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Abstract: Due to many successful practical applications,
deep neural networks and convolutional networks have be-
come the state-of-art machine learning methods recently.
The choice of network architecture for the task at hand is
typically made by trial and error.

This work deals with an automatic data-dependent ar-
chitecture design. We propose an algorithm for optimiza-
tion of architecture of convolutional network based on
asynchronous evolution. The algorithm is inspired by and
designed directly for the Keras library which is one of the
most common implementations of deep neural networks.
The proposed algorithm is successfully tested on MNIST
and Fashion-MNIST data sets.

1 Introduction

Various architectures of deep neural networks (DNN) have
become the state-of-art methods in many fields of machine
learning in recent years. They have been applied to vari-
ous problems, including image recognition, speech recog-
nition, and natural language processing [7, 11].

Deep neural networks are feed-forward neural networks
with multiple hidden layers between the input and output
layer. The layers typically have different units depending
on the task at hand. Among the units, there are traditional
perceptrons, where each unit (neuron) realizes a nonlin-
ear function, such as the sigmoid function, or the rectified
linear unit (ReLU).

Convolutional networks (CNN) are family of DNN.
They typically have three types of layers – convolu-
tional layers, max-pooling layers, and dense (i.e. fully-
connected) layers. For the most common case of image
processing, convolutional layers perform convolution of
an input image to abstract high-level features. They are
defined by a set of learnable filters. Max-pooling layers
reduce the size of representation, their function is fixed
and they are not learnable. Dense layers are usually used
as the last layers of the network to perform the actual clas-
sification.

While the learning of weights (including filters) of the
CNN is done by algorithms based on the stochastic gradi-
ent descent, the choice of architecture, including a number
and sizes of layers, number and size of convolutional fil-
ters, size of pools in pooling-layers, and a type of activa-
tion function, is done manually by the user. However, the
choice of architecture has an important impact on the per-
formance of the CNN. Some kind of expertise is needed,

and usually a trial and error method is used in practice.
In this work we exploit a fully automatic design of

CNNs. We investigate the use of evolutionary algorithms
for evolution of a CNN architecture. There are not many
studies on evolution of CNN since such approach has
very high computational requirements. To keep the search
space as small as possible, we simplify our model focusing
on implementation of CNN in the Keras library [3] that is
a widely used tool for practical applications of DNNs and
CNNs.

The approach described in this paper extends our pre-
vious results for evolving DNNs limited to networks with
dense layers only [25, 24]. The proposed algorithm is eval-
uated on the MNIST and Fashion-MNIST data sets that are
both classification tasks of small gray-scale images.

The paper is organized as follows. Next Section reviews
related work. Section 3 describes the main ideas of our ap-
proach. Section 4 explains the main ideas of asynchronous
evolution. Section 5 summarises the results of our experi-
ments, and finally Section 6 brings conclusion.

2 Related Work

Neuroevolution represents an attempt to train a neural net-
work by means of evolutionary techniques [5]. In tradi-
tional neuroevolution, no gradient descent is usually in-
volved, and both architecture and weights of the network
undergo the evolutionary process. However, because of
large computational requirements the applications are lim-
ited to small networks.

There were quite many attempts on architecture opti-
mization via evolutionary process (e.g. [22, 1]) in previous
decades. Successful evolutionary techniques evolving the
structure of feed-forward and recurrent neural networks
include NEAT [20], HyperNEAT [19] and CoSyNE [6] al-
gorithms.

On the other hand, studies dealing with evolution of
deep neural networks and convolutional networks started
to emerge only very recently. The training of one DNN
usually requires hours or days of computing time, quite
often utilizing GPU processors for speedup. Naturally,
the evolutionary techniques requiring thousands of train-
ing trials were not considered a feasible choice. Never-
theless, there are several approaches to reduce the overall
complexity of neuroevolution for DNN. Still due to limited
computational resources, the studies usually focus only on
parts of network design.
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For example, in [14] CMA-ES is used to optimize hy-
perparameters of DNNs. In [10] the unsupervised convo-
lutional networks for vision-based reinforcement learning
are studied, the structure of CNN is held fixed, and only a
small recurrent controller is evolved. However, the recent
paper [17] presents a simple distributed evolutionary strat-
egy that is used to train relatively large recurrent network
with competitive results on reinforcement learning tasks.

In [16] automated method for optimizing deep learning
architectures through evolution is proposed, extending ex-
isting neuroevolution methods. Authors of [4] sketch a ge-
netic approach for evolving a deep autoencoder network
enhancing the sparsity of the synapses by means of spe-
cial operators. The paper [15] presents two versions of an
evolutionary and co-evolutionary algorithm for design of
DNN with various transfer functions. Finally, [21] pro-
poses genetic programming to evolve CNNs.

