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Abstract: The recognition of emotional states in speech is
starting to play an increasingly important role. However,
it is a complicated process, which heavily relies on the
extraction and selection of utterance features related to the
emotional state of the speaker. In the reported research,
MPEG-7 low level audio descriptors[10] serve as features
for the recognition of emotional categories. To this end, a
methodology combining MPEG-7 with several important
kinds of classifiers is elaborated.

1 Introduction

The recognition of emotional states in speech is expected
to play an increasingly important role in applications such
as media retrieval systems, car management systems, call
center applications, personal assistants and the like. In
many languages it is common that the meaning of spoken
words changes depending on speakers emotions, and con-
sequently the emotional information is important in order
to understand the intended meaning. Emotional Speech
recognition is a complicated process. Its performance
heavily relies on the extraction and selection of features
related to the emotional state of the speaker in the audio
signal of an utterance. For most of them, the methodol-
ogy has already been implemented, and they have been ex-
perimentally tested and compared Berlin database of emo-
tional speech.

In the reported work in progress, we use MPEG-7 low
level audio descriptors[10] as features for the recogni-
tion of emotional categories. To this end, we elaborate a
methodology combining MPEG-7 with several important
kinds of classifiers. For most of them, the methodology
has already been implemented and tested with the publicly
available Berlin Database of Emotional Speech [1].

In the next section, the task of sentiment analysis from
utterances is briefly sketched. Section 3 recalls the nec-
essary background concerning MPEG-7 audio descriptors
and the considered classification methods. In Section 4,
the principles of the proposed approach are explained. Fi-
nally, Section 5 presents results of experimental testing
and comparison of the already implemented classifiers on
the publicly available Berlin database of emotional speech.

2 Sentiment Analysis from Utterances

Due to the importance of recognizing emotional states in
speech, research into sentiment analysis from utterances

has been emerging during recent years. We are aware of 3
publications reporting research with the same database of
emotional utterances as we used – the Berlin Database of
Emotional Speech, used in our research. Let us recall each
of them.

The research most similar to ours has been reported in
[12], where the authors also used MPEG-7 descriptors for
sentiment analysis from utterance. However, they used
only scalar MPEG-7 descriptors or scalars derived with
time-series descriptors using the software tools Sound
Description Toolbox [13] and MPEG-7 Audio Reference
Software Toolkit[2], whereas we are implementing also a
long-short-term memory network that will use directly the
time series. They also used only one classifer in their ex-
periments, a combination of a radial basis function net-
work and a support vector machine.

In [11], emotions are recognized using pitch and
prosody features, which are mostly in time domain. Also
in that paper, the experiments were performed, and the au-
thors used only one classifer, this time a support vector
machine (SVM).

The authors of [16] proposed a set of new 68 features,
such as some new based on harmonic frequencies or on
the Zipf distribution, for better speech emotion recogni-
tion. This set of features is used in a multi-stage classi-
fication. When performing the sentiment analysis of the
Berlin Database, the utterance classification to the con-
sidered emotional categories was preceded with a gender
classification of the speakers, and the gender of the speaker
was subsequently used as an additional feature for the clas-
sification of the utterances.

3 MPEG-7 Audio Descriptors

MPEG-7 is a standard for low-level description of audio
signals, describing a signal by means of the following
groups of descriptors[10]:

1. Basic: Audio Power (AP), Audio Waveform(AWF).
Temporally sampled scalar values for general use, ap-
plicable to all kinds of signals. The AP describes the
temporally-smoothed instantaneous power of sam-
ples in the frame,in other words it is a temporally
measure of signal content as a function of time and
offers a quick summary of a signal in conjunction
with other basic spectral descriptors. The AWF
describes audio waveform envelope (minimum and
maximum), typically for display purposes.
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2. Basic Spectral: Audio Spectrum Envelop (ASE),
Audio Spectrum Centroid (ASC), Audio Spectrum
Spread (ASS), Audio Spectrum Flatness (ASF).
All share a common basis, all deriving from the short
term audio signal spectrum (analysis of frequency
over time). They are all based on the ASE Descriptor,
which is a logarithmic-frequency spectrum. This de-
scriptor provides a compact description of the signal
spectral content and represents the similar approxi-
mation of logarithmic response of the human ear. The
ASE descriptor is an indicator as to whether the spec-
tral content of a signal is dominated by high or low
frequencies. The ASC Descriptor could be consid-
ered as an approximation of perceptual sharpness of
the signal. The ASS descriptor indicates whether the
signal content, as it is represented by the power spec-
trum, is concentrated around its centroid or spread
out over a wider range of the spectrum. This gives
a measure which allows the distinction of noise-like
sounds from tonal sounds. The ASF describes the
flatness properties of the spectrum of an audio signal
for each of a number of frequency bands.

