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Abstract: One of the most common methods for classi-
fier comparison is Friedman’s test. However, Friedman’s
test has a known flaw — ranking of classifiers A and B

does not depend only on the properties of classifiers A and
B, but also on the properties of all other evaluated classi-
fiers. We illustrate the issue on a question: “What is better,
bagging or boosting?”. With Friedman’s test, the answer
depends on the presence/absence of irrelevant classifiers
in the experiment. Based on the application of Friedman’s
test on an experiment with 179 classifiers and 121 datasets
we conclude that it is very easy to game the ranking of two
insignificantly different classifiers. But once the difference
becomes significant, it is unlikely that by removing irrele-
vant classifiers we obtain a significantly different classifiers
but with reversed conclusion.

1 Introduction

Friedman’s test is the recommended way how to compare
algorithms in machine learning (ML) [9]. It is a nonpara-
metric test, which calculates scores not on the raw perfor-
mance measures (e.g. classification accuracy or correlation
coefficient) but on the ranks calculated from the raw mea-
sures. Nonparametric tests are favored over parametric tests
in ML, because the standard formulation of the central limit
theorem (CLT) does not apply on bounded measures [8],
many measures used in ML are bounded, and commonly
used parametric tests rely on CLT. Nevertheless, even non-
parametric tests, which are based on ranking, have flaws
as demonstrated by Arrow’s impossibility theorem [1]. In
this article, we discuss one such flaw of Friedman’s test:
violation of Independence of Irrelevant Alternatives (IIA).

2 Problem Description

Friedman’s test Friedman’s test, if applied on algorithm
ranking, is defined as:

Given data {xi j}n×k, that is, a matrix with n rows (the
datasets), k columns (the algorithms) and a single

performance observation at the intersection of each
dataset and algorithm, calculate the ranks within each
dataset. If there are tied values, assign to each tied
value the average of the ranks that would have been
assigned without ties. Replace the data with a new
matrix {ri j}n×k where the entry ri j is the rank of xi j
within dataset i. Calculate then rank sums of algo-
rithms as: r j = ∑n

i=1 ri j .

We can rank the algorithms based on rank sums r j [10].
Friedman’s test then continues with the evaluation of the
null hypothesis that there are no differences between the
classifiers. Since this article is not about hypothesis testing
but rather about algorithm ranking based on r j, we refer-
ence a keen reader to read [9] for a detailed description of
Friedman’s test hypothesis testing.

IIA Independence of Irrelevant Alternatives [14] condition
is defined as:

If algorithm A is preferred to algorithm B out of the
choice set {A,B}, introducing a third option X , expand-
ing the choice set to {A,B,X}, must not make B prefer-
able to A.

In other words, preferences for algorithm A or algorithm
B, as determined by rank sums r j, should not be changed
by the inclusion of algorithm X , i.e., X is irrelevant to the
choice between A and B.

Illustration Boosting tends to outperform base algorithms
(e.g. decision trees) by a large margin. But sometimes,
boosting fails [2, Chapter 8.2] while bagging reliably out-
performs base algorithms on all datasets, even if only by a
small margin [2, Chapter 7.1]. This is illustrated in the left
part of Figure 1. If we compare boosting only to bagging,
then by the rank sums r j, boosting wins, because boosting
is better than bagging on the majority of datasets. However,
if we add irrelevant algorithms that are always worse than
bagging, the conclusion may change. Bagging will be al-
ways the first or the second. But boosting will be either the
first or (in the provided illustration) the last. And a few ex-
treme values in the rank sum r j can result into the change
of the conclusion.
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Figure 1: What is better, bagging or boosting? Boosting is better than bagging by a large margin on majority of datasets
(e.g. in 95%). But with a constant probability p, boosting fails critically. Interestingly, the decision which of the algorithms
is better does not depend only on p but also on the count of irrelevant algorithms (m).

3 Impact

3.1 Bias of Authors

Hypothesis Authors of highly cited papers, knowingly or
not, frame their algorithms in the best possible light. Based
on the equilibrium equation in Figure 1, we would ex-
pect that proponents of boosting algorithms use fewer al-

gorithms than proponents of bagging in the design of ex-
periments (DOE).

Evaluation Breiman, the author of bagging [6], compared
bagging against 22 other algorithms while Freund and
Schapire, authors of AdaBoost [11], compared their boost-
ing algorithm against only 2 other algorithms. Our expec-
tations were fulfilled.

Threats to validity due to omitted variables Since both
articles were published in the same year, the availability
of algorithms for comparison should be comparable and
cannot be used to explain the observed differences in the
DOE.

