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Abstract:  Gaussian processes have a long tradition
in model-based algorithms for black-box optimization,
where a limited number of objective function evaluations
are available. A principal choice in specifying a Gaus-
sian process model is the choice of the covariance func-
tion, which largely embodies the prior assumptions about
the modeled function. Several methods for learning the
form of covariance function have been proposed. We re-
port a work in progress in which the covariance function is
selected from a fixed set. The goal of covariance function
selection is to capture non-local properties of the objective
function and derive a more accurate surrogate model. The
model-selection algorithm is evaluated in connection with
Doubly Trained Surrogate Covariance Matrix Adaptation
Evolution Strategy on the Comparing Continuous Opti-
mizers framework. Several estimates of predictive perfor-
mance, including cross-validation and information crite-
ria, are discussed. Focus is placed on information criteria
suitable for nonparametric methods, and two of them are
compared experimentally.

1 Introduction

The principle of continuous black-box optimization is
finding extrema of real-parameter objective function an-
alytical definition of which is not known. Such func-
tions, often arising, e. g., in engineering design optimiza-
tion or material science, can only be evaluated empirically
or through simulations. Moreover, obtaining function val-
ues may be expensive and affected by noise. The goal
of finding a global optimum is usually relaxed in favor
of finding a good enough solution within as few objective
function evaluations as possible.

Evolution strategies, stochastic population-based algo-
rithms inspired by the process of natural evolution, present
a popular approach to continuous black-box optimiza-
tion. The Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [10, 13] is based on adaptation of the key
component of the mutation operator (the covariance ma-
trix) according to the historical search steps. The CMA-ES
is considered a state-of-the-art continuous black-box opti-
mizer. Nevertheless, considerable improvements in terms

of the number of fitness evaluations can be achieved by
use of surrogate models, i. e., statistical or machine learn-
ing models of the fitness trained on data gathered during
the optimization.

A variety of models for the CMA-ES has been investi-
gated, including but not limited to quadratic approxima-
tions [14], ranking support vector machines [16], random
forests [4] and Gaussian processes (GPs) [4, 19,25].!

Gaussian process (GP) regression is a nonparametric
method, meaning the data are assumed to be generated
from an infinite-dimensional distribution, i.e., a distribu-
tion of functions. In black-box optimization, the distribu-
tion of function values conditioned on observed data can
be used to derive a criterion for selecting most promis-
ing points for evaluation with the (expensive) fitness. As
far as we know, the first optimization method utilizing un-
certainty modeled by GPs is Bayesian optimization [17].
In this paper, we are going to build upon the more re-
cent Adaptive Doubly Trained Surrogate CMA-ES (aDTS-
CMA-ES), which uses a Gaussian process surrogate mod-
els for the CMA-ES, although our approach is directly ap-
plicable to Bayesian optimization as well.

A Gaussian process is fully specified by a mean func-
tion and a covariance function parametrized a by a small
number of parameters. In order to distinguish parameters
of the mean and covariance functions from the infinite-
dimensional parameter vector — the vector of function val-
ues — they are referred to as hyperparameters. In statisti-
cal works, the mean and covariance functions are chosen
by the statistician in a cycle of model building and model
checking.

The goal of this work is to lay out a suitable method
for learning the form of covariance function for Gaussian
processes in black-box optimization with focus on criteria
for evaluating candidate covariance functions. The main
hypothesis behind this paper is that a GP with a composite
form of its covariance function may result in a more ac-
curate approximation of the objective function and, con-
sequently, better performance of the model-assisted opti-
mization algorithm.

! An experimental comparison of selected surrogate-assisted variants
of the CMA-ES can be found in [3, 20].
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Related Work Learning a composite expression of kernel
functions for support vector machines by genetic program-
ming was explored in [7].

Hierarchical kernel learning [2] and Additive Gaussian
processes [6] are algorithms for determining kernels com-
posed of lower-dimensional kernels.

The goal of Automatic Statistician project [15] is auto-
matic statistical analysis of given data with output in nat-
ural language. The algorithm of structure discovery in GP
models [5] is a greedy search in the space of composite
covariance functions generated by operators of addition
and multiplication recursively applied to basis covariance
functions.

