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Abstract. The Answer set programming (ASP) is a non-monotonic declarative
programming paradigm that is widely used for the formulation of problems in
artificial intelligence. The ASP paradigm provides also a general framework for
the resolution of decision and optimization problems. The idea behind ASP is to
represent a problem as a logic program and solve that problem by computing sta-
ble models. In our work, we propose a new method for searching stable models
of logical programs. This method is based on a relatively new semantic that had
not been exploited yet. This semantic captures and extends that one of the stable
models. The method performs a DPLL enumerative process only on a restricted
set of literals called the strong back-door (STB). This method has the advantage
to use a Horn clause representation having the same size as the input logic pro-
gram and has constant spatial complexity. It avoids the heaviness induced by the
loop management from which suffer most of the ASP solvers based on the Clark
completion.

1 Introduction

The ASP is increasingly used, and this is due to the availability of several efficient
ASP solvers like smodels [1], Clasp [2] and those based on SAT solvers like ASSAT
[3] and Cmodels [4]. The natural way to use ASP is to express a problem as a logic
program with default negation. To get a concise expression of the problem, the logic
program is expressed in First Order Logic (FOL). Grounders like gringo [5] and lparse
[6] are designed to compute an equivalent propositional logic program called the ground
program. ASP solvers search solutions for the original problem by computing models
of the ground logic program [7]. The resulting models are referred to as stable or answer
set models.

To give a signification for a logic program, several semantics were proposed. Since
the Clark completion [8], many other semantics such as the well-founded semantic [9],
the stable models [10, 11], the stable class [12] and the stratified default theory [13]
have been introduced. Other works established the relationship between the semantics
of logic programs and those of non-monotonic logics [14, 15]. All these semantics try
particularly to give a sense to the negation as failure (default negation) appearing in the
rules of the program.

We based our approach to compute stable models on the semantic introduced in
[16]. This semantics offers many advantages, among them the fact that logic programs
are represented by a set of Horn clauses that has the same size as the input propo-
sitional program. The Horn set representation allows to get a new resolution method



having good complexity proprieties. This representation offers several benefit exploited
in practice by our method. This semantic also extends the semantic of the stable models,
and allows an easy characterization of the stable models.

The proposed method avoids the heaviness that could be induced by the loop man-
agement performed in ASP solvers that are based on the Clark completion [8]. The
method is a boolean enumerative process adapted for the ASP paradigm according to
the used semantic and its features. It has the advantage to perform the enumerative pro-
cess only on a restriction of the set of literals called here the strong back-door (STB)
[17] of the logic program. This method computes the different extensions of the source
logic program from which we can generate all the stable models. In case no stable model
is found, our method could also generate extra-models that extend the stable models.

2 State-of-the-art

A logic program π is a set of rules of the form r:head(r) ← body(r). In general, the
rules are given in First Order Logic. Grounders are used to transform the initial logic
program into a ground (propositional logic) program Ground(π). In the following,
we write only π to mean Ground(π). There are different classes of logic programs.
They differ by the presence or the absence of the classical negation and the negation
as failure in the rules of the program. A rule in a logic program is of the form : r =
A0 ← A1, A2, ..., Am, notAm+1, ..., notAn, (0 ≤ m < n) where Ai∈{0...n} is an
atom and not the symbol expressing the negation as failure. The positive body of r is
body+(r) = {A1, A2, ..., Am} and the negative is body−(r) = {Am+1, ..., An}. The
intuitive meaning of the rule r is the following: A0 must be true if we prove all the
atoms of body+(r) and at the same time no atom of body−(r) had been proven.

The reduct of a program π with respect to a given set of atoms X is the positive
program πX obtained from π by deleting each rule containing an atom notAi in its
negative body such that Ai ∈ X and all the atoms notAj such that Aj 6∈ X in the neg-
ative bodies of the other rules. A set X of atoms is a stable model of π iff X is identical
to the minimal Herbrand model of the reduct πX obtained from π when considering the
set of atoms X . This model is also called the canonical model of πX , it is denoted by
Cn(πX). Formally, a setX of atoms is a stable model of π if and only ifX = Cn(πX).