3. Basic Signal Parameters: Audio Fundamental Fre-
quency (AFF) and Audio Harmonicity (AH).
The signal parameters constitute a simple paramet-
ric description of the audio signal. This group in-
cludes the computation of an estimate for the fun-
damental frequency (F0) of the audio signal. The
AFF descriptor provides estimates of the fundamen-
tal frequency in segments in which the audio signal
is assumed to be periodic. The AH represents the
harmonicity of a signal, allowing distinction between
sounds with a harmonic spectrum (e.g., musical tones
or voiced speech e.g., vowels), sounds with an inhar-
monic spectrum (e.g., bell-like sounds) and sounds
with a non-harmonic spectrum (e.g., noise, unvoiced
speech).

4. Temporal Timbral: Log Attack Time (LAT), Tempo-
ral Centroid (TC).
Timbre refers to features that allow one to distinguish
two sounds that are equal in pitch, loudness and sub-
jective duration. These descriptors are taking into
account several perceptual dimensions at the same
time in a complex way. Temporal Timbral descriptors
describe the signal power function over time. The
power function is estimated as a local mean square
value of the signal amplitude value within a running
window. The LAT descriptor characterizes the ”at-
tack” of a sound, the time it takes for the signal to
rise from silence to its maximum amplitude. This fea-
ture signifies the difference between a sudden and a
smooth sound. The TC descriptor computes a time-
based centroid as the time average over the energy
envelope of the signal.

5. Timbral Spectral descriptors: Harmonic Spec-

tral Centroid (HSC), Harmonic Spectral Deviation
(HSD), Harmonic Spectral Spread (HSS), Harmonic
Spectral Variation (HSV) and Spectral Centroid.
These are spectral features extracted in a linear-
frequency space. The HSC descriptor is defined
as the average, over the signal duration, of the
amplitude-weighted mean of the frequency of the
bins (the harmonic peaks of the spectrum) in the lin-
ear power spectrum. It is has a high correlation with
the perceptual feature of ”sharpness” of a sound. The
HSD descriptor measures the spectral deviation of the
harmonic peaks from the global envelope. The HSS
descriptor measures the amplitude-weighted standard
deviation (Root Mean Square) of the harmonic peaks
of the spectrum, normalized by the HSC. The HSV
descriptor is the normalized correlation between the
amplitude of the harmonic peaks between two subse-
quent time-slices of the signal.

6. Spectral Basis, which consists of Audio Spectrum
Basis (ASB) and Audio Spectrum Projection (ASP).

3.1 Tools for Working with MPEG-7 Descriptors

We utilized the Sound Description Toolbox [13] and
MPEG-7 Audio Analyzer - Low Level Descriptors Extrac-
tor [15] for our experiments. Both of them extract a num-
ber of MPEG-7 standard descriptors, both scalar ones and
time series. In addition, the SDT also calculates percep-
tual features such as Mel Frequency Cepstral Coefficients,
Specific Loudness and Sensation Coefficients. From this
descriptors calculate means, covariances, means of first-
order differences and covariances of first order differences.
The Total number of features provided by this toolbox is
187.

4 Employed Classification Methods

We have elaborated our approach to sentiment analysis
from utterances for six classification methods: k near-
est neighbors, support vector machines, multilayer per-
ceptrons, classification trees, random forests [7] and long
short-term memory (LSTM) network [5, 6, 8]. The first
five of them have already been implemented and tested (cf.
Section 5), the last and most advanced one is still being
implemented.

4.1 k Nearest Neighbours (kNN)

A very traditional way of classifying a new feature vector
x ∈X if a sequence of training data (x1,c1), . . . ,(xp,cp)
is available is the nearest neighbour method: take the x j
that is the closest to x among x1, . . . ,xp, and assign to x the
class assigned to x j, i.e., c j.

