Duplicate ratio (any) Time WOE (t)

Table 6: Meta-features for runtime prediction.

Algorithm Relevance [p] Runtime [p] Redundancy [AUROC] Meta-feature Comment Weight
DL 0.558-£0.255 0.3024+0.186 0.798 +0.097 landmark_runtime average on the attribute 5.00
GBT 0.556+0.252 0.206+0.259 0.787+0.106 feature_function complicated features take more time 3.34
GLM 0.551+0.276 0.369+0.267 0.810+0.102 table_rows more data means higher runtime 0.10

Table 4: Meta-features for relevance prediction.

Meta-feature Comment Weight
landmark_relevance average on the attribute 9.81
feature_function e.g., null_ratio is inferior to direct field 5.58

feature_parameters e.g., aggregate=min is inferior to aggre- 1.90

gate=avg
data_type e.g., enums are superior to datetimes 0.34
avg_length extremely long attributes like text are subpar ~ 0.25

is_primary_key surrogate primary keys make inferior features 0.10

of the top features, as estimated with meta-learning. As the
classification model, we use a decision tree because it can
model interactions between the features, it is undemand-
ing on data preprocessing and it is reasonably fast. As the
evaluation measure, we use misclassification error as all
databases have reasonably balanced classes in the label.
An example of the obtained curve is depicted in Figure
4, where we can observe that the decision tree slightly
overfits when we use all the features. Nevertheless, forward
selection still outperforms meta-learning feature selection,

Table 5: Meta-features for redundancy prediction.
Weight

landmark_redundancyaverage on the attribute 16.70
feature_parameters e.g., aggregate=min is inferior to aggre- 13.65

Meta-feature Comment

gate=avg
feature_function e.g., null_ratio is inferior to count 2.61
data_type e.g., integers are inferior to doubles 0.02

as it can observe all the features (our approach does not)
and it is a wrapper (our approach is a filter [5]).

Financial
0.55 T T T T
05| Meta-learning (AUC=0.23) | |
. Random (AUC=0.33)
. — - — - All features
o
g 0.45 % Forward selection
'S 0.
o3
2
& 0.
B
= 0.2
=

Percentage of used features

Figure 4: Area under misclassification error. Smaller is
better.

Conclusion: The result of the factor analysis is in Table
9. Prediction of relevance significantly reduces misclassifi-
cation error. Prediction of runtime insignificantly increases
the misclassification error, because this evaluation does not
reward fast features. Redundancy prediction does not sig-
nificantly decrease the classification error. Based on our
inspection of the results, this is because this evaluation
rewards early discovery of a few highly relevant features
much higher (since the best possible decision tree may use
just a few features) than it penalizes redundancy (a redun-

Do We Need to Observe Features to Perform Feature Selection?

49

Table 7: POPs for all databases based on the used individual models. PI column contains the upper 95% prediction interval
of POPs for random ordering of the features. The best values are in bold.

redundance 0 1 0 0 1 1 0 1
relevance 0 0 1 0 1 0 1 1

runtime 0 0 0 1 0 1 1 1 PI
Accidents 0.11 045 0.61 -0.18 0.68 0.44 0.60 0.67 0.33
AustralianFootball 0.03 0.33 0.35 -0.09 0.40 0.33 035 040 0.36
BasketballMen 0.08 0.53 -0.52 0.28 0.62 0.56 -0.37 0.62 0.11
Biodegradability -0.18 0.31 -0.44 024 0.34 -0.21 -0.32 032 0.31
Chess 0.05 046 0.72 031 071 0.80 090 0.87 0.29
Financial -0.01 0.24 -0.02 -0.01 030 029 0.02 035 0.32
Hepeatitis 0.07 0.37 -0.01 0.03 0.34 048 0.04 0.37 0.28
Mondial -0.00 0.19 030 -0.09 032 027 026 032 0.11
Mutagenesis 0.05 0.14 0.09 020 024 0.63 0.62 059 0.22
Nations 0.16 059 087 0.18 0.75 0.79 0.88 0.76 0.34
PremierLeague -0.07 0.12 0.27 0.08 0.17 035 035 034 0.17
PTE 0.01 039 032 -043 054 031 024 053 0.20
StudentLoan 0.25 0.17 0.62 0.14 0.61 053 0.65 0.61 0.39
VisualGenome -0.11 044 095 -0.03 095 074 096 094 0.82
Walmart -0.18 020 0.77 -0.06 049 0.17 081 052 042
average 0.02 033 032 004 050 043 040 0.55 031
win count 0 0 0 0 2 2 6 5 0

Table 8: Contribution of models to POP. Adjusted R:
0.564.