3 Our Approach

In our approach we use asynchronous evolution to search
for optimal architecture of CNN, while the weights are
learned by gradient based technique.

The main idea of our approach is to keep the search
space as small as possible, therefore the architecture spec-
ification is simplified. It directly follows the implementa-
tion of CNN in Keras library, where networks are defined
layer by layer. Layer is specified by its type – convolu-
tional, max-pooling, dense. Dense layers are defined by
a number of neurons, type of an activation function (all
neurons in one layer have the same type of their activation
function), and the type of regularization (such as dropout).
Convolutional layers are defined by number of filters, size
of the filter, and possibly the type of an activation function
and type of regularization. Max-pooling layers are defined
by the size of pool.

In this paper, we limit to networks that can be split into
two parts.The first part is a preprocessing part, it contains
only convolutional and max-pooling layers, and it is re-
sponsible for the preprocessing of the input and abstract-
ing high-level features. The second part is a classifier and
it consists of dense layers. Such architecture corresponds
to the original proposal of the LeNet architecture [12]
(Fig. 1).

3.1 Individuals

In order to apply genetic algorithm (GA) to the search for
an optimal CNN architecture, we have to be able to encode
the architecture by an individual of the GA.

Our proposal of encoding closely follows the CNN de-
scription and implementation in the Keras [3] model Se-
quential. The model implemented as Sequential is built
layer by layer, similarly the GA individual consists of
blocks representing individual layers.

I = (I1, I2),

I1 = ([type, params]1, . . . , [type, params]H1)

I2 = ([size,dropout,act]1, . . . , [size,dropout,act]H2)

where I1 and I2 are the convolutional and dense part, re-
spectively, H1, H2 is the number of layers in convolutional
and dense part, respectively. The blocks in convolutional
part encode type ∈ {convolutional,max− pooling}
type of layer and params other parameters of the layer
(for convolutional layer it is number of filters, size of fil-
ter, and activation function; for max-pooling layer it is
only size of pool). The blocks in dense part code dense
layers, so they consist of size the number of neurons,
drop the dropout rate (zero value represents no dropout),
act ∈ {relu,tanh,sigmoid,hardsigmoid,linear} ac-
tivation function.

3.2 Genetic Operators

To produce new individuals in genetic algorithm we use
recombination operators crossover and mutation.

Crossover The crossover operator combines two parent
individuals and produces two offspring individuals. It is
implemented as one-point crossover, where the crossing
point is determined at random, but on the border of a block
only. The two parts of the individual are crossed over sep-
arately, so if parents are I = (I1, I2) and J = (J1,J2) we run
crossover(I1,J1) and crossover(I2,J2).

Let the two parents be:

Ip1 = (Bp1
1 ,Bp1

2 , . . . ,Bp1
k )

Ip2 = (Bp2
1 ,Bp2

2 , . . . ,Bp2
l ),

then, the crossover produces offspring:

Io1 = (Bp1
1 , . . . ,Bp1

cp1,B
p2
cp2+1, . . . ,B

p2
l )

Io1 = (Bp2
1 , . . . ,Bp2

cp2,B
p1
cp1+1, . . . ,B

p1
k ),

where cp1 ∈ {1, . . . ,k−1} and cp2 ∈ {1, . . . , l−1}.
Thus, only the whole layers are interchanged between

individuals.

Mutation The mutation operator brings random changes
to an individual. Each time an individual is mutated, one
of the following mutation operators is randomly chosen
(each of mutation operators has its own probability):

• mutateLayer - introduces random changes to one ran-
domly selected layer.

• addLayer - one randomly generated block is inserted
at random position. If it is inserted to the first part of
the individual, its either convolutional layer or max-
pooling layer; otherwise it is dense layer.
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Figure 1: Convolutional neural network [12].

• delLayer - one randomly selected block is deleted.

When mutateLayer is performed, again one of the avail-
able operators is chosen. For dense layers they are:

• changeLayerSize - the number of neurons is changed.
The Gaussian mutation is used, the final number is
rounded (since size has to be an integer).

• changeDropOut - the dropout rate is changed using
the Gaussian mutation.

• changeActivation - the activation function is changed,
randomly chosen from the list of available activa-
tions.

For max-pooling layers:

• changePoolSize - the size of pooling is changed.

For convolutional layers:

• changeNumberOfFilters - the number of filters is
changed. The Gaussian mutation is used, the final
number is rounded.

• changeFilterSize - the size of the filter is changed.

