
Automated COSMIC Measurement and Requirement

Quality Improvement Through ScopeMaster® Tool

Erdir Ungan1, Colin Hammond2 and Alain Abran 3

1 Université du Québec à Montréal – UQAM (Montréal, Canada)
2Albion Technology Ltd – (Marlow, Buckinghamshire, United Kingdom)

3École de Technologie Supérieure – ETS, University of Quebec (Montréal, Canada)
ungan.erdir@uqam.ca colin@albiontech.com alain.abran@etsmtl.ca

Abstract. This paper presents a new COSMIC functional measurement automa-
tion tool ScopeMaster®, which automatically generates a size estimation
from textual requirements. The tool points out problems in requirements in clar-
ity, completeness, consistency and concision. This facilitates both COSMIC
measurement and quality inspection processes. Utilizing ScopeMaster guides us-
ers to create higher quality requirements. It improves measurement accuracy, in-
creases the number of defects found in inspections and drastically reduces the
effort for both activities. Enabling higher number of requirement defects to be
found early in the SDLC has a huge effect on overall software quality and rework
costs. ScopeMaster also provides detailed reports on project estimates and meas-
urement details.

Keywords: COSMIC, Functional Size Measurement, Automation, Require-
ment Quality, Requirement Defects

1 Introduction

This paper presents the tool ScopeMaster® developed by Albion Technology Ltd. and
discuss its benefits in terms of better COSMIC measurements, defect detection and im-
proved requirement quality. ScopeMaster® is a COSMIC Functional Size Measurement
tool that takes free form textual software requirements as input.
The tool, basically:

• detects the probable data movements and so measures them using the COSMIC
FSM

• points out potential defects within the requirements
• generate project estimates based on COSMIC size

Automating functional size measurement with COSMIC is one of the top priorities in
research in COSMIC community today. It is widely accepted that automating COSMIC
measurements is crucial for its acceptance in industry.

There exist numerous proposals for tools that support COSMIC measurement (auto-
mated and non-automated) and new ones are emerging every day [1-8]. These tools can
be grouped based on the main functionality they provide as [1,9]:

1

mailto:ungan.erdir@uqam.ca

• Data collection and calculation: These tools make it easier to record and manage the
measurement data. Measurement is performed manually, and the tools enable enter-
ing measurement data in an orderly fashion and keep the meta data about the meas-
urements.

• Expert systems for measuring (Measurement Facilitation): These tools enable meas-
urement to be performed within the tool. They enable entering and managing pre-set
constructs for COSMIC measurements such as objects within a system, standard us-
ers, standard functionality. They may also provide basic checks for measurement
rules to improve measurement quality. Measurement is still performed manually but
with guidance and facilitation of expert systems for measuring.

• Automated Measurement:
─ Based on Structured Input: These tools perform COSMIC measurement autono-

mously and automatically utilizing structured inputs such as:
o Structured/Formalized Functional Requirements
o UML Diagrams
o Software Design Models
o User Interfaces
o Source Code

─ Based on unstructured input: These tools perform measurement on free form tex-
tual requirements.

There exist a wide scope of both academic and industrial research potential on func-
tional size measurement automation. Most of the existing research and tools utilize for-
malized input for measurement such as structured requirements, conceptual models,
UML models, source code or similar constructs.

To the best of our knowledge there is only limited academic research on automating
COSMIC measurement using textual requirements in natural language as input [10][11]
and there exist no commercial tool that implements that.

The paper is structured as follows, Section 2 summarizes how applying COSMIC
measurement to requirements inherently improves their quality. Section 3 presents
ScopeMaster® including its features, generated reports and its current limitations. Sec-
tion 4 describes how it helps improving requirement quality through pointing out de-
fects and helping analysts fix those defects. Section 5 presents a summary and lists the
road map for intended additional features for the tool.

2 Requirement Quality and COSMIC

Quality of software requirements hugely impact the quality of any software product
as well as any measurement result based on them [12]. Between 16% and 20% of de-
fects in software are requirement defects [13]. Moreover, any defect in requirements
cost much higher to fix compared to defects injected in further phases of SDLC. The
rework cost to fix a defect injected in requirements increase exponentially as it propa-
gates through lifecycle phases. As illustrated in Fig. 1, rework cost for defects found
later in the SDLC are significantly more expensive than those found in earlier phases.

2

E. Ungan, C. Hammond, A. Abran

Pressman [14] states the of the cost of fixing a defect in requirements within require-
ments phase is 1 unit, cost to fix it in coding, test and deployment phases will be mul-
tiples of 1, 6.5, 15 and 80.

