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Abstract: Classification serves an important role in do-
mains such as network security or health care. Although
these domains require understanding of the classifier’s de-
cision, there are only a few classification methods trying
to justify or explain their results.

Classification rules and decision trees are generally con-
sidered comprehensible. Therefore, this study compares
the classification performance and comprehensibility of a
random forest classifier with classification rules extracted
by Frequent Item Set Mining, Logical Item Set Mining
and by the Explainer algorithm, which was previously pro-
posed by the authors.
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1 Introduction

Classification is one of the main directions of machine
learning research. In the past decades, researchers devel-
oped classification models which, when learnt properly,
can beat humans in tasks we believed they would never
succeed, like handwritten text recognition [?, ?], or even
tasks that were specifically designed to be unsolvable for
computers, like CAPTCHAs [?] and other human interac-
tion proofs [?].

Current state-of-the-art classifiers excel in predictive
performance, but they lack other quality characteristics
for human decision process: deep neural networks, for in-
stance, do not provide explanation of their decisions. Yet,
the reasoning justifying decisions is critical in many appli-
cation domains such as medicine or network security. In
medicine, physicians would rather believe a less precise
model, if the classification is justified by explanation they
can understand. In the network security domain, analyst
are often overwhelmed by alarms. But investigation with-
out providing context or explanation, why the alarm was
raised, takes a substantial amount of time. Current ran-
somware affairs [?] have shown that time is critical when
infection occurs.

This work is focused on comparison of context provided
by a random forest classifier and three different rule min-
ing approaches. Random forests were chosen as a rep-
resentative of the state-of-the-art classifiers which is also
able to provide a reasonable justification of its decisions.
The precision of classifiers based on sets of rules highly

depends on the process of mining rules from data. We
tested the quality of rules mined by Frequent Item Set Min-
ing [?], Logical Item Set Mining [?] and extracted by the
Explainer algorithm [?]. The comparison focuses on the
precision and recall over time and also the quality of pre-
sented context. The experiments were done on a dataset
from the network security domain.

The rest of the work is organized as follows. The next
section covers the related work in the field of comprehen-
sible classification. Section ?? briefly introduces all used
rule mining approaches that are experimentally evaluated
in Section ??, followed by the conclusion and future plans.

2 Related work

The pressing issue of comprehensible predictive models
has been intensively studied in the field of anomaly de-
tection. The first work considering anomaly explanation
was [?]. It defined an explanation as “provision of a de-
scription or an explanation of why an identified anoma-
lous sample is exceptional”. The proposed method first de-
tected all distance-based anomalies in the whole attribute
space. Then, it identified the smallest subspace in which
the anomaly could be still detected and used that subspace
as an explanation.

In the approach presented in [?], artificial samples are
generated in the vicinity of each sample x. Then a classi-
fier is trained to separate the artificial samples from real
samples. If x was an anomaly, then artificial samples
should be separated easily, which would result in the clas-
sifier having low error and vice-versa.

The method proposed in [?] derives the anomaly score
from the frequency of histogram bins, from which the
method also extracts context and explanation of the
anomaly.

Authors of [?] used the probabilistic RBF kernels to ex-
tract and compare feature impact (positive and negative)
for each class in multi-class classification problems.

Most of the recent prior art stops the explanation af-
ter identifying the set of features by which the sample un-
der investigation can be differentiated from the rest. The
Explainer [?] describes the sample by a set of association
rules.

A comparison by means of comprehensibility of the
well established classifiers such as decision trees, nearest
neighbours or Bayesian networks was done in [?].
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The authors of [?] compared multiple rule mining ap-
proaches, their general similarities and differences and
also their computational efficacy. This paper is focused
on the comprehensibility and complexity of a context pro-
vided to the domain experts by different rule mining ap-
proaches.

The most advanced approach we are aware of is [?]. It
introduced a framework for measuring not only a compre-
hensibility (if a prediction is presented in a way that it is
easy to understand) but also a justifiability (if a model is
in line with the domain knowledge). We would like to use
this framework in our future work.

3 Rule mining approaches

Association rules are defined as an implication of the form
A⇒C, whereA,C ⊆ I and I = {i1, i2, ..., id} is a set of bi-
nary attributes called items. Association rules are typically
mined from a database X= {x1,x2, ...,xn}. Each line x∈X
represents a set of items x ⊆ I and is called a transaction.
In this paper, we work with a specific type of association
rules, often called classification rules, that are also defined
as A⇒ C. Here, A ⊆ I and C ∈ C = {c1,c2, ...,ck} is a
single item representing a particular class.

