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Abstract: Many real-world problems belong to the area
of continuous black-box optimization, where evolutionary
optimizers have become very popular inspite of the fact
that such optimizers require a great amount of real-world
fitness function evaluations, which can be very expensive
or time-consuming. Hence, regression surrogate models
are often utilized to evaluate some points instead of the fit-
ness function. The Doubly Trained Surrogate Covariance
Matrix Adaptation Evolution Strategy (DTS-CMA-ES) is
a surrogate-assisted version of the state-of-the-art contin-
uous black-box optimizer CMA-ES using Gausssian pro-
cesses as a surrogate model to predict the whole distribu-
tion of the fitness function. In this paper, the DTS-CMA-
ES is studied in connection with the boosted regression
forest, another regression model capable to estimate the
distribution. Results of testing regression forest and Gaus-
sian processes, the former in 20 different settings, as a sur-
rogate models in the DTS-CMA-ES on the set of noiseless
benchmarks are reported.

1 Introduction

Real-world problems can be very costly in terms of various
resources, most often money and time. An important kind
of such problems are optimization tasks in which the ob-
jective function cannot be expressed mathematically, but
has to be evaluated empirically, through measurements,
experiments, or simulations. Such optimization tasks are
called black-box. Evolutionary algorithms have become
very successful in this optimization field. In case of lim-
ited resources, the number of empirical evaluations neces-
sary to achieve the target distance to the optimal value by
the optimization algorithm should be as small as possible.

Nowadays, the Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) [12] is considered to be the state-
of-the-art algorithm for continuous black-box optimiza-
tion. On the other hand, the CMA-ES can require many
function evaluations to achieve the target distance from
the optimum in problems where the fitness function is ex-
pensive. Therefore, several surrogate-assisted versions of
the CMA-ES have been presented during the last decade
(an overview can be found in [2, 20]). Such CMA-ES

based algorithms save expensive evaluations through uti-
lization of a regression surrogate model instead of the orig-
inal function on a selected part of the current population.

The local meta-model CMA-ES (lmm-CMA-ES) was
proposed in [16] and later improved in [1]. The algorithm
constructs local quadratic surrogate models and controls
changes in population ranking after each evaluation of the
original fitness.

In [18], the Doubly Trained Surrogate CMA-ES (DTS-
CMA-ES) was presented. It utilizes the ability of Gaus-
sian Processes (GPs) [21] to estimate the whole distribu-
tion of fitness function values to select most promising
points to be evaluated by the original fitness. The DTS-
CMA-ES was also tested [19] in a version where metric
GPs were replaced by ordinal GPs inspired by the fact that
the CMA-ES is invariant with respect to order preserving
transformations. However, up to our knowledge, there has
been no research into combining the DTS-CMA-ES with
the surrogate model capable to predict the whole proba-
bility distribution of fitness values, where the model was
not based on GPs. The ensembles of regression trees [4]
are also able to estimate the whole distribution of values.
They have been already utilized as surrogate models for
the CMA-ES in [3] using different evolution control strat-
egy than the DTS-CMA-ES.

In this paper, we use ensembles of regression trees as
surrogate models in the DTS-CMA-ES algorithm. Due to
an increasing popularity of gradient boosting [10], we train
the ensembles of regression trees, i. e., regression forests
(RFs), using such strategy. Up to our knowledge, this is
the first time the boosted RF regression is utilized for sur-
rogate modeling in the DTS-CMA-ES context. Therefore,
we investigate also the suitability of several different set-
tings of the employed regression method to this end. We
experimentaly compare the original DTS-CMA-ES with a
new version using RFs together with the original CMA-
ES on the noiseless part of the Comparing-Continuous-
Optimizers (COCO) platform [13, 14] in the expensive set-
tings with the limited budget of fitness evaluations.