Fig. 1. Respective costs of correcting defects created in different phases of SDLC [14]

Based on these, it is imperative to detect and fix a defect in requirements as early as
possible to minimize rework costs. For this, organizations typically perform reviews on
their requirements documents. Reviews are typically performed to make sure that re-
quirements have some generic and domain specific quality attributes. IEEE Std 830-
1998 - IEEE Recommended Practice for Software Requirements Specifications [15]
defines a set of quality attributes for requirements such as being:

• Clear (Unambiguous)
• Complete
• Consistent
• Concise
• Correct
• Current

However, free form requirements expressed in natural language are prone to being
vague, long and incomplete.

Like other recognized Functional Size Measurement (FSM) methods [16-19]
COSMIC [20] requires the functional requirements to be defined in a certain level of
detail and quality. In order for the measurement rules to be properly applicable, require-
ments should possess certain qualities.

Users, objects and functions should be clearly identifiable. Any functional process
within a requirement should include clear definitions for triggering events, users, in-
puts, outputs and functional steps.

Studies showed that whenever a requirement cannot be properly measured, that also
points out an inadequacy in terms of basic requirement qualities [12][21][22][23]. This
renders COSMIC a valuable tool to verify requirement quality and detect defects ex-
tremely early in the software development life cycle (SDLC).

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

3

There are many studies that demonstrate how an FSM, and in particular COSMIC,
can improve software specification quality through pointing out defects in require-
ments:

In [24], Talib et.al. illustrates COSMIC FSM can be used to asses the quality of
specifications of a real-time software system. They state that COSMIC measurement
especially helps in detecting ambiguous requirements and requirements whose hard-
ware/software allocation is not clear.

In [22] Trudel and Abran demonstrate that using COSMIC measurement during in-
spections lead an increase of 16% to 32% in the number of identified critical functional
defects. Moreover, the study also showed that inspectors spent only 54% of the planned
effort for inspections when they utilized COSMIC measurement during inspections.

COSMIC Guideline for Measurement Accuracy [25] also proposes an approach to
assess the quality of requirements in terms of COSMIC measurement principles. The
assessment is performed in terms of:

• The presence or absence of a data model.
• The presence of absence of information to identify the data movements (entry,

read, write, exit).
• The presence (or absence) of documentation enabling identification of each

functional process.

3 ScopeMaster Tool

ScopeMaster® is a web-based tool which users login using their credentials and can
create many measurement projects.

Once the user creates a measurement project in the tool, ScopeMaster® enables add-
ing requirements one at a time or importing them in bulk via a CSV file as well as
through integration with the JIRA[26] tool.

As the user adds user software requirements or user stories, ScopeMaster® performs
several successive steps of analysis individually and collectively on the requirements
in order to detect possible Objects of Interest, potential users, potential data movements
and potential defects.

The details of how ScopeMaster® performs these techniques are proprietary and sub-
ject to a pending patent application, however the results are fully transparent. The un-
derlying steps include natural language processing and several modules of pattern
matching.

The tool focuses on detecting a “Subject verb object” structure to identify necessary
measurement elements (functional users, objects of interest, data movements) from re-
quirements.

A user story such as “As a user I want to display orders” has “user” as the subject,
“display” as the verb and “orders” as the object. In this structure, the subject is a can-
didate for the Functional User, the object is a candidate for an Object of Interest and
verb corresponds to one of Create, Read, Update, Delete, List (CRUDL) set of func-
tions.

4

E. Ungan, C. Hammond, A. Abran

Below, we present features of the tool through the example of C-REG COSMIC
Case study[27].

Each requirement consists of four fields: Title and Body, which are analyzed for
possible interpretation, ID and Notes, which are searchable but not analyzed for func-
tional interpretation. The Body field is the main focus of the requirement. The tool
encourages this field to be a succinct but complete statement of the overall purpose of
the requirement or user story. The scenarios, conditions and success criteria should all
be put into the notes field.

Fig. 2. Adding Requirements

ScopeMaster® believes that the most important characteristic to get right first, is
what is the requirement’s main purpose. The main purpose of a requirement can be
different functionalities such as:

• “Update requirements”
• “Maintain calendar entries”
• “Display orders”, “Delete invoice”,
• “Search for companies”
• “Book a room”
Information such as the triggering event conditions, the scenarios in which the re-

quirement applies and the outcomes to be tested are all deemed peripheral to the pri-
mary purpose of the requirement and should be put into the notes field.