The rest of this section surveys rule mining approaches
used in this paper.

3.1 Frequent item set mining

The Frequent Item Set Mining (FISM) is a general frame-
work for discovering groups of items (item sets) that are
often seen together. The first algorithm mining association
rules called GUHA was published by Petr Hájek in [?]. In
fact, it was a mathematical method for automatic search
of hypotheses valid in given data, based on generalized
quantifiers of Boolean predicate logic, and the quantifier
corresponding to association rules was called founded al-
most implication. The very same approach was rediscov-
ered for data mining purposes as the Apriori algorithm by
Agrawal almost thirty years later [?].

Since then, a variety of improvements for the original
Apriori algorithm was proposed [?, ?], and also several
new algorithms for frequent items mining were invented,
e.g., FP-Growth [?], LCM [?] or Eclat [?]. This paper uses
the FP-Growth algorithm as the most time and memory
efficient representative of the FISM algorithms.

FP-Growth algorithm starts by building a specific prefix
tree called frequent pattern tree (FP-tree). First, the fre-
quencies of all items i ∈ I are calculated. Then, all items
i with frequency lower than the user specified threshold
θminFreq are filtered out from all transactions x ∈ X. Items
remaining in the filtered transactions are sorted in descend-
ing order according to their frequency. The prefix tree is
built by inserting the filtered and sorted transactions.

Once the FP tree is built, it is recursively traversed in
a bottom-up manner, mining frequent item sets laying on

the path from leaf to root. Based on the FP-tree construc-
tion process, each transaction is mapped to a path in the
FP-tree. The FP-tree structure also guarantees that all fre-
quent item sets present in the database X can be found on
the path from some leaf to the root. Moreover, one path
in the FP-tree may represent frequent item sets in multi-
ple transactions.1 This property also ensures the memory
efficiency of FP-Growth.

3.2 Logical item set mining

The Logical Item Set Mining (LISM) [?] is an alternative
approach to mining association rules from data. The key
difference from FISM is that LISM captures logical rela-
tions not only between frequent items, but it also extracts
strong relations between rarely occurring items. By lever-
aging indirect relationships between items, it can also dis-
cover relations between item sets that are not present in a
dataset. The algorithm has counting, consistency, denois-
ing and discovery phases.

During the counting phase, co-occurrence counts,
marginal counts and total counts are calculated.

Co-occurrence count ψ(ia, ib) for every pair of items
(ia, ib) ∈ I× I , where ia 6= ib, is defined as the number
of transactions in which both items co-occurred:

ψ(ia, ib) =
n∑

j=1

δ (ia ∈ x j)δ (ib ∈ x j), (1)

where δ (condition) is an indicator function which is 1
if the condition is true and 0 otherwise. The results are
stored in the symmetrical matrix Φ = [φ(ia, ib)], which is
usually very sparse.

Marginal count ψ(ia) is defined as the number of pairs
in which the item ia ∈ I occurred with some other item:

ψ(ia) =
∑

ib∈I,ia 6=ib

ψ(ia, ib). (2)

Total count ψ0 is defined as the total number of pairs in
which some item co-occurred with some other item:

ψ0 =
1
2

∑

ia∈I

ψ(ia) =
1
2

∑

ia∈I

∑

ib∈I

ψ(ia, ib) (3)

These three results are then used as estimates of the co-
occurrence and marginal probabilities

P(ia, ib) =
ψ(ia, ib)

ψ0
, P(ia) =

ψ(ia)
ψ0

. (4)

The consistency phase reduces the effect of noise and
amplifies the importance of rare items that are consistently

1Items in item sets are ordered in the descending order, frequent
items are arranged closer to the top of the FP-tree and more likely to be
shared.
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seen together. A variety of distance measures can be em-
ployed, e.g., cosine, Jaccard or point-wise mutual infor-
mation. The cosine similarity defined as

φ(ia, ib) =
P(ia, ib)√
P(ia)P(ib)

∈ [0,1] (5)

was used in our experiments.
The iterative denoising phase uses the co-occurrence

consistencies obtained in the previous iteration to remove
noisy co-occurrence counts in Φ. Then, marginal and total
counts are recomputed solely from the updated Φ, there
is no need to touch data again. As a last step of every
iteration a consistency counts are updated.