The rest of the paper is organized as follows. Section
2 describes the DTS-CMA-ES algorithm. Section 3 gives
a short introduction into gradient boosting and regression
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Algorithm 1 DTS-CMA-ES [18]
Input: λ (population-size), ytarget (target value),

f (original fitness function), norig (number of original-
evaluated points), C (uncertainty criterion)

1: σ ,m,C←CMA-ES initialize
2: A←∅ {archive initialization}
3: while min{y ∣(x,y) ∈A} > ytarget do
4: {xk}λ

k=1 ∼N (m,σ2C) {CMA-ES sampling}
5: fM1← trainModel(A,σ ,m,C) {model training}
6: (ŷ,s2)← fM1([x1, . . . ,xλ ]) {model evaluation}
7: Xorig←select norig best points according to C(ŷ,s2)
8: yorig← f (Xorig) {original fitness evaluation}
9: A =A∪{(Xorig,yorig)} {archive update}

10: fM2← trainModel(A,σ ,m,C) {model retrain}
11: y← fM2([x1, . . . ,xλ ]) {2nd model prediction}
12: (y)k ← yorig,i for all original-evaluated yorig,i ∈ yorig
13: σ ,m,C← CMA-ES update (y,σ ,m,C)
14: end while
15: xres← xk from A where yk is minimal
Output: xres (point with minimal y)

tree algorithms. Section 4 contains experimental setup and
results. Section 5 concludes the paper and discusses future
research.

2 Doubly Trained Surrogate CMA-ES

The DTS-CMA-ES, introduced in [18], is a modification
of the CMA-ES, where the ability of GPs to estimate the
whole distribution of fitness function is utilized to select
the most promising points out of the sampled population.
The points selected using some uncertainty criterion C are
evaluated with the original fitness function f and included
into the set of points employed for the GP model retrain-
ing. The remaining points from the population are reeval-
uated using the retrained GP model. The core CMA-ES
parameters (σ , m, C, etc.) are computed according to the
original CMA-ES algorithm. The DTS-CMA-ES pseu-
docode is shown in Algorithm 1.

The only models capable to predict the whole fitness
distribution used so far in connection with the DTS-CMA-
ES were based on GPs.

3 Boosted regression forest

Regression forest [5] is an ensemble of regression decision
trees [4]. In the last decade, the gradient tree boosting [10]
has become very popular and successful technique for for-
est learning. Therefore, we will focus only on this method.

3.1 Gradient boosted regression trees

Let’s consider binary regression trees, where each obser-
vation x = (x1,x2, . . . ,xD) ∈ RD passes through a series of

binary split functions s associated with internal nodes and
arrives in the leaf node containing a real-valued constant
trained to be the prediction of an associated function value
y. A binary split function determines whether x proceeds
to its left or right child of the respective node.

The gradient boosted forest has to be trained in an addi-
tive manner. Let ŷ(t)i be the prediction of the i-th point of
the t-th tree. The t-th tree ft is obtained in the t-th itera-
tion of the boosting algorithm through optimization of the
following regularized objective function:

L(t) = N∑
i=1

l (yi, ŷ
(t−1)
i + ft(xi))+Ω( ft) , (1)

where Ω( f ) = γ Tf + 1
2

λ ∥w f ∥2
,

l is a differentiable convex loss function l ∶ R2 → R, Tf is
the number of leaves in a tree f , and w f are weights of
its individual leaves. The regularization term Ω is used to
control model complexity through penalization constants
γ ≥ 0 and λ ≥ 0.

The tree growing starts with one node (root) and a set
of all input data. Individual branches are then recursively
added according to the gain of split considering splitting
data SL+R into sets SL (left branch set) and SR (right
branch set). The gain can be derived using (1) as follows
(see [7] for details):

Lsplit = 1
2
[r(SL)+ r(SR)− r(SL+R)]− γ ,

r(S) = (∑y∈S g(y))2

∑y∈S h(y)+λ
, (2)

where g(y) = ∂ŷ(t−1) l(y, ŷ(t−1)) and h(y) =
∂ 2

ŷ(t−1) l(y, ŷ(t−1)) are the first and second order derivatives
of the loss function.

The tree growing is stopped when one of the user-
defined conditions is satisfied, e. g., the tree reaches the
maximum number of levels, or no node can be split with-
out dropping the number of points in any node under the
allowed minimum.

The overall boosted forest prediction is obtained
through averaging individual tree predictions, where each
leaf j in a t-th tree has weight

w(t)j = − ∑y∈S j
g(y)

∑y∈S j
h(y)+λ

, (3)

where S j is the set of all training inputs that end in the leaf
j. As a prevention of overfitting, the random subsampling
of input features or input points can be employed.