Up to our knowledge, structure discovery in GP surro-
gate models for continuous black-box optimization has not
yet been investigated. As a first step towards this goal,
we perform selection of the best GP model from a model
population that we tried to design large enough to cap-
ture structure of typical continuous black-box function but
still small enough for model selection to be computation-
aly feasible.

The paper is organized as follows. Section 2 presents
ideas behind surrogate models in evolutionary optimiza-
tion and aDTS-CMA-ES algorithm. Section 3 describes
inference and learning in Gaussian process regression
models. Section 4 presents the algorithm for selecting the
best GP surrogate model. First results from an early stage
of experimental evaluation are presented in Section 5. Sec-
tion 6 concludes the paper.

2 Surrogate-Assisted Evolutionary
Optimization

Evolutionary strategies are stochastic search algorithms
based on maintaining a population of candidate solutions,
usually encoded as real vectors. In each iteration (gen-
eration), a population of A offsprings is generated from a
population of u parents by operators of recombination and
mutation. The new population of parents is selected either
from the union of offsprings and parents (plus selection),
or, provided that u < A, from the offsprings exclusively
(comma selection).

2.1 CMA-ES

Mutation in evolutionary strategies is usually implemented
by sampling from a Gaussian distribution, parameters of
which play a crucial role in algorithms’ convergence. The
main idea behind the CMA-ES is self-adaptation of muta-
tion parameters, especially of the covariance matrix. The
CMA-ES repeatedly samples from .4 (m,c>C) and up-
dates parameters 6 (overall step-size), m (the mean) and
C (the covariance matrix) so that likelihood of successful
mutation steps increases under new parametrization.

Algorithm 1 aDTS-CMA-ES

Input: A (population-size), Yrarge: (target value),

f (original fitness function), o (ratio of original-

evaluated points), 4 (uncertainty criterion)

o,m,C <~ CMA-ES initialize

o 0 {archive initialization}

while stopping conditions not met do
{xk}f=1 ~N (m, GZC) {CMA-ES sampling}
f.1 < trainModel(«7,6,m,C) {model training}
§,8%) « fa1([X1,...,x3])  {model evaluation}
Xorig<—select [otA] best points accord. to %(§,s?)
Yorig < f(Xorig) {original fitness evaluation}
o = o U{(Xorig, Yorig) } {archive update}
foa < trainModel(«7,6,m,C) {model retrain}
v faa([x1,--,%]) (2" model prediction)}
(y)i Yorig,i for all original-evaluated yorig i € Yorig
a < selfAdaptation(y, ¥)

14:  o,m,C < CMA-ES update

15: end while

16: Xpes < Xy from o7 where y; is minimal

Output: X (point with minimal y)

R A A TR o

_ =

2.2 aDTS-CMA-ES

The aDTS-CMA-ES [3, 19,21], utilizes a GP surrogate
model to estimate the fitness of a fraction of the popula-
tion. A pseudocode is given in Algorithm 1. The algo-
rithm expects an uncertainty criterion & for choosing so-
lutions for re-evaluation. In optimization based on Gaus-
sian processes, such criteria are conveniently defined on
the marginal GP posterior, which is a univariate Gaus-
sian distribution. One of the most prominent uncertainty
criteria is the probability of improvement, %por(x;7) =
Pr(f(x) <T),i.e., the posterior probability that the func-
tion value at a candidate solution x improves on a chosen
target T, typically set to the historically best fitness value.

The sampling in aDTS-CMA-ES is identical to that of
CMA-ES. The surrogate model is trained twice per gener-
ation. The first model is trained on a data set, which natu-
rally cannot contain any individuals from the current pop-
ulation. A fraction o of the population is selected accord-
ing to %, evaluated with the (expensive) fitness function
and included into the archive of individuals with known
fitness values. The model is retrained and used to predict
the remainder of the population. The fraction ¢ is adapted
according to surrogate model performance.

3 Gaussian Processes

Let Z be some input space of dimensionality D. Gaus-
sian process with a mean function : 2~ — R and a co-
variance function k: 2" x 2" — R, is a collection of ran-
dom variables (f(xX))yc4 such that every finite-variate
marginal (f(x;))Y., follows a multivariate Gaussian distri-
bution .4 (u(X),K (X, X)), where u(X) = (u(x;))Y_, and
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K(X,X) = (k(xhxj))f.vj:l. Both u and k are parameter-
ized, but we omit their parameters for the sake of readabil-
ity.