As soon as the requirement is added, the tool measures the size the requirement and
displays the Functional Process, Objects of Interests, CRUDL operation type and Data
Movements. Tool also assesses the readability of the requirement and color codes the
requirement to indicate any problems in its readability.

Fig. 3. Analysis Details for a Requirement

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

5

Requirements are displayed as a list with their corresponding estimated sizes next to
them. The color of the size information indicates whether the requirement is potentially
too big or involves different functional changes to multiple objects of interest.

Fig. 4. List of Requirements and Corresponding Size Estimates

3.1 Reports

ScopeMaster® generates a number of reports for the project based on the analysis of
requirements. Primary analysis outcomes include:

Reporting of ambiguous requirements. ScopeMaster reports possible ambiguities in
the requirement texts which may lead to a reader interpreting the requirement differ-
ently from the author's intent. Tool highlights words causing ambiguity in a sentence
and advise the author to revise them (see Fig. 5.) and also generates reports for require-
ments that are not concise and that require multiple verbs for a single operation (see
Fig. 6. Ambiguous or verbose requirement warning

Fig. 5. Ambiguous wording warning

6

E. Ungan, C. Hammond, A. Abran

Fig. 6. Ambiguous or verbose requirement warning

Report of detected potential users and objects of interest. Tool lists all of the sug-
gested users and suggested objects in the project with their number of occurrences in
the requirements.

Fig. 7. List of users and number of their occurrences in the requirements

Report potential missing and duplicate requirements. The tool shows which data
movements correspond to CRUDL operations on any given object of interest and re-
ports on potential missing and duplicate requirements. It assumes whenever an object
is maintained in the system through one or more of CRUDL operations, it indicates
other activities should be defined in a requirement as well. It also detects if there are
multiple requirements depicting one of these operations on an object. This may point
out to inconsistencies among requirements and flags those requirements for further in-
spection.

Fig. 8. Report on potential defects for missing and duplicate operations

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

7

Secondary analysis steps derive:

IFPUG sizing estimates. ScopeMaster® also generates size estimates and reports for
IFPUG [16] measurement. However, the estimates and reports for IFPUG are less ac-
curate than those for COSMIC due to the sensitivity of detecting actual ILFs. Any
wrongfully identified ILF in IFPUG measurement has a much bigger impact on accu-
racy then any wrongfully identified Object of Interest in COSMIC measurement.

Project estimates for cost, duration, resources needed: The tool generates indicative
estimates and gives a range for development cost, duration and resources. It also gives
an estimate for scope creep and expected number of defects in all phases of SDLC.
Most of these estimations are based on public benchmark data.

Classes and Methods. The tool generates a list for potential classes and method for
implementation, based on the objects and operations identified from the requirements.

3.2 Limitations

ScopeMaster® interprets the English used to write the requirements or user stories.
Currently this interpretation is not 100% accurate, but algorithms are being continu-

ously improved, through formal verification and through machine learning. It is ex-
pected to reach a consistent accuracy in excess of 85%. Currently results are in the 70-
95% accuracy range. Dealing with the nuances of the natural language renders %100
accurate interpretation almost impossible. However, the clearer the requirements the
more accurate the counts will be. Moreover, any measurement with the tool is repeata-
ble, that is, given the same set of requirements it always produces the same measure-
ment results.

Currently the tool can only analyze the main function within a requirement. It does
no text analysis of the success criteria or triggering events mentioned in the requirement
text. This sometimes result in mixed results if there are too much side information given
within the requirement text.

Similarly, interpretation accuracy decreases when there are multiple sophisticated
condition based requirements within a text. It is suggested that such requirements are
broken down into smaller requirements.

Ontology used is not customizable at the moment. For example the list of recognized
verbs is fixed and same for each project. There might a need for nuances or combina-
tions of verbs for different development contexts. It is planned to make ontology cus-
tomizable in the future.

8

E. Ungan, C. Hammond, A. Abran

4 Improvements in Measurement Process and Requirements

Quality Introduced by ScopeMaster®

We believe COSMIC size estimation performed by ScopeMaster® provides a very ef-
fective starting point to fine tune the measurement manually. As ScopeMaster® dis-
plays the interpreted data movements of every FUR, the user has full transparent visi-
bility as to the makeup of the count and can adjust the wording of the requirement
appropriately.

