
A Model for CBR Systems that
Adapt to Rapidly Changing Context

Björn Decker and Markus Nick

Fraunhofer Institute for Experimental Software Engineering (IESE)
67663 Kaiserslautern, Germany

{bjoern.decker, markus.nick}@iese.fraunhofer.de

Abstract. Challenges in context-sensitive applications are not limited to
reasoning. Rapid changes in the environment, which are reflected by the context
information, pose a particular challenge. During the run of a single CBR cycle,
a lazy adaptation can be used to deal with this challenge of rapidly changing
context. In an ambient intelligence system, there is also the need to modularize
the knowledge according to the overall system. We present a model for CBR in
such a setting. The model consists of an extended/modified CBR process, a
knowledge model, and an architecture pattern for embedding a CBR module
into an ambient intelligence system. Our focus is on the context-aware
adaptation of the actions to be executed when a certain situation is recognized.
The technical feasibility of our model has been evaluated with an application in
the area of ambient assisted living for elderly people.

1 Introduction

The application of case-based reasoning to context-aware systems offers a promising
new application field. Most of the systems reported in the literature rely on explicit
user interaction to derive applicable cases [1] [2] [3]. By using context information,
explicit user interaction is reduced or does not take place. This is also the case for so-
called ambient intelligence systems, which use sensors to automatically obtain context
information from the environment, reason using this context information, and act
using devices in the ambient intelligence system. We are researching on ambient
intelligence systems in the domain of assisted living for elderly people1. Several
studies show that the percentage of elderly people will grow in the upcoming years.
Elderly people can stay in their homes longer through intelligent assistance, which
results in cost savings for the society as well as benefits to the elderly people by
offering them a more self determined life.

Summarized, context-aware systems capture the environment of a user. Some
properties of this environment will change during the execution of actions and,

1 Part of this work has been funded by the Bundesministerium für Bildung und Forschung

(BMBF) and the Ministerium für Wissenschaft, Weiterbildung, Forschung und Kultur of
Rheinland-Pfalz in the context of the BelAmI project (www.belami-project.org).

2 Björn Decker and Markus Nick

therefore, force the context-aware system to adapt its actions accordingly. The
underlying knowledge model of the context-aware system, which is the basis for this
adaptation, is known during application time and remains stable. Since ambient
intelligence systems are context-aware system with a high distribution, one need
distribution strategy for this knowledge model. The actual context information based
on this model will be influenced by those changes in the environment at runtime.
Thus, a CBR system inside such a context-aware system has to take into account that
information relevant for selecting, adapting, and evaluating/applying cases might
change within one single run of a CBR cycle. Furthermore, since this change can
happen within a short period of time, part of the information relevant for a CBR
system/module can only be acquired at the execution time of actions proposed by the
CBR system/module.

In the remainder of this paper – which is influenced by our research background –
we investigate context-aware systems in the area of ambient intelligence. The paper
itself is structured as follows: First, we present and discuss definitions for the terms
context, context-aware systems and related terms as used in this paper. Second, we
present the major problems identified by us and our solution idea for building CBR
systems that adapt to rapidly changing context. Then, we present the CBR system
model consisting of CBR process, architecture pattern, and knowledge representation.
Afterwards, we present our application in the area of assisted living for elderly
people, which validated the technical feasibility of our model. This is followed by an
overview of related work. A conclusion and outlook to future work is the last section
of this paper.

2 Definition of Related Terms

Dey and Abowd [4] define context as “any information that can be used to
characterize the situation of an entity. An entity is a person, place, or an object that is
considered relevant to the interaction between a user and an application, including
the user and applications themselves.” Furthermore, they identify several aspects of
the context of entities inside context-aware systems that need to be taken into account:
• Identity: What is the identity of the entity? To which degree can it be distinguished

from other entities, i.e., does it have a unique identifier or is the class of a certain
entity identified only? This identification is of particular importance for deriving
further context characteristics.

• Location: What is the location of an entity? This information is used for
determining information about the entity itself (e.g. whether a person moves or not)
or to derive relations between entities (e.g., that a person is close to a certain
device).

• Activity: What activities can be performed by a certain entity? Which one is
currently being performed? This information is used for presenting further
applicable activities in the context of an entity.

• Time: What is the time when a certain situation occurred? To which point in time
is a certain activity applicable? (E.g., the user should not be disturbed between
midnight and six o’clock in the morning). This information can be used for

A Model for CBR Systems that Adapt to Rapidly Changing Context 3

determining whether certain activities are performed in the correct sequence, or for
scheduling activities.