Estimate Std. Error Pr(> |t|)
(Intercept) 0.020 0.0586 0.6877
relevance 0.292 0.0149 4.0527 x 1073 ##x*
redundance 0.318 0.0149 2.9095 x 1073 3k
runtime 0.053 0.0122 0.0124 *
rel:red —0.1723 0.0244 0.0021 ok

dant feature only pushes all subsequent features one step
later).

Table 9: Contribution of models to reduction of the area
under misclassification error curve. Adjusted R?: 0.486.

Estimate Std. Error Pr(> t|)
(Intercept) 0.294 0.020 1.3357 x 107 sk
relevance —0.053 0.016 0.0016 wk
redundance —0.018 0.014 0.2402
runtime 0.010 0.014 0.5167

6.3 Which meta-features are important?

To analyze the importance of the three categories of the
meta-features (landmarking, database, feature-function),
we design an experiment, in which we vary the set of the
used meta-features.

Table 10: Contribution of meta-feature categories to the
reduction of the count of engineered features needed to
reach or surpass model accuracy obtained on a complete
set of features. Adjusted R?: 0.308.

Estimate Std. Error Pr(> |t|)
(Intercept) 43.328 11.569 0.0013 **
database —0.741 11.007 0.9472
featureFunction —3.755 11.007 0.7377
landmarking —30.586 11.007 0.0140 *

Conclusion: Based on the results reported in Table 10,
only landmarking meta-features help to significantly? re-
duce the count of features that have to be engineered to
reach model accuracy obtained on all features. Table 10
also tells us that if all meta-features are used, it is in average
sufficient to engineer only the top 8.25% of the features to
match or surpass the classification accuracy of the model
trained on all features.

6.4 Do we need so many feature functions?

We may wonder whether it is not enough to just engineer
the 6 landmarking features and do not continue with the
engineering of the remaining 25 (e.g., multivariate) features.
We compared accuracies of the models trained only on
the landmarking features with accuracies obtained on all

2The reported p-values do not incorporate correction for repeated
evaluation of serially correlated observations

50

Jan Motl and Pavel Kordik

features. Based on Wilcoxon signed-rank test, we have to
reject the null hypothesis that the additional features do
not improve accuracy (p-value = 0.00048). The median
improvement is 1.2 percent point in classification accuracy
(average improvement is 2.7 percent point).

Conclusion: The additional features improve the accu-
racy of the model over the accuracy of the model build
only on the landmarking features by a small but significant
amount.

6.5 Feature Selection vs. Feature Meta-learning

The described feature meta-learning bears similarity with
filter-type feature selection methods like Correlated Fea-
ture Selection (CFS)[6] and Minimum Redundancy Maxi-
mum Relevance (mMRMR)[17]. Both these methods attempt
to quickly select relevant non-redundant features. And so
does our method. But in comparison to these methods, we
perform feature selection before the feature engineering.

Difficulty Tt can be argued that feature meta-learning is
at least as difficult problem as feature selection since we
can always convert feature selection problem to feature
meta-learning by throwing away the computed features
(and recalculating them on request).

6.6 Limitations

We performed experiments only on relational data and
features from propositionalization. Propositionalization is
known to produce a lot of duplicate features (38% on av-
erage on the tested databases) and many of the features
are irrelevant to the task (64% on average on the tested
databases based on backward selection). These properties
make it possible to obtain substantial gains from feature
selection. However, the performed experiments do not tell
us how the described approach is going to generalize on
non-relational data.

Another limitation of the reported work is that it ignores
interactions between the feature vectors in the downstream
model. This can reduce the accuracy of the downstream
model because a univariate oraculum meta-learner would
not recommend calculation of features that are useful only
in the combination with other features (a trivial example
where this may happen is XOR problem [13]). Possible
solutions to this problem are briefly mentioned in the future
work Section 7.