3.1 Inference

Let y = {yi1,...,yn} be N i.i.d. observations at inputs
X = {xi,...,Xxn}. A model with Gaussian likelihood and
GP prior is given by distributions y |f ~ .4 (f,62Iy) and
f|X ~ A (u(X),K(X,X)). From now on, we assume [l =
0. Deterministic non-zero mean functions can be used by
simply substracting from y (see [22] for more on this). Let
us denote by 0 the vector of hyperparameters consisting
of parameters of k and noise variance c.-.

The marginal likelihood of hyperparameters 6 is (see
[22])

p¥IX,0) = [ p(yIX.£.00p(F10)df (D
:(p(Y|07K(X7X)+GrJN)7 2

where ¢ denotes the normalized multivariate Gaussian
density.

In the regression problem, we are interested in condi-
tional distribution f, |y, X, X, 0 for X, a set of N, test in-
puts. Since [y’ f7]7 | X, X., 6 follows a multivariate Gaus-
sian distribution, the distribution of f, |y, X, X,, 0 is also a
multivariate Gaussian, in particular

f. ~ .4 (f.,cov(f,)), where 3)

f. = K(X.,X)[K(X,X)+02Iy] 'y )
cov(f,) = K(Xi, Xs)—

KX, X)[K(X,X)+o,dy] 'K(X,X.) (5)

3.2 Hierarchical Model

When the covariance function family is given, model
selection for GP regression is usually performed
by maximum marginal likelihood estimate Gy =
argmaxg log p(y|X,0), which is a non-convex optimiza-
tion problem. Computation of log marginal likelihood
takes &(N?) time due to a Cholesky decomposition of co-
variance matrix K(X,X).

From a Bayesian perspective, especially if the number
of hyperparameters is large or if NV is small, it might be
more appropriate to do inference with the marginal poste-
rior distribution of hyperparameters

p(y|X,0)p(6)
plylx) '

where p(y|X, 0) is the marginal likelihood (1), now play-
ing the role of the likelihood, and p(6) is a hyper-prior.
Simulations from p(6|X,y) can be obtained by Bayesian
computation methods, such as Markov chain Monte Carlo.

Uncertainty criteria in Algorithm 1 can thus incorpo-
rate uncertainty of hyperparameter estimation in addition

p(0]X,y) = (6)

to uncertainty about functions. In the current stage of re-
search, we compute the prediction conditioned on a Bayes
estimate Opayes = median({6;,s =1,...,S}), i.e., the me-
dian of the posterior sample.

4 Model Selection

If the probability of the true fitness function under GP
prior is low, the performance of the model will be poor.
For example, a GP with a neural network covariance fits
data from a jump function better compared to a GP with a
squared exponential [22] (more on covariance functions in
Subsection 4.1). Searching over GP models with different
covariances thus can be viewed as an automated construc-
tion of suitable priors. We select the model from a finite set
according to a criterion of predictive performance, since
this approach can easily be embedded into a combinatorial
search algorithm, such as in [5]. GPs can represent ran-
dom functions. The finite population of models included
in our approach is described in Subsection 4.1. Some im-
portant classes of functions, such as linear and quadratic
functions, neural networks and additive functions, are rep-
resented.

4.1 Model Population

The set of candidate GP models is shown in Figure 1. All
models have zero mean.

A covariance function k(x,x’) is stationary if it is a
function of a distance ||x —x/||. The squared exponential
(SE) [22] is a stationary covariance function that leads to
smooth processes [22].

A neural network (NN) covariance is a covariance of a
GP induced by a Gaussian prior on weights of an infinitely
wide neural network [18].

A dot product with a bias constant term models linear
functions. The quadratic covariance is such a linear covari-
ance squared. GPs with these covariances lead to Bayesian
variants of linear and quadratic regression, respectively.

Additive covariance functions [6] are sums of lower di-
mensional components. We include an additive covariance
function with a single degree of interaction — a superposi-
tion of one-dimensional squared exponentials.

Finally, we consider two cases of composite covariance
functions: a sum of a squared exponential and a neural net-
work; and a sum of a squared exponential and a quadratic.

4.2 Performance Criteria

We would like to select the surrogate model based on an
estimation of out-of-sample predictive accuracy.