A straightforward generalization of the nearest neigh-
bour method is to take among x1, . . . ,xp not one, but k fea-
ture vectors x j j , . . . ,x jk closest to x. Then x is assigned the
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class c ∈C fulfilling

|{i,1≤ i≤ k|c ji = c}|= maxc′∈C|{i,1≤ i≤ k|c ji = c′}|.
(1)

This method is called, expectedly, k nearest neighbours, or
k-NN for short.

4.2 Support Vector Machines (SVM)

Support vector machines are classifiers into two classes.
This method attempts to derive from the training data
(x1,c1), . . . ,(xp,cp) the best possible generalization to un-
seen feature vectors.

If both classes, more precisely their intersections with
the set {x1, . . . ,xp} of training inputs, are in the space
of feature vectors linearly separable, the method con-
structs two parallel hyperplanes H+ = {x ∈ Rn|x>w +
b+ = 0},H− = {x∈Rn|x>w+b− = 0} such that the train-
ing data fulfil

ck =

{
1 if x>w+b+ ≥ 0,

-1 if x>w+b− ≤ 0,
k = 1, . . . , p, (2)

H+∩{x1, . . . ,xp} 6= /0,H−∩{x1, . . . ,xp} 6= /0. (3)

The hyperplanes H+ and H− alle called support hyper-
planes. Their common normal vector w and intercepts
b+,b− are obtained through solving the following con-
strained optimization task:

Maximize with respect to w,b+,b− the distance

d(H+,H−) =
b+−b−
‖w‖ (4)

on condition that the p inequalities (2) hold.

The distance (4) is commonly called margin. The
solution to this optimization task coincides with the
(w∗,b∗+,b

∗
−,α∗1 , . . . ,α

∗
p) of the Lagrange function

L(w,b+,b−,α1, . . . ,αp) = ‖w‖2 +
p

∑
k=1

αk(
,b+−b−

2
− ckx>k w)

(5)

where α1, . . . ,αp ≥ 0 are Lagrange coefficients
of the optimization task. Once the saddle point
(w∗,b∗+,b

∗
−,α∗1 , . . . ,α

∗
p) is found, the classifier is de-

fined by

φ(x) =

{
1 if ∑xk∈S α∗k ckx>xk +b∗ ≥ 0,
−1 if ∑xk∈S α∗k ckx>xk +b∗ < 0,

(6)

where b∗ = 1
2 (b
∗
++b∗−) and

S = {xk|α∗k > 0}. (7)

Due to the Karush-Kuhn-Tucker (KKT) conditions,

α∗k (
b∗+−b∗−

2
− ckx>k w∗) = 0,k = 1, . . . , p, (8)

all feature vectors from the set S lie on some of the su-
port hyperplanes (3). Therefore, they are called support
vectors. This name together with the observation that they
completely determine the classifier defined in (6) explains
why such a classifier is called support vector machine.

If the intersections of both classes with the training in-
puts are not linearly separable, a SVM is constructed sim-
ilarly, but instead of the set of possible fature vectors, now
the set of functions

κ(·,x) for all possible feature vectors x (9)

is considered, where κ is a kernel, i.e., a mapping on
pairs of feature vectors that is symmetric and such that for
any k ∈ N and any sequence of different feature vectors
x1, . . . ,xk, the matrix

Gκ(x1, . . . ,xk) =




κ(x1,x1) . . . κ(x1,xk)
. . . . . . . . . . . . . . . . . . . . . . .
κ(xk,x1) . . . κ(xk,xk)


 , (10)

which is called the Gramm matrix of x1, . . . ,xk, is positive
semidefinite, i.e.,

(∀y ∈ Rk) y>Gκ(x1, . . . ,xk)y≥ 0. (11)

The most commonly used kinds of kernels are the Gaus-
sian kernel with a parameter ς > 0,

(∀x,x′ ∈ Rn′) κ(x,x′) = exp
(
−1

ς
‖x− x′‖2

)
, (12)

and polynomial kernel with parameters d ∈ N and c≥ 0,

(∀x,x′ ∈ Rn′) κ(x,x′) = (x>x′+ c)d . (13)

It is known [14] that, due to the properties of kernels, if
the joint distribution of a sequence of different feature vec-
tors x1, . . . ,xk is continuous, then almost surely any proper
subset of the set of functions {κ(·,x1), . . . ,κ(·,xk)} is in
the space of all functions (9) linearly separable from its
complement.