• changeActivation - the activation function is changed,
randomly chosen from the list of available activa-
tions.

3.3 Fitness

Fitness function should reflect a quality of the network
represented by an individual. To assess the generalization
ability of the network represented by the individual we use
a crossvalidation error. The lower the crossvalidation er-
ror, the higher the fitness of the individual.

Classical k-fold crossvalidation is used, i.e. the training
set is split into k-folds and each time one fold is used for
testing and the rest for training. The mean loss function on
the testing set over k run is evaluated.

For the classification tasks, categorical crossentropy is
used as the loss function.

Figure 2: Master-slave parallel computational model.

3.4 Selection

As a parental selection operator, the tournament selection
is used in our algorithm. It works as follows, in each turn
of the tournament, k individuals are selected at random,
and the one with the highest fitness—in our case the one
with the lowest crossvalidation error—is selected.

4 Asynchronous Evolution

In classical genetic algorithm the individuals are evalu-
ated in generations. In each generation, new individuals
are produced based on operators selection, mutation, and
crossover, their fitness is evaluated and they replace the
old generation. The fitness evaluations are independent
and can be done in parallel.

There are many approaches to parallelization of ge-
netic algorithms. In general, there are three classes
of parallel GA approaches – single population master-
slave model, single population fine-grained, and multi-
population coarse grained model (see [2, 9] for more de-
tails).

In our work we use the master-slave parallelization
method (Fig. 2). It works with single population of indi-
viduals, and the evaluations of individuals are performed
in parallel – the master stores the population and the slaves
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evaluate the fitness. The algorithm itself is same as for se-
rial GA, each individual may compete and mate with any
other.

The fitness evaluation is parallelized so that a fraction of
the population is assigned to each of the processors. Com-
munication occurs only when a slave receives an individ-
ual to evaluate and when a slave returns a fitness value.

The algorithm is normally defined as synchronous, i.e.
the master waits for the slaves to receive the fitness values
for all the population and only then it proceeds to the next
generation. Such synchronous master-slave algorithm has
exactly the same properties as a simple sequential algo-
rithm.

However, the disadvantage of such synchronous parallel
approach is that in general, not all fitness evaluations re-
quire same time. In our particular case, some individuals
represent large networks and require long time to evaluate,
on the other hand there might be very small networks that
are evaluated much faster. At the end of each generation,
there are processors that are already finished and waiting
for the ones evaluating large networks.

As a solution to this problem we have chosen to use
asynchronous evolution [18]. In asynchronous evolution
there is no notion of generations, but as soon as there is a
free processor, a new individual is generated and send for
evaluation. Such approach may significantly improve the
usage of computationally resources. The scheme of the
algorithm is presented in Alg. 1.

One of the features of asynchronous approach is that it
is naturally biased towards solution with faster fitness eval-
uation. In our case we consider this feature to be an advan-
tage, because we are more interested in smaller networks
with shorter learning time. As our practical experiments in
the next section imply, this feature is not harmless, it seems
in fact not sufficient and maybe a further discrimination of
larger networks in fitness function can be beneficial.

The (synchronous and asynchronous) master-slave ap-
proach can be easily and efficiently implemented both on
shared-memory and distributed-memory parallel comput-
ers. On a shared-memory multiprocessor, the population is
stored in memory and each slave process can access the in-
dividuals assigned to itself. On a distributed-memory com-
puter, the master process is responsible for storing the pop-
ulation, sending the individuals to other processes (slaves),
collecting the results and producing new generation by ge-
netic operators.

5 Experiments

For our experiments we have chosen the well known
MNIST data set [13] and Fashion-MNIST data set [26].

Each data set contains 70 000 images of 28× 28 pixel.
60 000 are used for training, 10 000 for testing. In MNIST,
there are images of handwritten digits (see Fig. 3), while
in Fashion-MNIST are images of fashion objects (Fig. 4).

Our implementation of the proposed algorithm is avail-
able at [23].

Algorithm 1 Asynchronous EA
procedure ASYNCEA(MINPOPSIZE,POPSIZE)

P← /0
while |P|< minPopSize do

if not node available then
wait()

end if
while node available do

ind← RandomIndividual()
evaluate(ind)

end while
evaluatedInd← getEvaluatedIndividual()
P← P∪{evaluatedInd}

end while
ind← produceIndividual()
evaluate(ind)
while termination criterion not met do

evaluatedInd← getEvaluatedIndividual()
P← P∪{evaluatedInd}

if |P|> popSize then
discard the worst individual from P

end if
ind← produceIndividual()
evaluate(ind)

end while
end procedure

We have run the algorithm with population of 30 indi-
viduals on 10 processors for one week.