With this notion of context, context information is bound to the entities inside the
context-aware system. Therefore, context is – at least logically - distributed across the
entities within a context-aware system. References among entities can be used for
obtaining further context information from other entities. The information about the
context bound to one object is called the primary context of an entity, while context
information derived from referenced objects is called secondary context. Furthermore,
this notion of context allows defining the retrieval vector of context-aware
applications: The retrieval vector can be created by analyzing the entities relevant for
the application and by applying the context aspects mentioned before.

The term context-aware systems is currently not precisely defined and is used as
synonym for ubiquitous computing and Ambient Intelligence. Therefore, we give the
definition of context-aware computing first. The terms ubiquitous computing and
Ambient Intelligence are then compared to the explanation of context-aware systems.

Concerning context-aware computing, [5] defines context-awareness as “a term
from computer science, that is used for devices that have information about the
circumstances under which they operate and can react accordingly. Context-aware
devices may also try to make assumptions about the user's current situation”. In their
detailed survey on context and context-aware systems, [6] define context-aware
systems as: “A system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task”.
Although context-aware systems can be seen as a specialization of ubiquitous systems
(e.g., [7]) , the aspect of adapting a certain context to the user’s need is the key
concept in the term context-awareness.

This definition does not make any assumption on how the information about the
context is actually acquired. However, to get information about the context, a context-
aware system needs to derive information from multiple sources, i.e., it needs to be
ubiquitous. This leads to the term Ubiquitous Computing, which “integrates
computation into the environment, rather than having computers which are distinct
objects” [8]. According to [9], it emerged from the field of distributed and mobile
computing, using context to determine the best possible adaptation to a user’s need.

A term closely related to ubiquitous computing is Ambient Intelligence (AmI).
Ambient Intelligence is not clearly defined by ISTAG [10], the organization that
originally coined this term. However, referring to Wikipedia, it is defined as follows:
“The concept of ambient intelligence or AmI is a vision where humans are
surrounded by computing and networking technology unobtrusively embedded in their
surroundings” [11]. Using the term intelligence, Ambient Intelligence defines a
general quality that should be reached by obtaining context information and applying
adaptations in distributed systems: A sensible collaboration of the involved nodes for
the benefit of the user.

Since our research is done in the area of ambient intelligence, we do need to take
into account that a CBR module/node needs to be able to integrate itself into a
distributed AmI environment.

4 Björn Decker and Markus Nick

3 Problems and Idea

We are using CBR to build a monitoring and assistance component of an ambient
system. The nature of our scenario leads to rapid changes in the context – e.g., a
monitored person might change the room during the application of a multi-step
treatment, which requires that reminders now get activated in the room to which the
person moved.

We have identified the following three major problems to be addressed when using
CBR to build context-aware ambient intelligence systems:
1. Instability of context: Whenever context changes, the impact of such changes needs

to be taken into account for reasoning. Thus, developers of CBR systems need to
consider whether this change has an impact on the operation of their CBR system.
Some part of the context information relevant for adapting actions is only known
right before the execution of an action. Therefore, the “lifecycle” of context
information needs to be taken into account, i.e., how quickly some parts of the
context usually change.

2. Raw sensor information and uncertainty: Context information in AmI systems
comes from sensors. These sensors might not be able to provide clean information,
i.e., their data might need to be pre-processed to be usable by a CBR module.
Furthermore, some part of the context information might have a degree of
uncertainty, e.g., due to tolerances or drifts of the sensors.

3. Distribution of the system: In order to enable dynamic integration of unknown
nodes into ambient intelligence systems at runtime, the knowledge should be stored
with the node that it is related to.

Our idea is to use two modularization principles for separating concerns in the CBR
system:

Principle 1: The reasoning is modularized by the stability of the context. Here we
distinguish only between stable context and rapidly changing context. Stable context
is likely to be stable for one run of the CBR cycle. Rapidly changing context is likely
to change between the creation of a plan (i.e., some actions) and its execution over
time. This leads to two reasoning modules (Figure 1): First, the stable context selects
abstract actions. These abstract actions describe actions in a manner that is
independent from the rapidly changing context. Second, right before its execution,
each abstract action is adapted to the rapidly changing context, which results in the
concrete actions that are then executed in/on the real world.2

2 If the stable context changes, this is subject to re-planning. Since this re-planning is subject to

“traditional” planning methods in AI, we do not address this in the remainder of this paper.

A Model for CBR Systems that Adapt to Rapidly Changing Context 5

Stable context

Rapidly changing context

Abstract actions
triggers/selects

adapt

Concrete actions

Figure 1: Modularization of reasoning according to context stability

Principle 2: The knowledge itself is modularized to reflect the distribution of the
system. This means that the knowledge for ‘adapt to rapidly changing context’ is put
into the respective adaptation module.