However, the featre vectors x and xk can’t be simply re-
placed by the corresponding functions κ(·,x) and κ(·,xk)
in the definition (6) of a SVM classifier because a trans-
pose x> exists for a finite-dimensional vector, but not a for
an infinite-dimensional function. Fortunately, the trans-
pose occurs in (6) only as a part of the scalar product
x>xk. And a scalar product can be defined also on the
space of all functions (9). Namely, the properties of a
scalar product has the function that to the pair of func-
tions (κ(·,x),κ(·,x′) assigns the value κ(x,x′). Using this
scalar product in (6), we obtain the following definition of
a SVM classifier for linearly non-separable classes:

φ(x) =

{
1 if ∑xk∈S α∗k ckκ(x,xk)+b≥ 0,
−1 if ∑xk∈S α∗k ckκ(x,xk)+b≥ 0.

(14)
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4.3 Multilayer Perceptrons (MLP)

A multilayer percptron is a mapping φ of feature vectors
to classes with which a directed graph Gφ = (V ,E ) is as-
sociated. Due to the inspiration from biological neural net-
works, the vertices of Gφ are called neurons and its edges
are called connections. In addition, Gφ is required to have
a layered structure, which means that the set V of neu-
rons can be decomposed into L+ 1 mutually disjoint lay-
ers, V = V0∪V1∪·· ·∪VL,L≥ 2, such that

(∀(u,v) ∈ E ) u ∈ Vi, i = 0, . . . ,L−1 & v 6∈ Vi⇒ v ∈ Vi+1.
(15)

The layer I = V0 is called input layer of the MLP,
the layer O = VL its output layer and the layers H1 =
V1, . . . ,HL−1 = VL−1 its hidden layers.

The purpose of the graph Gφ associated with the map-
ping φ is to define a decomposition of φ into simple map-
pings assigned to hidden and output neurons and to con-
nections between neurons (input neurons normally only
accept the components of the input, and no mappings are
assigned to them). Inspired by biological terminology,
mappings assigned to neurons are called somatic, those
assigned to connections are called synaptic.

To each connection (u,v) ∈ E , the multiplication by a
weight w(u,v) is assigne as a synaptic mapping:

(∀ξ ∈ R) f(u,v)(ξ ) = w(u,v)ξ . (16)

To each hidden neuron v ∈Hi, the following somatic
mapping is assigned:

(∀ξ ∈ R| in(v)|) fv(ξ ) = ϕ( ∑
u∈in(v)

[ξ ]u +bv), (17)

where [ξ ]u for u ∈ in(v) denotes the component of ξ that
is the output of the synaptic mapping fu,v assigned to the
connection (u,v), in(v) = {u ∈ V |(u,v) ∈ E } is the in-
put set of v, and ϕ : R→ R is called activation function.
Though the activation functions, in applications typically
sigmoidal functions are used to this end, i.e., functions that
are non-decreasing, piecewise continuous, and such that

−∞ < lim
t→−∞

ϕ(t)< lim
t→∞

ϕ(t)< ∞. (18)

The activation functions most frequently encountered in
MLPs are:

• the logistic function,

(∀t ∈ R) ϕ(t) =
1

1+ e−t ; (19)

• the hyperbolic tangent,

ϕ(t) = tanh t =
et − e−t

et + e−t . (20)

To an output neuron v ∈ O , also a somatic mapping of the
kind (17) with the activation functions (19) or (20) can be
assigned. If it is the case, then the class c predicted for a
feature vector x is obtained as c = argmaxi(φ(x))i, where
(φ(x))i denotes the i-the component of φ(x). Alternatively
the activation function assigned to an output neuron can be
the step function, aka Heaviside function

ϕ(t) =

{
0 if t < 0,
1 if t ≥ 0.

(21)

In that case, the value (φ(x))c already directly indicates
whether x belongs to the class c.