In its current state, ScopeMaster® size estimates are observed to be typically within
20-30% of manual count equivalents. This was also verified with the case study ex-
plained above. Given that manual COSMIC estimates also tend to have a level of dis-
crepancy among different measurers in manual measurement [28], an automated esti-
mate in these ranges pose a fairly good basis especially when the automated results are
reviewed and fixed manually.

ScopeMaster® also helps making requirements “measurable” by pointing out possi-
ble problems regarding the requirements in the measurement process. It allows require-
ment texts to be improved by giving constant feedback about their measurability and
ambiguity. Requirements can be tweaked and updated until the desired structure is at-
tained for the COSMIC measurement. This, in turn, results in improving the quality
attributes of requirements mentioned in section 2:

• By pointing out too long or too short requirements, it enables requirements to be
defined in appropriate length for measurement. It prevents many Functional Pro-
cesses to be combined under a single Functional User Requirement or User Story.
This enable the requirements to be more concise.

• By pointing out inconsistencies between the number of data movements detected in
a requirement and the length of its text, it points out probable non-functional or un-
necessary information cramped in a functional user requirement. This enables the
requirements to be clear and atomic.

• By pointing out similar objects and users among requirements, it highlights naming
inconsistencies so that they can be corrected. This enables the requirements to be
consistent with each other.

• By pointing out potentially missing operations (eg. CRUDL) it helps requirements
to be complete.

• By pointing out multiple operations of same type (eg. CRUDL) on a given object of
interest, it enable detection of any inconsistencies among requirements and enables
requirements to be consistent and correct.

• There is a limited list of verbs that are recognized by the tool. Authors are required
to use verbs from that list for their requirements to be measurable. This forces re-
quirements to be written in a more formalized fashion and in turn becoming more
concise and clear.

ScopeMaster® also decreases the time and effort needed for both COSMIC measure-
ment and finding and fixing requirement defects.

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

9

Typically a COSMIC certified measurer can measure 125-500 CFPs per day, however,
using ScopeMaster® this productivity goes up to 500-2500 CFPs a day. The tool per-
forms the measurement analysis in a matter of minutes, these daily CFP numbers are
for cases when the measurement results that are analyzed, fixed and verified by the
measurer.

Moreover, when the tool’s measurement results are used as a basis for measurement,
it standardizes measurement throughout an organization. This will also reduce discrep-
ancy among measurement results from different measurers and increase repeatability
of results.

Manual requirements quality inspections typically require half an hour in a 4 people
meeting to groom and find 1 defect and requires half a day of work for 1 person to fix
it. This totals 5-6 hours of effort for each defect found and fixed manually. The
ScopeMaster® authors claim that a single person can find and fix a defect in as little as
15 minutes. The results of our case study described below also proved this improve-
ment.

This improvement is due to the fact that the when the author of a requirement is
going through and fixing the initial COSMIC estimations of ScopeMaster®, he is also
fixing most of the defects in the requirements.

4.1 Case Study

In order to demonstrate how ScopeMaster® can benefit practitioners, we conducted a
small case study. This study was conducted as a proof of concept rather than an aca-
demic study.

A senior software project assurance expert participated in the study and was asked
to analyze a software specification for a real life game software using ScopeMaster®
without any prior experience with the tool.

Specifications consisted of 80 user stories at start and increased to 90 user stories by
the time the study finished.

When the requirements were run, ScopeMaster® counted 400 CFPs and discovered
over 200 potential defects in less than 60 seconds.

The participant was able to go through all 90 requirements and fixed 150 require-
ments defects within 16 hours. This corresponded to finding and fixing defects at a rate
of 1 every 10 minutes.

Participant commented that while he was working through requirements, it was pos-
sible to review measurement results, see defects, fix defects and add missing require-
ments all at the same time.

5 Summary and Future Work

In this paper we presented some of the features of the automatic COSMIC size meas-
urement tool ScopeMaster®. To our knowledge this tool is the first commercial tool that
performs COSMIC measurement on free form textual requirements.

10

E. Ungan, C. Hammond, A. Abran

We believe it has a great potential in not only automating COSMIC size measure-
ment from requirements in natural language but also improving the quality of require-
ments. It allows users to immediately see if their requirements are measurable and
enables them to revise and update them on the fly by proving constant feedback.

As shown by many studies, the process of making requirements measurable, on its
own, improves quality of requirements. ScopeMaster® improves requirement quality
through COSMIC measurement principles and on top of this, it explicitly points out
defects in clarity, completeness, concision and consistency.