3.2 Split algorithms

The decision split function s can be found through numer-
ous algorithms developed since the original CART [4]. In
the following paragraphs, we survey some of them.
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Traditional CART [4] are based on searching axis-
parallel hyperplanes. To find the splitting hyperplane, the
value of each training point x = (x(1), . . . ,x(D)) in dimen-
sion x(d), d ∈ {1, . . . ,D} is considered as a threshold for
the dimension d defining the candidate hyperplane. The
full-search through all dimensions is done and the split-
ting hyperplane with the highest gain is selected.

In SECRET [9], the expectation-maximization algo-
rithm for Gaussian mixtures is utilized to find two clusters
and the regression task is transformed into classification
based on assignments of points to these clusters. Splitting
oblique hyperplane is provided through linear or quadratic
discriminant analysis.

Deterministic hill-climbing with effective randomiza-
tion is employed to find a most suitable linear hyperplane
in the algorithm OC1 [17]. Split-finding starts with a ran-
dom hyperplane or with a good axis-parallel hyperplane
found similarly to CART. Then the hyperplane’s direction
is deterministically perturbated in each axis to maximize
the split gain. Once no improvement is possible, a num-
ber of random jumps is performed as an attempt to escape
from local optima. In case of successful random jump,
deterministic perturbation is performed again.

In [15] (PAIR), the pairs of points are used to define a
projection for splitting the input space. For each pair of
points, a normal vector defining a direction is constructed.
The rest of training points is projected onto this vector
and the projected values are utilized as thresholds defin-
ing splitting hyperplanes orthogonal to constructed normal
vector. To reduce complexity, only the threshold halfway
between the defining pair can be considered.

A nonparametric function estimation method called
SUPPORT [6] is based on the analysis of residuals after
regression to find a split. At the beginning, polynomial
regression is performed on the training data. The points
under the curve (negative residuals) present the first class,
and the rest of points (positive or zero residuals) presents
the second class. Afterwards, distribution analysis is ap-
plied to find a split.

4 Experimental evaluation

In this section, we compare the performances of the DTS-
CMA-ES using the RFs as a surrogate model in several dif-
ferent settings to the original DTS-CMA-ES version, the
original CMA-ES, and the lmm-CMA-ES on the noiseless
part of the COCO platform [13, 14].

4.1 Experimental setup

The considered algorithms were compared on 24 noiseless
single-objective continuous benchmark functions from the
COCO testbed [13, 14] in dimensions D = 2,3,5, and 10
on 15 different instances per function. Each algorithm had
a budget of 250D function evaluations to reach the target

distance ∆ fT = 10−8 from the function optimum. The pa-
rameter settings of the tested algorithms are summarized
in the following paragraphs.

The original CMA-ES was employed in its IPOP-CMA-
ES version (Matlab code v. 3.61) with the following set-
tings: the number of restarts = 4, IncPopSize = 2, σstart = 8

3 ,
λ = 4+ ⌊3logD⌋. The remaining settings were left default.

The lmm-CMA-ES was utilized in its improved version
published in [1]. The results have been downloaded from
the COCO results data archive1 in its GECCO 2013 set-
tings.

The original DTS-CMA-ES was tested using the over-
all best settings from [2]: the probability of improve-
ment as the uncertainty criterion, the population size λ =
8+⌊6logD⌋, and the number of originally-evaluated points
norig = ⌈0.05λ ⌉.

Considering decision tree settings, the five splitting
methods from the following algoritms were employed:
CART [4], SECRET [9], OC1 [17], SUPPORT [6], and
PAIR [15]. Due to the different properties of individual
splitting methods, the number of Lsplit evaluations was
limited to 10D per node to restrict the algorithms which
test a great number of hyperplanes. For the same rea-
son, the number of tresholds generated by a projection of
points to a hyperplane was set to 10 quantile-based values
in CART, OC1, and to a median value in PAIR, and the
searching an initial axis-aligned hyperplane in OC1 was
limited to ⌈ 10D

3 ⌉ Lsplit evaluations.
The RFs as a surrogate model were tested using the

gradient boosting ensemble method. The maximum tree
depth was set to 8, in accordance with [7]. In addition, the
number of trees ntree, the number of points Nt bootstrapped
out of N archive points, and the number of randomly sub-
sampled dimensions used for training the individual tree
nD were sampled from the values in Table 1.