4.4 Classification Trees (CT)

A classifier φ : X → C = {c1, . . . ,cm} is called binary
classification tree, if there is a binary tree Tφ = (Vφ ,Eφ )
with vertices Vφ and edges Eφ such that:
(i) Vφ = {v1, . . . ,vL, . . . ,v2L−1}, where L ≥ 2, v0 is the

root of Tφ , v1, . . . ,vL−1 are its forks and vL, . . . ,v2L−1
are its leaves.

(ii) If the children of a fork v∈ {v1, . . . ,vL−1} are vL ∈Vφ
(left child) and vR ∈Vφ (right child) and if v= vi,vL =
v j,vR = vk, then i < j < k.

(iii) To each fork v ∈ {v1, . . . ,vL−1}, a predicate ϕv of
some formal logic is assigned, evaluated on features
of the input vectors x ∈X .

(iv) To each leaf v ∈ {vL, . . . ,v2L−1}, a class cv ∈C is as-
signed.

(v) For each input x ∈X , the predicate ϕv1 assigned to
the root is evaluated.

(vi) If for a fork v ∈ {v1, . . . ,vL−1}, the predicate ϕv eval-
uates true, then φ(x) = cvL in case vL is already a leaf,
and the predicate ϕvL is evaluated in case vL is still a
fork.

(vii) If for a fork v∈ {v1, . . . ,vL−1}, the predicate ϕv eval-
uates false, then φ(x) = cvR in case vR is already a
leaf, and the predicate ϕvR is evaluated in case vR is
still a fork.

4.5 Random Forests (RF)

Random Forests are ensembles of classifiers in which the
individual members are classification trees. They are con-
structed by bagging, i.e., bootstrap aggregation of individ-
ual trees, which consists in training each member of the
ensemble with another set of training data, sampled ran-
domly with replacement from the original training pairs
(x1,c1), . . . ,(xp,cp). Typical sizes of random forests en-
countered in applications are dozens to thousands trees.
Subsequently, when new subjects are input to the forest,
each tree classifies them separately, according to the leaves
at which they end, and the final classification by the for-
est is obtained by means of an aggregation function. The
usual aggregation function of random forests is majority
voting, or some of its fuzzy generalizations.
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According to which kind of randomness is involved in
the costruction of the ensemble, two broad groups of ran-
dom forests can be differentiated:

1. Random forests grown in the full input space. Each
tree is trained using all considered input features.
Consequently, any feature has to be taken into ac-
count when looking for the split condition assigned
to an inner node of the tree. However, features actu-
ally occurring in the split conditions can be different
from tree to tree, as a consequence of the fact that
each tree is trained with another set of training data.
For the same reason, even if a particular feature oc-
curs in split conditions of two different trees, those
conditions can be assigned to nodes at different lev-
els of the tree.

A great advantage of this kind of random forests is
that each tree is trained using all the information
available in its set of training data. Its main disadvan-
tage is high computational complexity. In addition, if
several or even only one variable are very noisy, that
noise gets nonetheless incorporated into all trees in
the forest. Because of those disadvantages, random
forests are grown in the complete input space primar-
ily if its dimension is not high and no input feature is
substantially noisier than the remaining ones.

2. Random forests grown in subspaces of the input
space. Each tree is trained using only a randomly
chosen fraction of features, typically a small one.
This means that a tree t is actually trained with pro-
jections of the training data into a low-dimensional
space spanned by some randomly selected dimen-
sions it,1 ≤ ·· · ≤ it,dt ∈ {1, . . . ,d}, where d is the di-
mension of the input space, and dt is typically much
smaller than d. Using only a subset of features not
only makes forest training much faster, but also al-
lows to eliminate noise originating from only several
features. The price paid for both these advantages is
that training makes use of only a part of the informa-
tion available in the training data.

4.6 Long Short-Term Memory (LSTM)

An LSTM network is used for classification of sequences
of feature vectors, or equivalently, multidimensional time
series with discrete time. Alternatively, it can be also em-
ployed to obtain sequences of such classifications, i.e., in
situations when the neural network input is a sequence of
feature vectors and its output is a a sequence of classes.
Differently to most of other commonly encountered kinds
of artificial neural networks, an LSTM layer connects not
simple neurons, but units with their own inner structure.
Several variants of an LSTM have been proposed (e.g.,
[5, 6]), all of them include at least the following four kinds
of units described below. Each of them has certain prop-
erties of usual ANN neurons, in particular, the values as-

signed to them depend, apart from a bias, on values as-
signed to the unit input at the same time step and on val-
ues assigned to the unit output at the previous time step.
Hence, an LSTM network layers is a recurrent network.
(i) Memory cells can store values, aka cell states, for an

arbitray time. They have no activation function, thus
their output is actually a biased linear combination of
unit inputs and of the values from the previous time
step coming through recurrent connections.