An attractive estimate of the out-of-sample predictive
accuracy is cross-validation based on some partitioning of
the data set into multiple data sets called folds. However,
choosing among multiple GP models by cross-validation
in each generation of the evolutionary optimization can
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Figure 1: Rows: Used covariance functions. Columns 1-2: The covariance function on R centered at point 2 (Col. 1) and
three independent samples from the GP (Col. 2). Columns 3-5: The covariance function on R? centered at [2 Z]T (Col. 3)
and two independent samples from the GP (Col. 4 and 5).
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be considered prohibitive from the computational perspec-
tive.

In the remainder of this subsection we follow the ex-
position of model comparison from Bayesian perspective
given in [8]. We denote by ¢ the true distribution from
which data y are sampled and we suppress conditioning
on X for simplicity.

A general measure of fit of a probabilistic model
y to data is the log likelihood or log predictive
density logp(y|0) = log[TY, p(yi|8). The quantity
—2log p(y|0) is called deviance.

Akaike information criterion (AIC) [1] and related
Bayes information criterion (BIC) [23] are based on the
expected log predictive density conditioned on a maxi-
mum likelihood estimate éML,

elpdy = E,(log p(¥|6yL)), (7

where the expectation is taken over all possible data sets
y. Since expectation (7) cannot be computed exactly, it is
estimated from sample y. The AIC and BIC compensate
for the bias towards overfitting by substracting a correction
term, the number of parameters ng and %ng log N, respec-
tively.

For hierarchical Bayesian models, such as (6), it is not
always entirely clear, what the parameters of the model
are, since the likelihood can factorize in different ways.
The deviance information criterion (DIC) [24] is still
based on deviance, conditioned on a Bayes estimate éBayeS,
but the effective number of parameters ppic depends on
data. We define the DIC for the marginal likelihood (1), fo-
cusing on hyperparameters 6, although it could be defined
for the likelihood p(y| f, ), focusing on both f and 6.

We use the following definition of the effective number
of parameters (see [8]):

ppic = 2varpes(logp(y|0)),

which can be estimated by the sample variance of a poste-
rior sample. Using the effective number of parameters, the
DIC is

DIC = —210gp(y ‘ éBayes) +2ppic.

A probabilistic model is called regular if its parame-
ters are identifiable and its Fisher information matrix is
positive definite for all parameter values. The model is
called singular otherwise. The information criteria defined
above assume regularity. The Widely applicable informa-
tion (WAIC) [26] works also for singular models. The
WAIC is based on estimation of the expected log point-
wise predictive density

elppd = Z E,(1og ppost(F))
=1

N

= Y. Eyllog [ p(iily.0)p(6y)de

i=1

The estimation of elppd from the sample is biased, so
again, an effective number of parameters must be added as
a correction. We use the following definition of the WAIC
(see [8]):

WAIC = Z 10g Ppost (i) Z varpost(log p(yi | 6)),

i=1 i=1

that is the negative log pointwise predictive density cor-
rected for bias by pointwise posterior variance of log pre-
dictive density.

The pointwise predictive density ppost(yi|y,0) for the
GP model (1) is computed by integrating Gaussian likeli-
hood over the marginal posterior GP at i training point:

= [ pOi1.£.0)p(fi]y.0)df
= (p(yi‘fivcn +var(f;)),

yl|Y7

where ¢ denotes the Gaussian density and fi,var( fi) are
as in (3).

5 Experimental Evaluation

In this section, we describe preliminary experimental eval-
uation procedure of aDTS-CMA-ES that uses a GP model
with an automated selection of covariance function. Since
GPs are a nonparametric model, we opt for the WAIC,
which require a sample from distribution (6). We use
Metropolis-Hastings MCMC with an adaptive proposal
distribution [9] 2.
Algorithm 1 is updated in the following way: 3

1. In steps (5) and (10), all GPs from Figure 1 are
trained.

2. The predictive accuracy of all models is evaluated us-
ing the WAIC (4.2). The DIC (4.2) is also computed
for information, but not taken into account.

3. The model with the lowest WAIC is used for predic-
tion (steps (6) and (11)).

The hyper-priors are chosen as follows: log-normal
with mean log(0.01) and variance 2 for 67; and log-ty—4
with mean O for all other hyperpameters.

5.1 Setup

The proposed algorithm implemented in MATLARB is eval-
uated on the noiseless testbed of the COCO/BBOB (Com-
paring Continuous Optimizers / Black-Box Optimization
Benchmarking) framework [11,12] and compared with the
GP-based aDTS-CMA-ES and the CMA-ES itself.