In the discovery phase, a graph is created from the de-
noised co-occurrence consistency matrix Φ. Given Φ, a
logical item set is defined as a set of items where each
item has a high co-occurrence consistency with all other
items in the set. Such sets are found by application of an
algorithm for finding maximal cliques, e.g., [?], on the co-
occurrence consistency graph.

3.3 Explainer

The Explainer [?] is a tree based algorithm designed to
explain why a sample xa ∈ X is an anomaly with respect
to the rest of the data in X. The output can be a set of
the most important features or a set of association rules.
Properties of extracted rules were studied in [?].

To explain an anomaly xa, the Explainer trains a set of
specific decision trees to separate xa from rest of the data
in X. Rules are extracted from each of those trees and
assembled into a set of association rules. The key steps
are summarized in Algorithm ??.

Algorithm 1 Summary of the Explainer algorithm for a
single anomaly xa.
Input:

data – input dataset; xa – anomalous sample; size –
training set size; nT – the number of trees to be trained.

Output:
rules – rules explaining xa

1: Forest←∅
2: for i← 1 . . .nT do
3: T← createTrainingSet(data,size,xa)
4: t← trainTree(T)
5: Forest← Forest ∪ t
6: end for
7: rules← extractRules(Forest)

During the training set selection, a dataset X =
{x1,x2, . . . ,xn} is split into two disjoint sets Xa, containing
anomalous samples, and Xn, containing normal samples.
Then, a training set T contains the anomaly xa as one class
and a subset of Xn as the other. The simplest strategy is to
select k samples randomly from Xn with uniform proba-
bility. This approach is computationally effective and was

proven to work well when compared to more sophisticated
approaches [?].

Training a tree is very similar to standard random
forests [?]. A candidate node is found and the optimal
splitting function is applied on that node. This greedy pro-
cedure repeats until the specified stopping criteria are met.

The node that contain xa is always the one being split
in the Explainer algorithm. The standard procedure to find
the splitting function h is maximizing the information gain
over the space of all possible splitting functionsH. But as
there is only a single point xa in the anomaly class, the
information gain is equivalent to minimizing the size of
the node containing xa:

arg min
h∈H
|Sa(h)|, (6)

where Sa ⊂ T denotes the subset of the training set con-
taining the anomaly xa after the split. The training is
stopped when all leaves are pure (contain samples from
a single class).

Once a tree is trained, it is used for rule extraction.
Let h f1,θ1 , . . . ,h fd ,θd be the set of splitting functions, with
features f1, . . . , fd and threshold θ1, . . . ,θd , used in inner
nodes on a path from the root to the leaf with xa. Then xa

is explained as a conjunction of atomic conditions:

(x f1 > θ1)∧ (x f2 > θ2)∧ . . .∧ (x fd > θd), (7)

which is the output of the algorithm. This conjunction can
be read as “the sample is anomalous because it is greater
than threshold θ1 in feature f1 and greater than θ2 in fea-
ture f2 and . . . than majority of samples”. Each tree pro-
vides one such conjunction, that are then aggregated.

4 Experiments

This section experimentally compares the classification
performance of the three described rule mining approaches
with the random forest classifier. The section starts with a
description of the dataset used in our research and with the
setting of the performed experiments. The comparison is
then based on the precision and recall measures, and the
final part concludes with a thorough discussion of differ-
ences of explanations provided by each approach.

4.1 Dataset description

The dataset in this research consists of 8 consecutive
weeks of network traffic collected by the Cognitive Threat
Analytics (CTA) intrusion detection system. It contains
about 9 million samples, where each sample is a collec-
tion of all network events observed on a particular network
host within the 24-hours window. In the words used in the
market basket analysis, each sample x is a transaction con-
taining a subset of all events/items x⊆ I.

CTA distinguishes about 300 events falling into four
categories:
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• signature based (SB) – produced by matching be-
havioural signatures handmade by a domain expert.

• classifier based (CB) – created by supervised classi-
fiers trained on historical data.

• anomaly based (AB) – created by the anomaly detec-
tion engine which consists of 70 individual detectors
(statistical, volumetric, proximity, targeted, domain
specific).

• contextual events (CE) – describe various network
behaviours to provide an additional context, e.g., file
download, direct access on raw IP, software update.

These events together serve as high level behavioural
indicators that can be used to create a behavioural profile
of a malware family. This behavioural profile can be used
to identify malware infections in their early stages and stop
them before they do any harm.