In practice, several ASP solvers are also based on the Clark completion[8]. It is well
known that every stable model of π is a model of its completion but the converse apply
only if the program is tight [18] (without loops). In order to establish the equivalence
between the semantic of a logic program and its completion, loops formulas have to be
added to the completion [3]. But, the number of loop formulas that Clark based solvers
have to manage could be exponential in the size of the considered program and then
their processing will be impractical[19]. Consequently, the spatial complexity of ASP
solvers adopting this approach could vary exponentially in the worst case.

In our study, we use a Horn clausal representation having the same size as the
considered logical program. The proposed method operates on this Horn form with
a constant spatial complexity. Our method is based on the semantic introduced in [16].
This semantic consists in computing the extensions of the set of Horn clauses rep-
resenting the given logic program. Intuitively, for a given logic program, the method



computes its extensions by adding to the Horn clause representation maximal con-
sistent sets of literals (notAi) of the so called strong back-door set (STB). The sta-
ble models of the logic program could be deduced from some extensions that veri-
fying a simple discriminant condition [16]. The set STB is formed by the literals of
the form notAi that appear in the input logic program π. Formally, it is defined by
STB = {notAi : ∃r ∈ π,Ai ∈ body−(r)} ⊆ nV .

More precisely, the used semantic is based on a classical propositional language
L having two types of atoms : a subset of classical atoms V = {Ai : Ai ∈ L} and
an other subset nV = {notAi : notAi ∈ L}. For each atom Ai ∈ V , there is a
corresponding atom notAi ∈ nV designating the negation as failure of Ai. This se-
mantic provides a connection between these two types of atoms. This connection is
expressed by the addition to the propositional language L of an axiom expressing the
mutual exclusion between each literal Ai ∈ V and its corresponding negative literal
notAi ∈ nV . A logic program is expressed in the propositional language L by a
set of Horn clauses CR = {

⋃
r∈π

(A0 ∨ ¬A1∨, ...,¬Am ∨ ¬notAm+1, ...,¬notAn), 0 ≤

m < n} representing all the rules of the logic program to which we add the set of
mutual exclusion clauses ME = {(¬Ai ∨ ¬notAi) : Ai ∈ V }. The complete repre-
sentation of the logic program π in the propositional language L is given as follows:
L(π) = {

⋃
r∈π

(A0 ∨ ¬A1∨, ...,¬Am ∨ ¬notAm+1, ...,¬notAn)
⋃

Ai∈V
(¬Ai ∨ ¬notAi)}.

Given a program π and its strong back-door set STB. An extension of L(π) with
respect to the set STB (or simply an extension of the pair (L(π), STB)) is the set of
consistent clauses derived from L(π) when adding a maximal set of literals notAi ∈
STB. That is, if any other literal notAi ∈ STB is added to the extension, the resulting
set of clauses becomes inconsistent. Formally:

Definition 1 Let L(π) be the Horn CNF encoding of a logic program π, STB its strong back-
door and S′ ⊆ STB. The set E = L(π) ∪ S′ of clauses is then an extension of (L(π), STB) if
the following conditions hold:

1. E is consistent,
2. ∀notAi ∈ STB − S′, E ∪ {notAi} is inconsistent.

Example 1 Consider the logic program :

π =
{
a← c, not b b← a c← not d a←

}
The Horn clausal representation of the logic program π is formed by the set L(π) = CR ∪ME
whereCR = {a∨¬c∨¬not b, b∨¬a, c∨¬not d, a},ME = {¬a∨¬not a,¬b∨¬not b,¬c∨
¬not c,¬d ∨ ¬not d} and its strong back-door is STB = {not b, not d}. We can see that
(L(π), STB) admit one extension E = L(π)∪{not d}. Indeed, E is maximally consistent with
respect to the strong back-door set STB. That is, if for instance we add not b to the extension E,
the resulting set of clauses becomes inconsistent.