Using the tool to facilitate COSMIC measurement improves the accuracy of meas-
urement results compared to purely manual measurement. It significantly reduces
measurement effort. It also enables requirement defects to be detected and fixed with
much less effort compared to manual inspections.

We believe, ScopeMaster® would particularly benefit big organizations, consisting
of many teams that similar software with similar requirements, by streamlining their
measurement and requirement verification activities.

 On the other hand, the tool lets practitioners to utilize COSMIC principles and
measurement results without any prior knowledge about the method. This means,
whenever ScopeMaster® is deployed in an organization for quality improvement and
defect detection purposes, it will be indirectly introducing COSMIC Functional Size
Measurement and its benefits to the organization as well. This would be particularly
beneficial for the COSMIC community to widen the methods adaption as industry al-
ways demands tools to mitigate rework cost and improve software quality however, it
is not always easy to get organizations appreciate the value added by FSM methods.

The tool is under constant development and improvement. In the near future these
features are expected to be added:

• Managing measurement elements
• Custom ontology: Making ontology used for requirements such as making the verb

list customizable for organizations or defining a pre-determined set of objects to use
for entire organization. This will enable organizations better tune the interpretation
of their requirements and also will let them introduce and enforce usage of their own
requirement standards and wording guidelines.

• Requirements suggestions engine (re-use, security): Certain frequent and typical re-
quirements will be presented in the form of functional patterns. Certain generic func-
tions such as security functions will be suggested based on type of identified objects.
This will further prevent facilitate requirement development and prevent missing re-
quirements.

• More Machine Learning and better language interpretation.
• Multilanguage support: It is expected to include other language than English for re-

quirement interpretation.
• Local Benchmarking: Currently certain reports utilize generic ratios and productiv-

ity values from public benchmarking data sets. It is planned to enable organizations
utilize their internal benchmarking data sets and standard values.

• Test suggestions: The tool will suggest a list of potential unit tests for any given
method on an object. cases for requirements.

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

11

References

1. Mendes O., Abran A., Bourque P., (1996), Function Point Tool Market Survey Software
Engineering Management Laboratory, Université du Québec à Montréal, Montréal, Canada.

2. Fraternali, Piero & Tisi, Massimo & Bongio, Aldo. (2006). Automating function point anal-
ysis with model driven development. 233-247. 10.1145/1188966.1188990.

3. Soubra, Hassan & Abran, Alain & Stern, Sophie & Ramdan-Cherif, Amar. (2011). A Re-
fined Functional Size Measurement Procedure for Real-Time Embedded Software Require-
ments Expressed Using the Simulink Model. 76-85. 10.1109/IWSM-MENSURA.2011.52.

4. Lind, Kenneth & Heldal, Rogardt. (2011). CompSize: A Model-Based and Automated Ap-
proach to Size Estimation of Embedded Software Components. IEICE Transactions on In-
formation and Systems. E95.D. 334-348. 10.1587/transinf.E95.D.2183.

5. Marín, Beatriz & Pastor, Oscar & Giachetti, Giovanni. (2008). Automating the Measurement
of Functional Size of Conceptual Models in an MDA Environment. 5089. 215-229.
10.1007/978-3-540-69566-0_19.

6. Lamma, Evelina & Mello, Paola & Riguzzi, Fabrizio. (2003). A System for Measuring Func-
tion Points from an ER-DFD Specification. 47. 10.1093/comjnl/47.3.358.

7. Uemura, Takuya & Kusumoto, Shinji & Inoue, Katsuro. (1999). Function point measure-
ment tool for UML design specification. Journal of Software Maintenance and Evolution:
Research and Practice. 13. 62 - 69. 10.1109/METRIC.1999.809727.

8. Bagriyanik, Selami & Karahoca, Adem. (2016). Automated COSMIC Function Point meas-
urement using a requirements engineering ontology. Information and Software Technology.
72. 10.1016/j.infsof.2015.12.011.