The database was labelled by the CTA engine in a way
that transactions of a network hosts infected by either
banking trojan, click fraud, information stealer or malware
distribution were marked as positives/malicious (4801 and
6463 transactions in training and testing sets respectively)
and the other transactions were labelled negative/benign
(3.75 mil. and 5.23 mil. transactions respectively).

4.2 Experimental setup

All following experiments used 3 weeks of data, approxi-
mately 3.75 million of transaction, for training/rule mining
and 5 weeks, 5.23 million of transactions, for testing.

Parameters of the random forest were set as follows:
number of trees = 19; maximal depth of a tree = 25; num-
ber of features per split = 100.

The Explainer was set to train 10 trees per positive sam-
ple while selecting a random training set of size 1000 sam-
ples.

The FP-growth algorithm was set to produce only rules
with support higher than 3 transactions.

The parameters of LISM was: similarity measure = co-
sine (??); θcooc = 1 · 10−7; θcons = 2. Cliques discovered
using this setting were split into 3–5 items long rules. De-
tails about the optimization of parameters can be found
in [?].

As a last step, all rules were filtered to have precision on
the training set at least 80%. The filtered rules were then
used in the following experiments.

4.3 Classification efficacy

The described rule filtering, based on the minimal preci-
sion 80% on the training set, resulted in very few false pos-
itive predictions: all classifiers reached more than 90%-
precision on all the testing sets, as depicted in the upper
graph in Figure ??. While the rules mined by the Explainer
and FISM algorithm provide stable results with precision
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Figure 1: Precision and recall of the four considered clas-
sifiers measured in five consecutive weeks in September
2017.

reaching roughly 99% during all five testing weeks, the
rules generated by the LISM and random forest exhibit
greater variance in time.

The ability to discover the malicious content in the test-
ing data, as measured by the classifiers’ recall, diversi-
fies considerably more. Both Explainer’s and random for-
est’s sets of rules were able to identify more than 80%
of the malicious samples in the testing sets (except the
last week). The graph in Figure ??, on the other hand,
clearly shows that the highest precision rate of the LISM-
generated rules is accompanied with the lowest degree of
recall.

The LISM is able to generate complex and very descrip-
tive rules that, however, can be hardly located in the data.
That results in only 34 generated rules reaching the train-
ing precision threshold 80%, which is probably the cause
behind the lowest recall. The 100%-precision in 4 out of 5
testing weeks is surprisingly good result, though.

The performance of the FISM and Explainer differs
mainly in their recall, where the better results of the Ex-
plainer is probably caused by the algorithm’s focus to the
shortest and strongest rules; only 14 rules reached the 80%
precision threshold. The FISM, on the other hand, is able
to generate longer rules, which are harder to match.

Random forest classifier with its up to 25-levels deep
decision trees is able to identify the highest number of the
testing malicious transactions. On the contrary, the high
complexity of the trees, at the same time, causes the lowest
observed precision out of four compared classifiers.
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4.4 Context comparison

This section presents the comparison of context provided
by the random forest classifier, Explainer, Logical Item Set
Mining and Frequent Item Set Mining. Examples of mined
rules are presented and discussed in detail.
Random Forest
In general, random forests can provide two types of con-
text; feature importance and classification rules.

The feature importance provides less information than
rules. It represents aggregated global knowledge for all
classes in the training set. It can be extracted per class
if a random forest is trained for each class separately.
Our database represents a dichotomy problem with both
classes being in fact mixtures of multiple sub-classes that
we are unable to separate.

Classification rules provide more specific/local infor-
mation. Unfortunately, trees in a random forest are typ-
ically trained deep to be as precise as possible. In other
words, the path from a root to a leaf will be long and
therefore, the extracted rule will be also long. The other
drawback of training random forests directly on transac-
tions is so called negative evidence. In the network secu-
rity domain, the negative evidence is when a network host
is being marked as infected because of some behaviour it
doesn’t have, e.g. “a host is infected, because it didn’t
downloaded an image”.