Both principles impact the CBR process. Principle 2 also impacts the system
architecture and knowledge representation. These are presented in the following
sections.

4 A Context-Aware CBR Process

We use the 4Re CBR cycle of [3] as a theoretical basis for our context-aware CBR
process. This 4Re CBR cycle has the underlying assumption that the values used for
selecting a certain case remain stable for the whole CBR cycle. In classical CBR
systems, the information used for retrieval and adaptation is stable for the whole cycle
(e.g., because it is entered by a user).

To solve the instability-of-context problem, a rather naïve implementation would
be to integrate the volatile context information into the retrieval vector of the case.
However, this volatility might cause frequent checks throughout the cycle to find out
if the context remains stable. With the variety of sensors and actuators, this could also
lead to a large number of cases, because cases might contain sensor- and actor-
specific information. Furthermore, since each case would cover a very specific
situation, the effort for aggregation and maintenance would be high.

To overcome such deficiencies, we modified and extended the 4Re CBR cycle as
shown in Figure 2 and described in the following.
• Retrieve: During retrieval, the most similar cases are selected based on the retrieval

vector. However, if context data volatile during execution time is taken into
account, this data needs to remain stable until a case is selected (and applied).
Otherwise, it needs to be checked in every phase whether or not the information
used for retrieving cases has changed. If this information has changed, the impact
on the retrieval of cases has to be determined and is has to be decided whether the
currently selected case is adapted accordingly or whether the whole CBR cycle is
aborted. Thus, only stable context information should be used during retrieval.

• Reuse: During reuse, the case is adapted to fit to the current situation. However, if
context data volatile at runtime influences behavior, adaptation needs to be
performed at the execution time, i.e., right before the application of a certain case.
Therefore, parts of the adaptation might be postponed until the revise phase.

6 Björn Decker and Markus Nick

Figure 2: CBR Cycle, according to [3]

• Revise: In an AmI system, the case outcome (i.e., success or not, etc.) is
determined using sensor information. Due to the uncertainty/noise issue of sensor
information, the case outcome is also determined with some degree of uncertainty.

• Retain: During retain, the case is stored in the case base, with an indicator of
whether it was successful or not. For context-aware systems, it needs to be taken
into account to which degree the adaptation performed during the reuse and revise
phase has an impact on the success of cases. Furthermore, it needs to be checked if
the information used for retrieval has been changed and if this had an impact on the
success as well, because then the case outcome has to be related to the new context
or even to a description of the change of the context over time.

This modification of the 4Re cycle defines a lazy strategy for coping with rapidly
changing context: By delaying the adaptation of cases to the latest point in time
possible, the likelihood of changes and thus adaptation cost is reduced. However, this
lazy adaptation might not be suitable when the adaptation costs are low.

A Model for CBR Systems that Adapt to Rapidly Changing Context 7

To conclude, there are two implications that have a major influence on an
architectural design:
• The information used for retrieval should be as stable as possible to avoid

replanning at least for the retrieval and reuse steps. Therefore, actions are
represented on an abstract level, which is adapted by a separate component right
before the execution of the action.

• The CBR application has to rely on information from other components to derive
the success of a case. Furthermore, it has to take into account the adaptation of
actions performed by other components.

5 Service-oriented Architecture for Context-Aware CBR
Systems

Based on these considerations and the above two principles, we have developed the
architecture depicted in Figure 3. CBR-based Action Selection is responsible for
selecting actions and for determining their success. Information about the current
context is provided by the Situation/Context recognition component. The adaptation
of actions is performed by the component Action Adaptation.

Figure 3: Service-oriented Architecture for Context-Aware CBR

These components are connected via the interfaces that deal with the information
exchange needed for the steps of the CBR cycle:
• StableContext is used in the Retrieval and Reuse step. It contains the information

relevant for selecting cases, which is assumed to remain stable during one cycle.
• AbstractAction is an interface for the component Action Adaptation to receive the

action to be adapted.
• ContextKnown@ExecutionTime provides the necessary information for adaptation

right before the execution of an action.

8 Björn Decker and Markus Nick

• AdaptationInformation is an interface to provide information on how the action
was adapted. This information is needed in the Revise step to evaluate the impact
of the adaptation on the success of an action.

• CaseOutcome provides information on whether the abstract action was performed
successfully to allow the adaptation service.

• SuccessContext is used in the Revise step to evaluate whether the case outcome
was successful or not.