The DTS-CMA-ES in combination with RFs was tested
with the following settings: the probability of improve-
ment as the uncertainty criterion, the population size λ =
8+⌊6logD⌋, and the number of originally-evaluated points
norig with 4 different values ⌈0.05λ ⌉, ⌈0.1λ ⌉, ⌈0.2λ ⌉, and⌈0.4λ ⌉. The rest of DTS-CMA-ES parameters have been
taken identical to the overall best settings from [2].

4.2 Results

Result from experiments are presented in Figures 1–4 and
also in Table 2. The graphs in Figures 1–4 depict the
scaled best-achieved logarithms ∆log

f of median distances
∆med

f to the functions optimum for the respective number
of function evaluations per dimension (FE/D). Medians
∆med

f (and in Figure 1 also 1st and 3rd quartiles) are cal-
culated from 15 independent instances for each respective
algorithm, function, and dimension. The scaled logarithms
of ∆med

f are calculated as

1http://coco.gforge.inria.fr/data-archive/2013/

lmm-CMA-ES_auger_noiseless.tgz
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Table 1: Experimental settings of RF: norig – number of
originally-evaluated points , ntree – number of trees in RF,
Nt , nD – number of tree points and dimensions. Split meth-
ods and norig are selected using full-factorial design, ntree,
Nt , and nD are sampled.

parameter values

norig {⌈0.05λ ⌉, ⌈0.1λ ⌉, ⌈0.2λ ⌉, ⌈0.4λ ⌉}
split {CART, SECRET, OC1, SUPPORT, PAIR}

ntree {64,128,256,512,1024}
Nt ⌈{0.25,0.5,0.75,1} ⋅N⌉
nD ⌈{0.25,0.5,0.75,1} ⋅D⌉

∆log
f = log∆med

f −∆MIN
f

∆MAX
f −∆MIN

f
log10 (1/10−8)+ log10 10−8

where ∆MIN
f (∆MAX

f ) is the minimum (maximum) log∆med
f

found among all the compared algorithms for the particu-
lar function f and dimension D between 0 and 250 FE/D.
Such scaling enables the aggregation of ∆log

f graphs across
arbitrary number of functions and dimensions (see Fig-
ures 2, 3, and 4). The values are scaled to the [−8,0] in-
terval, where −8 corresponds to the minimal and 0 to the
maximal distance. This visualization was chosen due to
better ability to distinguish the differences in the conver-
gence of tested algorithms in comparison with the default
visualization used by the COCO platform.

We compare the statistical significance of differences
in algorithms’ performance on 24 COCO functions in 5D
for separately two evaluation budgets utilizing the Iman
and Davenport’s improvement of the Friedman test [8].
Let #FET be the smallest number of FE on which at least
one algorithm reached the target distance, i. e., satisfied
∆med

f ≤ ∆ fT , or #FET = 250D if no algorithm reached the
target within 250D evaluations. The algorithms are ranked
on each function with respect to ∆med

f at a given budget of
FE. The null hypothesis of equal performance of all algo-
rithms is rejected for the higher function evaluation budget
#FEs = #FET (p < 10−3), as well as for the lower budget
#FEs = #FET

3 (p < 10−3).
We test pairwise differences in performance utiliz-

ing the post-hoc test to the Friedman test [11] with the
Bergmann-Hommel correction controlling the family-wise
error. The numbers of functions at which one algorithm
achieved a higher rank than the other are enlisted in Ta-
ble 2. The table also contains the pairwise statistical sig-
nificances.

The graphs in Figures 2 and 3 summarize the perfor-
mance of five different split algorithms and four norig val-
ues from twenty different settings respectively. We found
that the convergence of DTS-CMA-ES is quite similar re-
gardless the split algorithm with slightly better results of
SECRET and SUPPORT – the algorithms utilizing classi-
fication methods to find the splitting hyperplane between

previously created clusters of training points. The results
also show that lower norig values provide better perfor-
mance in the initial phase of the optimization run and
higher values are more successful starting from the 100-
150 FE/D. Due to the presented results, the following
comparisons contain the performances of the DTS-CMA-
ES with norig = ⌈0.4λ ⌉ in combination with RF using SE-
CRET and SUPPORT as split algorithms.