Conclusion Since this is just a single observation, which
can be just by chance, following section analyses the im-
pact of DOE numerically.

3.2 Effect on Large Studies

A nice comparison of 179 classifiers on 121 datasets is
provided by Fernández-Delgado et al. [10]. The authors
follow Demšar’s [9] recommendation to use Friedman’s
test to rank the algorithms.

If we directly compare just two classifiers, Ad-

aBoostM1_J48_weka and Bagging_J48_weka, and calcu-
late rank sums r j, then we get that boosting beats bagging

64 to 47. But if we calculate rank sums over all algorithms,
then we get that bagging beats boosting 13136 to 12898.
A completely reversed conclusion!

How frequently does the ordering flip? If we per-
form above analysis over all unique pairs of classifiers
( 1

2 179(179− 1) = 15753), then we get that the ordering
flips in 5% of cases (831/15753).

Are the changes in the ranks significant? We repeated the
experiment once again, but considered only classifier pairs
that are based on Friedman’s test:

1. pairwise significantly different

2. and significantly different in the presence of all the

remaining classifiers.

If we do not apply multiple testing correction, the clas-
sifiers flip the order in mere 0.05% cases (8/15753) at a
shared significance level α = 0.05. Once we add multi-
ple testing correction, the count of significant flips drops

to zero. In our case, the exact type of multiple testing cor-
rection does not make a difference. Bonferroni, Nemeneyi,
Finner & Li and Bergmann & Hommel [17] corrections all
give the same result as the lowest p-value before the cor-
rection in that 8 cases is 0.023, which is already extremely
close to the significance level of 0.05.
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4 Related Work and Discussion

We are not the first one to notice that Friedman’s test does
not fulfill the IIA property. The oldest mention of the issue
in the literature, that we were able to track down, dates
back to 1966 [4]. Following paragraphs discuss possible
solutions to the issue.

4.1 Pairwise Ranking

Benevoli et al. [4] recommend replacing Friedman’s test
with pairwise Wilcoxon signed-rank test followed with mul-

tiple testing correction. The application of a pairwise-test
solves the issue with IIA if we want to show how well “a
new algorithm A fares in comparison to a set of old al-
gorithms B” because each pairwise comparison between
A and some other algorithm B ∈ B is by definition inde-
pendent on C ∈ B,C 6= B. However, if we aim to “rank the
current algorithms together”, pairwise tests may not deliver
a total ordering while a method comparing all algorithms
at once can, as illustrated in Figure 2.

A B C

α 1 2 3
β 1 2 3
γ 3 1 2
δ 3 1 2
ε 2 3 1

Rank sum 10 9 11

Figure 2: A minimal example of 3 algorithms and 5
datasets where rank sums deliver total ordering while pair-
wise methods end up with a cycle: A≺ B,B≺C,C ≺ A.

One important implementation detail, which is not dis-
cussed by Benevoli et al., is that Wilcoxon signed-rank test
does not by default take into account ties (while Fried-
mans’s test does). Ties may appear in an experimental
study as a result of rounding or as a consequence of using
a dataset with a small sample size. And if the percentage
of ties is high, the negligence of the ties can result in mis-
leading results, as discussed by Pratt [13]. In R, we can use
wilcoxsign_test function from coin package, which
implements Pratt’s tie treatment.

4.2 Vote Theory

During the French revolution in the 18th century, the need
to come with a fair vote method arose. Two competitors,

Condorcet and Borda1, came with two different methods.
And they did not manage to agree, which of the methods
is better. This disagreement spurred an interest into vote
theory. One of the possible alternatives to Friedman test
that vote theory offers is Ranked pairs method [16]:

1. Get the count of wins for each pair of algo-
rithms.

2. Sort the pairs by the difference of the win counts
in the pair.

3. “Lock in” the pairs beginning with the strongest
difference of the win counts.

While Ranked pairs method also fails IIA criterium, it at
least fulfills a weaker criterium called Local Independence

from Irrelevant Alternatives (LIIA). LIIA requires that the
following conditions hold:

If the best algorithm is removed, the order of the re-
maining algorithms must not change. If the worst al-
gorithm is removed, the order of the remaining algo-
rithms must not change.

An example where Friedman’s test fails LIIA criterium
is given in Figure 3 [14].

A B C

α 1 3 2
β 1 3 2
γ 2 1 3
δ 2 1 3
ε 2 1 3

Rank sum 8 9 13

A B

α 1 2
β 1 2
γ 2 1
δ 2 1
ε 2 1

Rank sum 8 7

Figure 3: A minimal example of 3 algorithms and 5
datasets demonstrating that Friedman’s test does not ful-
fill LIIA criterium — when we remove the best algorithm
C, algorithm A becomes better than algorithm B.