The interfaces SensorInterface and ActionPerformerInterface provide the access to the
sensors and actuators of the context-aware system.

6 Knowledge Representation

In this section, we describe the impact on the knowledge representation. We describe
this using Richter’s four CBR knowledge containers, i.e., vocabulary, similarity
model, adaptation knowledge, and cases [12]:
• The vocabulary (attributes, predicates etc.) comprises the domain model.

The main influence on this knowledge container imposed by context-aware
application is the structure of the context information itself. The work of [9] gives
an overview of how context information can be represented, while the different
aspects of the context information defined by [6] provide a general structure for
this container. In addition to the context information, an overview of the applicable
action is needed.

• The similarity measures are used for comparing cases with queries.
In context-aware applications, the similarity value determines how well a case fits
to a certain context / situation. The main influence on the similarity measures in
context-aware applications is how the user preferences are taken into account. We
identified several possibilities of how those user preferences can be taken into
account. The first one is to specify a weighting of attributes based on the user’s
preferences. This weighting is based on the evaluation of which values are better
for a certain attribute than other values. This approach has the advantage that it can
be easily integrated into CBR systems.
The second possibility for taking user preferences into account is to influence the
similarity on an attribute level. For example, a user with good visual capabilities
might specify that visual information is almost equal to acoustic information, while
a visually impaired user – which is common in our assisted living - will state a
lower similarity.
Finally, the user might specify preferences for certain situations (e.g. when he is
asleep). This can be implemented in the similarity functions in two ways: First,
filters can be used for selecting cases only appropriate for a certain situation.
However, for each new situation to be differentiated, new preferences need to be
stated. Second, the situation of the user might be integrated into the similarity
function by stating the similarity of the situation itself. This allows specifying a
default situation.

A Model for CBR Systems that Adapt to Rapidly Changing Context 9

• The adaptation knowledge accommodates past solutions to current problems.
As pointed out above, the adaptation knowledge is separated into two parts:
1. The adaptation of the case and its actions on the abstract level.
2. Mapping abstract actions to concrete actions at action execution time using
context information.
Both adaptations can address user preferences on the respective levels.

• The case base for the main CBR cycle is kept free from sensor- and actor-specific
information. Thus, the cases are at one abstraction level only, which is expected to
result in a smaller case base, which is easier to maintain.

We have presented two ways of representing the knowledge required for adapting to
user preferences: (1) by means of similarity measures; and (2) by means of
adaptation. Richter stated that, in general, knowledge can be moved between the
containers. Here, there is an exception to Richter’s rule: For adapting to user
preferences on the level of concrete actions, principle 2 and the architecture pattern
strongly recommend that the respective knowledge is stored in the 2nd adaptation
knowledge container together with the action mapping knowledge. The only
exception is if this cannot be resolved by selecting from different concrete actions for
an abstract action. This would mean different abstract actions and, therefore, different
cases.

7 Application in Ambient Assisted Living

After the theoretical considerations implied by adding context-awareness to CBR, we
will present the application example that is currently being developed for a
demonstration laboratory for assisted living in the BelAmI project. Assisted living is
about supporting the day-to-day lives of elderly or handicapped persons by technical
means. This laboratory performs demonstrator-based research in the field of
engineering ambient intelligence applications.

In the laboratory, there are various sensors that receive information about the
current context of the assisted person (e.g. mobility, drinking behavior, etc.).
Furthermore, it contains several devices for interacting with the assisted person and
other users (e.g., caregivers and healthcare personnel).

One scenario supported by the assisted living demonstrator is to schedule and
monitor treatments for the assisted person. The software component responsible for
scheduling and monitoring is called MonA (Monitoring and Assistance). Within
MonA, the CBR Framework INTERESTS (Intelligent Retrieval and Storage System)
[13] is used for supporting the 4Re Cycle. Examples of these treatments are reminders
to drink or to take a certain pill. Based on the activities of the person (e.g., no drinking
activity for the last 2 hours), it issues a reminder to the person to drink. Furthermore,
it tracks whether the assisted person actually drank something, i.e., whether the
treatment was successful or not.

10 Björn Decker and Markus Nick

Situation
assessment

OK / NOT OK

Select
abstract treatment

Execute treatment steps

Adapt
treatment step

Context-adapted
treatment step

Monitored object(s)
+ environment

Context/Situation
aggregation and

recognition
Sensor data

Effects
monitoring Re-plan

Situation/Context
of object

revise

retrieve

as co
n

text

Figure 4: Flow inside MonA. The refinements of the 4Re CBR cycle steps are marked. The
actions from the generic model are “treatment steps”. The mapping from the architecture
pattern to the three services is straightforward.