It is shown in [16] that each stable model of a logic program π is represented by an
extension E of its logic form L(π) satisfying the discriminant condition (∀Ai ∈ V,
E |= ¬notAi ⇒ E |= Ai). The extensions of L(π) that do not satisfy the discrimi-
nant condition do not correspond to any stable model. These are what we call extra-
extensions, they identify extra-models (or extended models) representing a kind of ex-
tension to the semantic of stable models [10]. That is, a program that has no stable



model could have extra-models. Since we have a Horn clause representation, the char-
acterization of the stable models and the verification of the discriminant condition are
done by unit resolution. The main theoretical results are given in [16] and recalled in
the following:

Theorem 1 If E is an extension of (L(π), STB), that verify the discriminant condi-
tion: ∀Ai ∈ V,E |= ¬notAi ⇒ E |= Ai, then X = {Ai : E |= Ai} is a stable model
of π.

Example 2 The extension E = L(π) ∪ {not d} found in Example 1 satisfies the discriminant
condition. The stable model M = {a, b, c} is deduced from E by unit resolution.

3 Description of the new method

We describe here the new search method for stable models that is based on the semantic
summarized previously [16]. For a given logic program π, this method computes all the
extensions of (L(π), STB) from which the stable models are deduced by unit resolu-
tion. Intuitively, the search of the extensions of (L(π), STB) is done by the progressive
addition of literals notAi of the STB to L(π) and checking the consistency of the ob-
tained set at each node. The representation of the ME set in L(π) could be omitted,
since it can be implemented like an inference rule without the need to memorize it. The
method that we propose takes then as input a Horn clause form L(π) having the same
size as the input program π. If we focus only on stable models, we just have to look
after the extensions verifying the discriminant condition. In other words, we make cuts
in the search tree to remove the extra-extensions which don’t verify that condition.

The enumeration process builds incrementally an extension by alternating in the
search tree between deterministic nodes corresponding to the unit propagations and
non deterministic nodes that are the choice points. The choice points are defined by the
affectation of truth values (true or false) to literals of the strong back-door set STB. In
the case of our method, the enumeration is done only on the subset of literals forming
the strong back-door STB = {notAi : ∃r ∈ π,Ai ∈ body−(r)}. The non-deterministic
treatment of a choice point corresponding to a strong back-door literal notAj is done
by first its assignment to the value true to favor the current extension maximality. The
exploration of the branch corresponding to the assignment of the truth value false to
notAj is necessary only when the first branch produced at least one sub-clause ci ∈
CSTB . CSTB = {ci = ¬notAi1∨, ...,∨¬notAik/ | ci |≥ 1,∀j ∈ {1..k}, notAij ∈ STB}
be the set of all possible negative clauses formed by some literals of the set STB and
which have at least one literal. This could avoid to the method to explore redundant and
pointless branches. Hence, this property lead to reduce the number of choice point in
the search tree. The proposed method is able to compute all the stable models of a given
logic program.

In the following, we give an overview on the new search algorithm for stable mod-
els. Its enumerative process explores a boolean tree search. It is similar to that one of
a DPLL [20], except that the procedure is adapted to the ASP framework and to the
used semantic [16]. We implemented a set of inferences rules to boost the method. The
pseudo-code of the general schema of the method is given in Algorithm 1. Throughout



the two alternate phases, the algorithm affect truth values to literals and develops a sim-
ilar tree search as the one of a DPLL procedure. If a conflict is encountered during the
search, then the algorithm explore the second branch corresponding to the second truth
value of the literal representing the current choice point only if a clause ci ∈ CSTB is
produced. otherwise a backtrack is done.