Friedman’s test also violates Independence of Clones

criterion [15]:

The winner must not change due to the addition of a
non-winning candidate who is similar to a candidate
already present.

An example, when can this can become a problem is
given by [4]:

Assume that a researcher presents a new algorithm A0
and some of its weaker variations A1,A2, . . . ,Ak and
compares the new algorithms with an existing algo-
rithm B. When B is better, the rank is B� A0 � . . .�

1Borda count is equivalent to rank sums r j . Hence, whatever vote
theory has to say about Borda count also applies to Friedman’s test.
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Ak. When A0 is better, the rank is A0 � A1 � . . . �
Ak � B. Therefore, the presence of A1,A2, . . . ,Ak arti-
ficially increases the difference between A0 and B.

But Ranked pairs method fulfills this criterion.
Finally, Friedman’s test violates Majority criterion [3]:

If one algorithm is the best on more than 50% of
datasets, then that algorithm must win.

We have already observed a violation of this criterion in
the though example with bagging versus boosting — even
thought boosting was the best algorithm on the majority
of the datasets, this fact alone did not guarantee boosting’s
victory. The violation of Majority criterion also implies a
violation of Condorcet criterion [5]:

If there is an algorithm which wins pairwise to each
other algorithm, then that algorithm must win.

Which is, nevertheless, once again fulfilled with Ranked
pairs method. However, just like in machine learning we
have no free lunch theorem, Arrow’s impossibility theo-
rem [1] states that there is not a ranked vote method with-
out a flaw. The flaw of all ranked vote methods, but dic-
tatorship2, that fulfill Condorcet criterium is that they fail
Consistency criterium [18, Theorem 2]:

If based on a set of datasets A an algorithm A is the
best. And based on another set of datasets B an algo-
rithm A is, again, the best. Then based on A∪B the
algorithm A must be the best.

Notably, Friedman’s test fulfills this criterium while
Ranked pairs method fails this criterium. For convenience,
a summary table with the list of discussed criteria is given
in Table 1.

Table 1: Method compliance with criteria.

Criterium Friedman’s Ranked pairs

IIA 7 7
LIIA 7 3
Independence of Clones 7 3
Majority 7 3
Condorcet 7 3
Consistency 3 7

4.3 Bayesian

Another option is to go parametric and replace the common
assumption of normal distributions with Beta distributions,

2In a dictatorship, the quality of an algorithm is determined on a
single dataset

which are more appropriate for modeling of upper and bot-
tom bounded measures [7, 12].

4.4 Continue Using Friedman’s Test

Finally, there is the option of continuing using Friedman’s
test as before. In the numerical analysis in Section 3.2, we
did not observe any significant flip in the ordering of the
algorithms.

5 Conclusion

Contrary to our expectations, based on analysis of 179 clas-
sifiers on 121 datasets, Friedman’s test appears to be fairly
resistant to manipulation, where we add or remove irrele-
vant classifiers from the analysis. Therefore, we cannot rec-
ommend avoiding Friedman’s test only because it violates
Independence of Irrelevant Alternatives (IIA) criterium.
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Appendix: Arrow’s theorem

Arrow’s theorem, once applied on algorithms and datasets,
states that once we have 3 or more algorithms, a ranking
method cannot fulfill all following “reasonable” properties:

Unrestricted domain The ranking method should be
complete in that given a choice between algorithms A

and B it should say whether A is preferred to B, or B

is preferred to A or that there is indifference between
A and B.

Transitivity The preferences should be transitive; i.e., if
A is preferred to B and B is preferred to C then A is
also preferred to C.

Non-dictatorship The outcome should not depend only
upon a single dataset.

Weak Pareto Efficiency If algorithm A is better than al-
gorithm B on all datasets, then A must rank above B.

Independence of Irrelevant Alternatives (IIA) If algo-
rithm A is preferred to algorithm B out of the choice
set {A,B}, introducing a third option X , expanding the
choice set to {A,B,X}, must not make B preferable to
A.

Appendix: Criteria

Figure 4: Venn diagram with the dependencies between the
discussed vote theory criteria. IIA and consistency are in-
conceivable with the Condorcet criterion. Independence of
clones is independent of other criteria and is not depicted.
The diagram holds when following conditions from Ar-
row’s theorem are satisfied: unrestricted domain, transitiv-
ity, non-dictatorship, 3 or more competing algorithms.
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