9. R. Dumke and A. Abran, COSMIC Function Points: Theory and Advanced Practices. 2011
10. Hussain, Ishrar & Ormandjieva, Olga & Kosseim, Leila. (2009). Mining and Clustering Tex-

tual Requirements to Measure Functional Size of Software with COSMIC.. 599-605.
11. Linguistic Approaches for Early Measurement of Functional Size From Software Require-

ments. H M Ishrar Hussain, Doctoral Thesis, Concordia University, Montreal, Quebec, Can-
ada, August 2014

12. The Effect of the Quality of Software Requirements Document on the Functional Size Meas-
urement.. G. Yılmaz, E. Ungan, O. Demirörs. United Kingdom Software Metrics Associa-
tion International Conference on Software Metrics and Estimating. London, UK. 2011

13. Jones C., Bonsignour O., Economics of Software Quality, Addison-Wesley, 2011.
14. Pressman, Roger S., Software Engineering, A Practitioner’s Approach, 3rd Edition,

McGraw Hill, New York, 1992. p.559.
15. IEEE Std 830-1998 - IEEE Recommended Practice for Software Requirements Specifica-

tions
16. ISO/IEC ISO/IEC 20926:2009. Software and systems engineering - Software measurement

- IFPUG functional size measurement method 2009, 2009.
17. ISO/IEC ISO/IEC 20968:2002, Software engineering - Mk II Function Point Analysis —

Counting Practices Manual, 2002.
18. ISO/IEC ISO/IEC 24570:2005 Software engineering - NESMA functional size measure-

ment method version 2.1 - Definitions and counting guidelines for the application of Func-
tion Point Analysis, 2005.

19. ISO/IEC ISO/IEC 29881:2010, Information technology - Systems and software engineering
-FiSMA 1.1 functional size measurement method, 2010

20. COSMIC Group, 2015. The COSMIC Functional Size Measurement Method Version 4.0.1
Guideline on Non Functional & Project Requirements. http://www.cosmic-sizin.org.

12

E. Ungan, C. Hammond, A. Abran

21. Desharnais, Jean-Marc & Kocatürk, Bugra & Abran, Alain. (2011). Using the COSMIC
Method to Evaluate the Quality of the Documentation of Agile User Stories. 269-272.
10.1109/IWSM-MENSURA.2011.45.

22. Trudel S., Abran A. (2008) Improving Quality of Functional Requirements by Measuring
Their Functional Size. In: Dumke R.R., Braungarten R., Büren G., Abran A., Cuadrado-
Gallego J.J. (eds) Software Process and Product Measurement. Mensura 2008, MetriKon
2008, IWSM 2008. Lecture Notes in Computer Science, vol 5338. Springer, Berlin, Heidel-
berg

23. J.-M. Desharnais, A. Abran, Assessment of the Quality of Functional User Requirements
documentation using criteria derived from a measurement with COSMIC- ISO 19761, I In-
ternational Workshop on Software Measurement - IWSM 2010, Stuttgart, Germany, No-
vember 2010, pp. 481-496.

24. Abu Talib M., Khelifi A., Abran A., Ormandjieva O. (2008) Assessment of Real-Time Soft-
ware Specifications Quality Using COSMIC-FFP. In: Cuadrado-Gallego J.J., Braungarten
R., Dumke R.R., Abran A. (eds) Software Process and Product Measurement. Mensura
2007, IWSM 2007. Lecture Notes in Computer Science, vol 4895. Springer, Berlin, Heidel-
berg

25. COSMIC, Guideline for Assuring the Accuracy of Measurements, v 0.92, Common Soft-
ware Measurement International Consortium, 2011. URL: www.cosmicon.com

26. JIRA Software https://www.atlassian.com/software/jir
27. Lesterhuis, Arlan, Alain Abran, & Charles Symons. 2015. Course Registration (‘C-REG’)

System Case Study, Version 2.0. www.cosmic-sizing.org
28. Ungan,E., Demirörs O., Top O.O, Özkan B. An Experimental Study on the Reliability of

COSMIC Measurement Results.. Lecture Notes in Computer Science, Volume 5891/2009,
321-336.Springer Berlin / Heidelberg. 2009.

29. Soubra, Hassan & Abran, Alain & Ramdane-Cherif, Amar. (2014). Verifying the accuracy
of automation tools for the measurement of software with COSMIC - ISO 19761 including
an AUTOSAR-based example and a case study. 23-31. 10.1109/IWSM.Mensura.2014.26.

30. Trudel S., Buglione L., Guideline for sizing Agile projects with COSMIC, International
Workshop on Software Measurement - IWSM 2010, Stuttgart, Germany, November 2010.

31. Weinberg, Gerald M., Quality Software Management, Volume 1, Systems Thinking, Dorset
House, New York. 1992.

32. ISO/IEC 19761 Software Engineering - COSMIC - A Functional Size Measurement
Method, 2011

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

13

http://www.cosmicon.com/
https://www.atlassian.com/software/jir
http://www.cosmic-sizing.org/