Algorithm 1 The general schema of the new search method
Require: The clausal form L(π) of a logic program π
Ensure: The set S of all the stable models of π
1: S = ∅
2: repeat
3: while STB 6= ∅ and ’no conflict’ do
4: while Lmonos 6= ∅ or Lpure 6= ∅ do
5: unit-propagation(L(π),Lmonos,I);
6: inference(L(π),Lpure,I);
7: clause-production(L(π));
8: end while
9: literal choice (STB);
10: end while
11: if no conflict then
12: E = L(π)I is an extension candidate;
13: E= complete(E);
14: if Conditions(E) then
15: M=PositiveAtoms(E);
16: S = S ∪M ;
17: end if
18: else
19: backtrack
20: end if
21: until All the search space is explored

The algorithm starts by a first call to the unit-propagation procedure to propagate all
the mono-literals until the list of mono-literals Lmono becomes empty. Then it deals
with the pure literals which also could induce mono-literals. When there is no mono-
literal and no pure literals to assign, the algorithm try to produce a clause ci ∈ CSTB .
If we produce a clause ci ∈ CSTB , then the second branch of the current choice point
will be explored. Otherwise, if no clause was produced and all the mono-literals and
the pure literals are treated, then the second branch of the choice point literal become
useless. The enumeration continues by choosing in STB the next literal to assign. This
process is repeated either until the satisfaction of all the clauses, or until the assignation
of all the literals of STB without the appearance of the empty clause.

An extension candidate is founded either when all the clauses are satisfied, or when
all the literals of STB are affected without falsifying any clause. In both cases, the
algorithm execute a completing phase that consists in completing the current interpre-
tation by assigning the value true to all the remaining literals notAi of STB and by
assigning the value false to all the others literals Ai ∈ V not assigned yet according to
the closed world assumption. An extension candidate E = L(π)I is obtained when we
reach this state and the completing phase is performed to get a kind of minimal model.
After the verification of the maximality and the discriminant conditions on E, a stable
model M consisting of the positive atoms Ai of E is extracted and added to the set S.



The algorithm complexity

If n is the number of variables of the clausal form L(π) of the program π, k the cardinal
of the set STB andm the number of clauses of L(π), then the algorithm time complex-
ity in the worst case is approximately O(knm2k). We can notice that the exponential
factor of the complexity function depends on the number k representing the size of the
strong back-door set and does not depend on the number of variables n as in the other
ASP solvers. The value of k is generally smaller than that one of n, hence a better time
complexity.

Unlike the majority of ASP solvers using the Clark completion with loop manage-
ment and which have an exponential spatial complexity in the worst case, our method
works with a constant space. Indeed, the method uses as input the Horn clausal form
L(π) whose size is identical to that one of the initial program π and it does not vary
during the executions. The spatial complexity is constant, it is of order O(| L(π) |) =
O(| π |) in the worst case. This algorithm can be used for non tight logic programs and
allows to compute all the stable models of any given general program.

3.1 Experimental results

In the literature there are two main approaches to conceive ASP systems. The first
one deals directly with the considered semantics and its properties to implement the
system. The second one, computes first a Clark completion of the given logic program
then applies an SAT solver as a black-box on the resulting formula to which are added
some formulas that are used to manage the loops. Our method adopts the policy of the
first approach. Its implementation is totally based on the semantic previously presented.
We implemented a first version of a new ASP solver that we denote here by HC − asp
to mean Horn Clause ASP. The solver is implemented in C++ and we used Gringo [5]
as a grounder. The output of gringo feeds the input of our solver.

To show the efficiency of the solver HC − asp, we compared it to other existing
ASP systems. We considered in the comparison the solver Cmodels (version 3.86 with
zChaff as a SAT solver). We also considered two other known ASP solvers that are
Smodels (version 2.34) and Clasp(version 3.3.3). We experimented different highly
combinatorial problems. For each of them, we gradually increased its size and stud-
ied the behavior of each system when it is applied for its resolution. The benchmarks
are: the Reachability problem [1-4], the consistent Pigeon Hole problem [10-17], the
Ramsey problem[5-8], the n-queen problem [18-25]. We precise that we used for each
benchmark the same encoding for the all the experimented solvers.