(ii) Input gate controls the extent to which values from
the previous unit or from the preceding layer influ-
ence the value stored in the memory cell. It has a
sigmoidal activation function, which is applied to a
biased linear combination of unit inputs and of val-
ues from the previous time step, though the bias and
synaptic weights of the input and recurrent connec-
tions are specific and in general different from the
bias and synaptic weights of the memory cell.

(iii) Forget gate controls the extent to which the memory
cell state is supressed. It again has a sigmoidal acti-
vation function, which is applied to a specific biased
linear combination of unit inputs and of values from
the previous time step.

(iv) Output gate controls the extent to which the memory
cell state influences the unit output. Also this gate
has a sigmoidal activation function, which is applied
to a specific biased linear combination of unit inputs
and of values from the previous time step, and subse-
quently composed either directly with the cell state or
with its sigmoidal transformation, using another sig-
moid than is used by the gates.

5 Experimental Testing

5.1 Berlin Database of Emotional Speech

For the evaluation of already implemented classifiers, we
used the publicly available dataset ”EmoDB”, aka Berlin
database of emotional speech. It consists of 535 emotional
utterances in 7 emotional categories namely anger, bore-
dom, disgust, fear, happiness, sadness and neutral. These
utterances are sentences read by 10 professional actors, 5
males and 5 females [1], which were recorded in an ane-
choic chamber under supervision by linguists and psychol-
ogists) . The actors were advised to read these prede-
fined sentences in the targeted emotional categories, but
the sentences do not contain any emotional bias. A human
perception test was conducted with 20 persons, different
from the speakers, in order to evaluate the quality of the
recorded data with respect to recognisability and natural-
ness of presented emotion. This evaluation yielded a mean
accuracy 86% over all emotional categories.

5.2 Experimental Settings

As input features, the outputs from the Sound Description
Toolbox were used. Consequently, the input dimension
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was 187. The already implemented classifiers were com-
pared by means of a 10-fold cross-validation, using the
following settings for each of them:

• For the k nearest neighbors classification, the value
k = 9 was chosen by a grid method from 〈1,80〉. This
classifer was applied to data normalized to zero mean
and unit variance.

• Support vector machines are constructed for each of
the 7 considered emotions, to classify between that
emotion and all the remaining ones. They employ
auto-scaled Gaussian kernels and do not use slack
variables.

• The MLP has 1 hidden layer with 70 neurons. Hence,
taking into account the input dimension and the num-
ber of classes, the overall architecture of the MLP is
187-70-7.

• Classification trees are restricted to have at most 23
leaves. This upper limit was chosen by a grid method
from 〈1,50〉, taking into account the way how classi-
fication trees are grown in their Matlab implementa-
tion.

• Random forests consist of 50 classification trees,
each of them taking over the above restriction. The
number of trees was selected by a grid method from
10, 20,. . . ,100.

5.3 Comparison of Already Implemented Classifiers

First, we compared the already implemented classifiers on
the whole Berlin database of emotional speech, with re-
spect to accuracy and area under the ROC curve (area un-
der curve, AUC). Since a ROC curve makes sense only
for a binary classifier, we computed areas under 7 sepa-
rate curves corresponding to classifiers classifying always
1 emotion against the rest. The results are presented in Ta-
ble 1 and in Figure 1. They clearly show SVM as the most
promising classifier. It has the highest accuracy, and also
the AUC for binary classifiers corresponding to 5 of the 7
classifiers