When the best individual is obtained, the correspond-
ing network is built and trained on the whole training set
and evaluated on the test set, which was also done for the
baseline model designed by human. For both models, the
RMSProp algorithm for 20 epochs was used.

The resulting classification accuracy on the test set is
listed in Tab. 1 and Tab. 4 for MNIST and Fashion-MNIST
data sets respectively. The obtained accuracies can be fur-
ther improved (especially in case of Fashion-MNIST) by
tuning the parameters of RMSProp (default setup was used
in our case). On both datasets the obtained evolved net-
work gives competitive results to the baseline model.

In Tab. 2 and Tab. 3, there are listings of baseline and
evolved architectures for MNIST and Fashion-MNIST, re-
spectively. The onv #32 stands for convolutinal layer
with 32 filters, dense #128 stands for dense layer with
128 neurons, and pool stands for max-pooling layer, etc.

On the MNIST data set, the evolved architecture has
even less number of weights than the baseline model.
However, on the Fashion-MNIST the evolution was not
so successful and the evolved architecture is quite bloated.
The architecture complexity is not reflected in the fitness
function directly, but the asynchronous evolution should
tend to prefer smaller networks.

We have also compared the synchronous parallelization
with asynchronous one in terms of time requirements. We
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Figure 3: Example of MNIST data set samples.

Figure 4: Example of Fashion-MNIST data set samples.

model avg std min max
baseline 98.97 0.07 98.84 99.13
evolved 99.25 0.09 99.10 99.37

Table 1: Test accuracies on the MNIST dataset.

Baseline network
conv #32 kernelsize=3 activation=relu
conv #32 kernelsize=3 activation=relu
pool poolsize=2
dense #128 dropout=0.5 activation=relu
Trainable params: 600,810

Evolved network
conv #22 kernelsize=2 activation=tanh
conv #31 kernelsize=5 activation=linear
pool poolsize=3
conv #33 kernelsize=5 activation=relu
dense #143 dropout=0.4 activation=relu
dense #42 dropout=0.0 activation=tanh
Trainable params: 431,659

Table 2: Baseline and evolved network for MNIST.
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Figure 5: The fitness function through evolution.

Baseline network
conv #32 kernelsize=3 activation=leakyRelu
pool poolsize=2
conv #64 kernelsize=3 activation=leakyRelu
pool poolsize=2
conv #128 kernelsize=3 activation=leakyRelu
pool poolsize=2
dense #128 dropout=0.3 activation=leakyRelu
Trainable params: 356,234

Evolved network
conv #46 kernelsize=3 activation=relu
conv #15 kernelsize=3 activation=relu
conv #36 kernelsize=4 activation=relu
conv #13 kernelsize=3 activation=relu
conv #36 kernelsize=3 activation=relu
pool poolsize=2
dense #235 dropout=0.4 activation=hard_sigmoid
dense #130 dropout=0.3 activation=tanh
Trainable params: 1,714,219

Table 3: Baseline and evolved network for Fashion-
MNIST.

model avg std min max
baseline 91.64 0.37 90.77 91.97
evolved 92.32 0.52 91.07 92.86

Table 4: Test accuracies on the Fashion-MNIST dataset.

have run both algorithms on 5 processors for 4 days with
population size 20. The asynchronous version made 140
fitness evaluations, while the synchronous version 100 fit-
ness evaluations. So the asynchronous version may bring
quite important time saving.

6 Conclusion

We have proposed an algorithm for automatic design of
convolutional networks based on asynchronous evolution.
The algorithm was tested in experiments on two image
classification tasks, the MNIST and Fashion-MNIST data
sets. The evolved networks were compared to baseline
models, and they achieved competitive results (in terms of
slightly better classification accuracies). We have shown
that it is possible to automatically find solutions compara-
ble to those designed by human expert.

The main limitation of the presented algorithm is its
time complexity. The possibility to trade human expert
knowledge for computational resources should be seen as
an advantage in several scenarios. Our main motivation is
to develop an autonomous system capable of creating ma-
chine learning models without human intervention. This
may be useful for the cases where no expert is available or
a new task without prior experience is encountered. Also,
in critical cases where even a small performance gain is
necessary, our approach has demonstrated its usability.
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One direction of our future work is to try to lower
the number of fitness evaluations using surrogate mod-
elling [8] or to investigate other types of parallel evolution-
ary algorithms (such as multi-deme GA [9]). We also plan
to tune automatically the learning algorithm, i.e. search
for other hyper-parameters, such as the type of learning
algorithm, learning rates, etc.
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