As can be seen in Figures 1 and 4, the performance of
RFs is considerably worse than the performance of GPs
in combination with the DTS-CMA-ES and better than
the performance of the original CMA-ES. RF model pro-
vides faster convergence from approximitely 100 FE/D on
the regularly multimodal Rastrigin functions ( f3, f4, and
f15) where the RF apparently does not prevent the original
CMA-ES from exploiting the global structure of a func-
tion. The performance of RF-DTS-CMA-ES is noticably
lower especially on the elipsoid ( f1, f2, f7, and f10), Ras-
trigin ( f8, f9), and ill-condition functions ( f11−14), where
smooth models are much more convenient for regression.
On the other hand, RFs help the CMA-ES to convergence
especially on the multimodal functions f16−19, where the
performance of RF-DTS-CMA-ES is the best of all com-
pared algorithms.

5 Conclusions & Future work

In this paper, we have compared the RF model using gradi-
ent boosting as the ensemble method with the GP regres-
sion model, both used as surrogate models in the DTS-
CMA-ES algorithm. Different methods of space splitting
in regression trees were investigated.

The split algorithms SECRET and SUPPORT based on
the classification of the input points provide slightly bet-
ter performance as to the CMA-ES convergence than the
other algorithms tested. Moreover, the performance of
DTS-CMA-ES using RFs differs according to the num-
ber of originally-evaluated points: the lower their num-
ber, the sooner the algorithm converges, possibly to a lo-
cal optimum, which makes convergence to the global one
more difficult. We found that the RF model usually re-
duces the number of fitness evaluations required by the
CMA-ES, especially on multi-modal functions, where the
provided speed-up was the best among all compared al-
gorithms for a number of evaluations higher than approx-
imitely 110 FE/D.

A possible perspective for future research is to im-
prove RF models by implementing non-constant (linear,
quadratic) models to regression tree leaves, which could
make the RFs prediction more convenient for smooth func-
tions. Investigation of other split algorithms could also
bring interesting results. Another perspective for future re-
search is an automatical selection of the most convenient
surrogate model for the CMA-ES inside the algorithm it-
self.
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Figure 1: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 24 COCO benchmarks in 5D
for algorithms CMA-ES, DTS-CMA-ES, lmm-CMA-ES, and 2 RF settings of DTS-CMA-ES. Medians/quartiles were
calculated across 15 independent instances for each algorithm and are shown in the log10 scale.
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Figure 2: Scaled median distances ∆log
f of decision tree split algorithms averaged over all 24 COCO functions in 2D, 3D,

5D, and 10D for algorithms CART, SECRET, OC1, PAIR, and SUPPORT in combination with the DTS-CMA-ES and all
tested numbers of originally-evaluated points.
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Figure 3: Scaled median distances ∆log
f of the DTS-CMA-ES with RFs comparing different numbers of originally-

evaluated points averaged over all 24 COCO functions in 2D, 3D, 5D, and 10D for values ⌈0.05λ ⌉, ⌈0.1λ ⌉, ⌈0.2λ ⌉,
and ⌈0.4λ ⌉ summarized accross all tested splitting algorithms.
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Table 2: A pairwise comparison of the algorithms in 5D over the COCO for different evaluation budgets. The number
of wins of i-th algorithm against j-th algorithm over all benchmark functions is given in i-th row and j-th column. The
asterisk marks the row algorithm being significantly better than the column algorithm according to the Friedman post-hoc
test with the Bergmann-Hommel correction at family-wise significance level α = 0.05.

555DDD SECRET 0.4 DTS SUPPORT 0.4 DTS CMA-ES DTS-CMA-ES lmm-CMA-ES
#FEs⁄#FET

1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1

SECRET
0.4 DTS — — 11.5 11 23∗ 21∗ 8 6 5 8

SUPPORT
0.4 DTS 12.5 13 — — 24∗ 21∗ 7 7 7 8

CMA-ES 1 3 0 3 — — 3 4 1 3
DTS-
CMA-ES 16 18 17 17 21∗ 20∗ — — 14 14

lmm-
CMA-ES 19 16 17 16 23∗ 21∗ 10 10 — —
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Figure 4: Scaled median distances ∆log
f averaged over all 24 COCO functions in 2D, 3D, 5D, and 10D for algorithms

CMA-ES, DTS-CMA-ES, lmm-CMA-ES, and 2 RF settings of DTS-CMA-ES.
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