Then we compared the classifiers separately on the
utterances of each of the 10 speakers who created the
database. The results are summarized in Table 2 for ac-
curacy and Table 3 for AUC averaged over all 7 emo-
tions. They indicate a great difference between most of
the compared classifiers. This is confirmed by the Fried-
man test of the hypotheses that all classifiers have equal
accuracy and equal average AUC. The Friedman test re-
jected both hypotheses with a high significance: With
the Holm correction for simultaneously tested hypothe-
ses [9], the achieved significance level (aka p-value) was
4 · 10−6. For both hypotheses, posthoc tests according to
[3, 4] were performed, testing equal accuracy and equal
average AUC between individual pairs of classifiers. For

Table 1: Accuracy and area under curve (AUC) of the im-
plemented classifiers on the whole Berlin database of emo-
tional speech. AUC is measured for binary classification
of each of the considered 7 emotions against the rest

Classifier Accuracy AUC emotion against the rest
Anger Boredom Disgust

kNN 0.73 0.956 0.933 0.901
SVM 0.93 0.979 0.973 0.966
MLP 0.78 0.977 0.969 0.964
DT 0.59 0.871 0.836 0.772
RF 0.71 0.962 0.949 0.920

Classifier AUC emotion against the rest
Fear Happiness Neutral Sadness

kNN 0.902 0.856 0.962 0.995
SVM 0.983 0.904 0.974 0.997
MLP 0.969 0.933 0.983 0.996
DT 0.782 0.683 0.855 0.865
RF 0.921 0.882 0.972 0.992

Table 2: Comparison between pairs of implemented clas-
sifiers with respect to accuracy, based on 10 independent
parts of the Berlin database of emotional speech corre-
sponding to 10 different speakers. The result in a cell of
the table indicates on how many parts the accuracy of the
row classifier was higher : on how many parts the accuracy
of the column classifier was higher. A result in bold indi-
cates that after the Friedman test rejected the hypothesis of
equal accuracy of all classifiers, the post-hoc test accord-
ing to [3, 4] rejects the hypothesis of equal accuracy of the
particular row and column classifiers. All simultaneously
tested hypotheses were corrected in accordance with Holm
[9]

classifier kNN SVM MLP DT RF
kNN 0:10 3.5:6.5 9:1 5:5
SVM 10:0 10:0 10:0 10:0
MLP 6.5:3.5 0:10 10:0 7:3
DT 1:9 0:10 0:10 0:10
RF 5:5 0:10 3:7 10:0

the family-wise significance level 5%, they reveal the fol-
lowing Holm-corrected significant differences between in-
dividual pairs of classifiers: both for accuracy and av-
eraged AUC: (SVM,DT), (MLP,DT), and in addition be-
tween (kNN,SVM), (SVM,RF) for accuracy.

6 Conclusion

The presented work in progress investigated the possibil-
ities to analyse emotions in utterances based on MPEG7
features. So far, we implemented only five classifica-
tion methods not using time series features, but only 187
scalar features, namely the k nearest neighbours classi-
fier, support vector machines, mutilayer perceptrons, de-
cision trees and random forests. The obtained results in-
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Table 3: Comparison between pairs of implemented classi-
fiers with respect to the AUC averaged over all 7 emotions,
based on 10 independent parts of the Berlin database of
emotional speech corresponding to 10 different speakers.
The result in a cell of the table indicates on how many parts
the AUC of the row classifier was higher : on how many
parts the AUC of the column classifier was higher. A result
in bold indicates that after the Friedman test rejected the
hypothesis of equal AUC of all classifiers, the post-hoc test
according to [3, 4] rejects the hypothesis of equal AUC of
the particular row and column classifiers. All simultane-
ously tested hypotheses were corrected in accordance with
Holm [9]

classifier kNN SVM MLP DT RF
kNN 2:8 0:10 10:0 4:6
SVM 8:2 5:5 10:0 9:1
MLP 10:0 5:5 10:0 9:1
DT 0:10 0:10 0:10 0:10
RF 6:4 1:9 1:9 10:0

dicate that especially support vector machines and multi-
layer perceptrons are quite successfull for this task. Statis-
tical testing confirms significant differences between these
two kinds of classifiers on the one hand, and decision trees
an random forests on the other hand.

The next step in this ongoing research is to implement
the long short-term memory neural network, recalled in
Subsection 4.6, because they can work not only with scalar
features but also with features represented with time series.
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98 Jiří Kožusznik, Petr Pulc, and Martin Holeňa



Figure 1: ROC curve for all emotions on the whole Berlin database
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