6.7 Applications

Feature meta-learning is desirable in domains, where a
single universal approach to feature extraction does not
exist or is not known ahead. An exemplary domain are
relational data, which may contain highly diverse content
ranging from structured to unstructured data.
Additionally, feature selection before feature engineer-
ing is applicable to complex or large data, where it is not

feasible or convenient to calculate and evaluate all possible
features due to limited resources.

7 Conclusion

In this article, we evaluated an idea of performing feature se-
lection before feature engineering. To guide the search, we
exploited meta-learning. Nargesian [16] used meta-features
calculated from the original data. But we found out that
landmarking meta-features work better. When we evaluated
the implementation on 15 databases, we concluded that it
is on average enough to engineer only the top decile of
features to get accuracy comparable to accuracy obtained
on all features. This finding is similar to Reif’s [20] finding,
who applied meta-learning to feature selection. However,
Reif performs feature selection after feature engineering
while we perform feature selection before feature engineer-
ing.

7.1 Future Work

In this exploratory work, we optimize an ersatz measure
called POP, which is easy to reason about. One possible
extension of this work is to improve individual components
of the meta-learning model. For example, we can detect
redundancy based on a fuzzy comparison of equal-height
histograms estimated with the database engine or quantile
sketch. With this change, we would detect duplicates that
are identical up to a monotonic transformation, leading to
better alignment with models that are invariant to mono-
tonic transformations of the features (e.g., decision trees in
theory). Or we could replace the redundancy detection with
a precomputed correlation matrix describing similarities
between the feature functions [24, p. 148]. Alternatively,
we could estimate a transition matrix describing the opti-
mal order in which to apply feature functions (or give up
on the given attribute). To improve non-redundancy and
relevance together, we could train a fast model (e.g., naive
Bayes) on streaming features (e.g., [23] or [22, p. 19]). The
possibilities are vast.

Another possible direction is to directly optimize the
measure we are interested in (e.g., improvement to model’s
AUROC over time). This can be done by training a single
model (e.g., [16]). And this article provides an extended set
of meta-features, on which such model could be trained.

8 Acknowledgement

We would like to thank Adéla BlaZkova for her help. We fur-
thermore thank the anonymous reviewers, their comments
helped to improve this paper. The reported research has
been supported by the Grant Agency of the Czech Tech-
nical University in Prague (SGS17/210/0HK3/3T/18) and
the Czech Science Foundation (GACR 18-18080S).

Do We Need to Observe Features to Perform Feature Selection?

51

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

S. M. Abdulrahman and P. Brazdil. Measures for combining
accuracy and time for meta-learning. CEUR Workshop Proc.,
1201:49-50, 2014.

T. Brandenburger and A. Furth. Cumulative Gains Model
Quality Metric. J. Appl. Math. Decis. Sci., 2009:1-14, 20009.
L. De Raedt. Inductive Logic Programming, volume 1446

of Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 1998.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-
tion. Wiley Interscience, 2 edition, 2000.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. An Intro-
duction to Variable and Feature Selection Isabelle. Mach.
Learn., 46(1/3):389-422, 2002.

M. A. Hall. Correlation-based Feature Selection for Ma-
chine Learning. PhD thesis, The University of Waikato,
1999.

J. M. Kanter. Deep Feature Synthesis: Towards Automating
Data Science Endeavors. IEEE DSAA, 2015.

C. S. Kheau, R. Alfred, and L. H. Keng. Dimensionality
Reduction in Data Summarization Approach to Learning
Relational Data. ACIIDS, 7802:166-175, 2013.

M.-A. Krogel and S. Wrobel. Transformation-Based Learn-
ing Using Multirelational Aggregation. In /ILP, pages 142—
155. Springer, London, 2001.

M.-A. Krogel and S. Wrobel. Propositionalization and Re-
dundancy Treatment. In Databases, Doc. Inf. Fusion, Han-
nover, 2002. CEUR.

C. Lemke, M. Budka, and B. Gabrys. Metalearning: a survey
of trends and technologies. Artif. Intell., 44(1):117-130,
2015.

A. McNab and D. A. Ladd. Information quality: The impor-
tance of context and trade-offs. In Proc. Annu. Hawaii Int.
Conf. Syst. Sci., pages 3525-3532, 2014.