2Using MATLAB implementation available at http://helios.
fmi.fi/~lainema/dram/

3The sources are available at https://github.com/repjak/
surrogate-cmaes/tree/modelsel
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The testbed consists of 24 functions, each defined ev-
erywhere on R? with the optimum in [—5,5]? for all di-
mensionalities D > 2. Each test function has multiple in-
stances which are derived by various transformations of
input space or f-space. We run the algorithm on 5 in-
stances (1 ...,5) as opposed to 15 recommended instances
for the reason of increased computational demands of the
modified algorithm. For the same reason, only functions
of 10 variables (10D) are considered.

If not stated otherwise, all settings of the aDTS-CMA-
ES are as recommended in [3].

The CMA-ES results in BBOB format were down-
loaded from the BBOB 2010 workshop archive *.

5.2 Results

Figure 2 gives the scaled best-achieved logarithms Ai,og
of median distances to the functions optimum for the re-
spective number of function evaluations per dimension
(FE/D). Medians and the 1% and 3" quartiles are calcu-
lated from 5 independent instances in case of the algorithm
with covariance selection according to the WAIC and from
15 independent instances otherwise. We observe that in
most cases, the WAIC-based algorithm mostly barely out-
performs the pure CMA-ES, which suggests the chosen
model is generally weak and the adaptivity mechanism ba-
sically turns off using the surrogate model. The functions
where the WAIC variant outperforms the aDTS-CMA-ES
(f21 and f22) are multi-modal and the interquartile range
is large.

In order to compare the considered information crite-
ria, we calculate the rank of each model under both WAIC
and DIC. Table 1 summarizes the average ranks over all
model selections performed on each benchmark function.
We observe that the DIC often prefers the additive model,
while the WAIC is more balanced in this respect. Surpris-
ingly the linear kernel has been very rarely selected even
on the linear function (f5) under both information criteria.
A similar observation holds for the quadratic kernel and
the quadratic functions (f1, f2).

6 Conclusion & Further Work

In this paper, we presented an algorithm for selecting a
GP kernel using Bayesian model comparison techniques.
Preliminary experiments for the model selection plugged
into the aDTS-CMA-ES algorithm were conducted on the
COCO/BBORB testbed. Due to the small number of exper-
iments performed so far, it is difficult to draw any serious
conclusions. The first obtained results may indicate im-
proper convergence of the MCMC sampler or that more
sophisticated covariance functions may be needed.

One direction of future research, beside analyzing and
repairing aforementioned deficiencies, is an extension of

“nttp://coco.gforge.inria.fr/data-archive/bbob/
2010/

the proposed algorithm into a combinatorial search over
kernels in flavor of [5,7], which is challenging due to com-
putational costs related to the need of repeated surrogate
model retraining.

One possible direction of research is a co-evolution of
a population of covariance functions alongside the pop-
ulation of candidate solutions to the black-box objective
function. Other related research area is applying surrogate
modeling to high-dimensional problems using algorithms
for variable selection via multiple kernel learning [2, 6].
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Figure 2: Medians (solid) and 1/3™ quartiles (dotted) of the distances to the optima of 24 COCO/BBOB benchmarks
in 10D for algorithms aDTS-CMA-ES (green), aDTS-CMA-ES with WAIC-based model selection (red) and CMA-ES
(blue). The medians and quartiles for WAIC variant were calculated from 5 independent instances. In all other cases, 15
indepenent instances were used. Distances to optima are shown in the log,, scale.
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Table 1: Average model ranks in 10D for each predictive performance criterion. The lowest value in bold.

Criterion WAIC DIC

Model SE NN LIN QUAD ADD SE+NN SE+LIN SE NN LIN QUAD ADD SE+NN SE+LIN
f1 3.64 401 694 4.17 2.73 3.25 327 557 4.68 6.65 3.11 1.55 4.07 2.37
2 3.07 3.05 6.96 5.41 4.35 248 267 538 485 6.78 3.99 1.45 3.71 1.84
3 294 320 6.5 5.99 4.14 2.45 253 437 463 674 5.40 1.40 3.11 2.36
f4 3.00 320 6.87 5.73 4.11 2.52 257 449 467 6.76 5.21 1.30 3.27 2.30
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