The real example of a rule with multiple negative ev-
idences extracted directly from the random forest used in
the experiments is: “If you are not infected by a click fraud
and you are not infected by an information stealer and you
are not infected by the Sality trojan and you are not in-
fected by the malware called Gamarue and you don’t have
encrypted connection then you are infected.” As you can
see from this simple yet real example, rules extracted from
a random forest may be more puzzling than explaining.
Explainer
The Explainer can be easily set to provide rules with only
positive evidences. The trouble is, that it was designed
to extract the smallest set of the shortest possible rules.
The extracted rules contained the real causes of incidents
but not any additional context which would simplify the
investigation. From the rules created by the Explainer, 14
had a precision higher than 80%. They typically contained
only one event produced by a supervised classifier. The
second event was presents in only 3 cases and there was
no rule longer than that. Selected examples of longer rules
follow:

1. AB:ShadowUser CB:ClickFraud

2. CB:SuspAdvertising CB:MaliciousAdvertising

The first example contains an anomaly based
event AB:ShadowUser and a classifier based event
CB:ClickFraud. AB:ShadowUser identifies network hosts
that are visiting a high number of network domains which
nobody else visit. The CB:ClickFraud event is created by

the random forest classifier trained to discover malware
from the click fraud family. The click fraud malware
family is known for visiting a lot of weird pages without
user’s knowledge and is often used for clicking on web
advertisements to generate money.

The second rule contains two classifier based events in-
dicating a host visited a lot of suspicious advertisement
pages(CB:SuspAdvertising ), some of them probably ma-
licious (CB:MaliciousAdvertising). Here, the malware
started by showing additional unwanted advertisements,
banners and pop-ups and ended by ex-filtrating sensitive
data.
LISM
Rules extracted by the Logical Item Set Mining create a
very logical and justifiable connections between items. All
items in a rule are always very strong indicators of a par-
ticular threat. Unfortunately, they would appear all at once
very rarely, but if they do, it is for sure a serious infec-
tion. LISM created 34 rules with precision over 80%. The
length of the rules is ranging from 3 to 5. Examples fol-
low:

1. SB:Blocked CB:MalBinary SB:Sality

2. CB:ClickFraud CB:Malwartising CB:MalwareDistr

The first example shows a download of malicious
binary (CB:MalBinary) from a black listed domain
(SB:Blocked). Furthermore, it has a well known signa-
ture of a malware called Sality (SB:Sality). Each of these
events is strong enough evidence to trigger an immediate
re-mediation alert on its own.

The second rule shows a nice example of a malicious es-
calation. At first, a host was infected by a click fraud mal-
ware (CB:ClickFraud), which was visiting a shady adver-
tising sites (CB:MalAdvertising). Then, the host started
to download and distribute additional malicious modules
(CB:MalwareDistr).

FISM
The Frequent Item Set Mining provided the best expla-
nation/context from all compared method. Rules contain
all important indicators while providing a reasonable addi-
tional context. FISM created 454 rules, with length rang-
ing from 3 to 5, that satisfied 80% threshold on precision,
examples follow:

1. CE:jQuery AB:SuspDomain CB:ClickFraud

2. AB:PathCount AB:ShadowUser CB:ClickFraud
CE:WPManagment

The first example shows a host that downloaded a mod-
ified javascript library jQuery(CE:jQuery) from a suspi-
cious network domain (AB:SuspDomain). This modified
library was the source of infection, which was later de-
tected by the random forest classifier trained for detection
of a click fraud malware family (CB:ClickFraud).
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The second rule shows a sophisticated example of click
fraud capabilities (CB:ClickFraud). In that case, the mal-
ware had a password cracker module installed and was
used to crack into administration sections of web pages
created using Wordpress(CE:WPManagment). Again, we
can see a host visiting large amount of low probability net-
work domains (AB:ShadowUser), WordPress blogs in that
case, where on most of these pages was visited the out-
lying number of paths (AB:PathCount), specifically only
one.2

5 Conclusion

This paper compared the classification performance and
comprehensibility of a random forest classifier with clas-
sification rules extracted by the Frequent Item Set Mining,
Logical Item Set Mining and by the Explainer algorithm,
which was previously proposed by the authors. All the al-
gorithms showed surprisingly similar precision with rules
extracted by LISM performing slightly better, with excep-
tion on one week. From the recall point of view the best
performing algorithm was the random forest followed by
rules extracted by the Explainer.

The comparison of provided explanations revealed that
rules extracted from random forests trained on transaction
data can be more puzzling than comprehensible. The re-
lationships between items mined by LISM were not only
comprehensible but also justifiable (in line with the do-
main knowledge). Unfortunately, they are very rarely seen
within the real data. Rules extracted by the Explainer tend
to reveal the root cause of an incident but provide only
a little to non additional context. Rules mined by FISM
appeared as an optimal mix of root cause events together
with a reasonable amount of additional context.

As the future work, we would like to extend our research
into the other application domains and also to implement
the work of Martens et al. [?] and compare their numerical
representations of comprehensibility and justifiability with
our domain knowledge.
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