M. Minsky and S. A. Papert. Perceptrons. An Introduction
to Computational Geometry. MIT, jan 1969.

J. Motl and P. Kordik. Foreign Key Constraint Identification
in Relational Databases. In ITAT, pages 106-111. CEUR,
2017.

J. Motl and O. Schulte. The CTU Prague Relational Learn-
ing Repository. arXiv, page 7, nov 2015.
F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and

D. Turaga. Learning Feature Engineering for Classification.
IJCAI, (August):2529-2535, 2017.

H. Peng, F. Long, and C. Ding. Feature selection based
on mutual information criteria of max-dependency, max-
relevance, and min-redundancy. IEEE TPAMI, 27(8):1226—
1238, aug 2005.

B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-
Learning by Landmarking Various Learning Algorithms. In
ICML, volume 951, pages 743-750, 2000.

A. Popescul and L. H. Ungar. Structural Logistic Regression
for Link Analysis. MRDM, (August):92—-106, 2003.

M. Reif and F. Shafait. Efficient feature size reduction via

predictive forward selection. Pattern Recognit., 47(4):1664—
1673, 2014.

(21]

(22]

(23]

(24]

[25]

J. Rice. The Algorithm Selection Problem. Adv. Comput.,
15(C):65-118, 1976.

J. Tang, S. Alelyani, and H. Liu. Feature Selection for
Classification: A Review. Data Classif. Algorithms Appl.,
pages 37-64, 2014.

K. Yu, W. Ding, D. Simovici, H. Wang, J. Pei, and X. Wu.
Classification with Streaming Features: An Emerging-
Pattern Mining Approach. ACM TKDD, 9(4):1-31, 2015.
Z. Zhou and H. Liu. Spectral Feature Selection for Data
Mining. CRC, New York, NY, 2011.

S. Zilberstein. Using Anytime Algorithms in Intelligent
Systems. AI Mag., 17(3):73-83, 1996.

Appendix

Reproducibility
The used code is published at:

https://github.com/janmotl/metalearning.

The used databases are published at:

https://relational.fit.cvut.cz.

Table 11: Expected standardized relevance (bigger is bet-
ter), runtime (smaller is better) and redundancy (smaller is
better) of feature functions (sorted by the feature utility).

Feature function Relevance Runtime Redundancy Utility
Aggregate frame —2.11 —0.17 0.49 —2.19
Time aggregate diff —1.53 0.05 0.54 —1.95
Time diff —0.92 —0.01 0.48 —1.34
Time day part —1.33 0.02 0.02 —1.31
Time since —0.89 —0.04 0.45 —1.22
Null ratio —0.99 —0.02 0.18 —1.06
Time frequency —0.17 0.35 —0.10 —0.71
Existential count —0.67 —0.06 0.06 —0.47
Slope —0.49 0.03 0.03 —0.47
Time WOE 0.51 0.38 0.07 —0.42
Time is weekend —1.03 —0.12 —0.21 —0.40
Time part —0.45 0.00 0.05 —0.40
Text length —0.76 —0.07 —0.09 -0.37
Intercept 1.42 0.36 0.37 —0.21
Correlation 1.32 0.26 0.37 —0.05
Time aggregate 0.57 0.05 0.21 0.19
Aggregate text length —0.24 —0.05 —0.15 0.29
Aggregate range 0.34 —0.02 0.15 0.34
Duplicate ratio 0.32 0.17 —0.26 0.39
Aggregate distinct 0.56 0.03 0.11 0.44
Time range 0.06 0.06 —0.26 0.45
Coefficient of variation 0.36 0.01 —0.07 0.62
Time aggregate since event 0.19 0.01 —0.24 0.75
Direct field 0.26 —0.05 —0.09 0.79
Distinct count 0.21 —0.04 —0.16 0.82
Aggregate 0.49 0.04 —0.16 0.82
Log product 0.62 —0.02 0.02 0.87
Time aggregate since 1.25 0.27 —0.24 0.95
Count 0.30 —0.08 —0.18 1.13
WOE 1.27 —0.03 —0.01 1.69
Aggregate WOE 1.04 0.01 —-0.39 2.05

	Contents
	Jan Motl and Pavel Kordík: Do We Need to Observe Features to Perform Feature Selection?