In general, in non-monotonic reasoning, we are interested in all possible extensions
and then make some preferences on them. Naturally, in answer set programming, it is
important to enumerate all the stable models of a logic program. That’s why we pre-
ferred to enumerate all models rather than just checking for a model. We chose the cited
benchmarks because of their important number of stable models. They are very appro-
priate to study the behavior of each of the solvers when the number of stable models
and the size of the problem increase. Almost all of the benchmarks are available on the
web site (https://asparagus.cs.uni-potsdam.de). We can say from the results presented
in Table 1 that our approach is a good alternative for answer set programming.



Table 1. The results obtained on the Reachability, Ramesey, Pigeon Hole and n-queen problems

N◦ #Size #Stable
Models #Time(sec)

HC-asp Clasp Smodels Cmodels
1 R 2 1 0.0005 0.0001 0.0002 0.0003
2 R 3 18 0.0015 0.001 0.0005 0.015
3 R 4 1606 0.030 0.070 0.022 0.091
4 R 5 565080 7.12 12.59 7.62 9991.28
5 R 4 5 5 957 0.011 0.010 0.014 0.049
6 R 4 5 6 27454 0.2 0.5 0.33 18.62
7 R 4 5 7 1452289 12.64 28.76 18.00 •
8 R 4 5 8 137578233 1625.14 3329.66 2219.19 •
10 pi4/4 24 0.007 0.009 0.002 0.003
11 pi5/5 120 0.02 0.02 0.008 0.01
12 pi6/6 720 0.06 0.06 0.04 0.07
13 pi7/7 5040 0.23 0.55 0.30 0.87
14 pi8/8 40320 1.65 4.01 2.5 52.34
15 pi9/9 362880 21.63 47.11 34.60 4591.87
16 pi10/10 3628800 210.14 494.40 369.80 •
17 pi11/11 39916800 2728.53 6936.96 4247.58 •
18 q 10 724 0.68 0.23 0.66 0.27
19 q 11 2680 2.79 1.02 2.95 2.48
20 q 12 14200 12.2 8.75 15.19 41.44
21 q 13 73712 79.55 122.91 87.69 1642.93
22 q 14 365596 371.73 2631.83 496.98 •
23 q 15 2279184 2797.02 34337.21 3352.37 •
24 q 16 14772512 12087.40 • 23134.22 •
25 q 17 95815104 87088.00 • • •

Indeed, our method shows better performances. The gain realized with our system
increases when the size of the problem increases. This advantage comes from both its
constant spatial complexity and the fact that it performs enumeration on a subset of lit-
erals representing the strong back door of the logic program. We precise that our imple-
mentation does not include for the moment any optimization (like restarts, watched lit-
erals, clause learning...). Better results are expected in future when all these techniques
will be implemented. Our approach looks to be a good alternative that the community
could use to implement ASP solvers.

4 Conclusion

In this paper, we provided a new method to compute stable models that is based on a
relatively new semantic introduced in [16]. This method has the advantage to use a Horn
clausal logic form whose size is identical to that one of the source ground logic program.
The proposed method has a constant spatial complexity and the semantic on which it
is based prevent it from the heaviness induced by the addition of loop formulas that is
performed in almost all the known ASP solvers that use the Clark completion. The other
benefit of our approach is the simplified enumerative process which is done only on a
subset of the literals representing the strong back-door of the source logic program. This
lead to a considerable gain in the time complexity. We also proposed and implemented
some inference rules which are used in practice to reduce the size of the search tree.
We experimented the proposed method on a variety of known combinatorial problems
and the obtained results showed that our approach is a good alternative to implement



ASP solvers. Indeed, with a non optimized implementation we outperformed several
efficient ASP solvers like Clasp, Smodels and Cmodels.

As a future work, we look to enhance our implementation by concepts used in mod-
ern SAT solvers. The idea is to incorporate techniques such as watched literals, lazy
structures, clause learning and restart. Another point is to investigate some extensions
of our approach to others classes of logic programming or to pieces of more general
non-monotonic logics.
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