MonA aggregates the sensor data to a situation description. The situation is then
assessed as being OK or NOT OK. For situations that are NOT OK, MonA selects
and abstracts a treatment description. The selected abstract treatment is then added to
the treatment plan, which contains all running treatments. Furthermore, it is checked
whether the selected treatment is consistent with recent and running treatments. If not,
the treatment is delayed or cancelled. In accordance with its timing, the steps of the
selected treatment are executed. Each treatment is adapted to the current context right
before its execution in order to assure that the instantiated treatment step follows
possible changes of the object or changes in its environment between retrieval and
treatment application (e.g., a reminder has to be sounded in another room because the
person moved from the room after the selection of the treatment). Furthermore, the
effects of the treatments are monitored to check whether the expectations are met. Re-
planning is done if deviations make it necessary. These operations are implemented in
MonA as follows:
• The aggregation of the sensor data to a situation description uses a rule-based

reasoning mechanism.
• Currently, the situation assessment is very simple: A situation is considered as

being not ok if there is a respective treatment case in the case base. For more
sophisticated tasks, we plan to use different AI methods for situation assessment
and treatment to be selected in order to safely assess the situation before selecting
the best matching treatment.

• The consistency check for the treatment will be implemented using a constraint
resolver and/or a failure memory (as for Hammond’s CHEF system [14]). The
evaluation of the adequacy of these approaches is ongoing work.

A Model for CBR Systems that Adapt to Rapidly Changing Context 11

• The effects monitoring uses the experience feedback loop method of [Nick, 2006].
• The adapt treatment step is subject to different services that interact with MonA.

A service that implements the “adapt treatment step” is the reminder service. It takes
the abstract treatment “reminder” and selects the best way to remind a certain person.
This decision takes into account the (dis-)abilities and the current situation of the
assisted person. Therefore, it ensures the adaptation of the abstract activity “remind
person” to a reminder issued via a concrete device.

The current version of the reminder service contains a simple set of if-then rules
for activity adaptation. However, a research direction we are currently investigating is
to also perform this adaptation of the reminders based on CBR.

Using CBR for reminder adaptation has several advantages: First, the current if-
then rules can be easily transferred into cases. The condition mentioned in the if-part
will become the retrieval vector, while the actions specified in the then part become
the actions performed. This allows creating an initial set of cases easily. Second, the
abstract treatment in which the reminder was issued can be stored within the case via
a simple reference.

In this scenario, the following interfaces between the two services are needed:
• Reuse Steps MonA to Revise Step Reminder Service: MonA needs to report the

kind of reminder that should be issued (e.g., emergency, gentle reminder) to
allow the reminder service to determine an adequate way of reminding. The
reminder service then reports which kind of adaptation it performed by providing
a reference to the case that was selected in the reminder service. This information
is needed for MonA to evaluate the success of the treatment, which might depend
on the adaptation performed by the reminder service.

• Retain Step Mona to Retain Step Reminder Service: When the user does not
confirm that he was informed by a message, the reminder service needs to know
from other sources whether the reminder was successful or not. MonA reports
whether the treatment – whose ID was handed over in the first interface – was
successful or not. Based on the assumption that a reminder was successful when
the underlying treatment was performed successfully as well, the reminder
service can deduce which kinds of reminders are more successful than others.
The reminder service stores the number of successful applications for each case.

8 Related Work

The overview of related work is divided into three sections: First, we give an
overview of the related work in the area of context-aware systems for elderly people.
The second part provides an overview of Open Source infrastructures for context-
aware systems that can be used by CBR systems. Finally, we present an overview of
standards to specify context. For a general overview of the application of artificial
intelligence systems applied in the area of elderly persons, refer to [15].

Examples of context-aware systems for elderly people are:

12 Björn Decker and Markus Nick

• House_n project [16] uses wearable biometric sensors and cameras to detect
symptoms of congestive heart failures (CHF) and suggest treatments (e.g.,
exercises)

• LiveNet [17] also uses werable biometric sensors to stream bio-signals to remote
caregivers.

• Intel has developed CareNet [18], an ambient display to show the relationships
between elderly persons, family and other caregivers.

• The inHaus (intelligent House) [19] provides a testbed for building automatization,
providing service functions that are also useful for elderly persons.

In addition, we performed a survey about open source frameworks for context-aware
systems. These systems are currently being investigated further in order to find out to
which degree they can support the future development of our applications:
• The context toolkit [20] described in [21]. The toolkit itself is implemented in Java,

but has connectors to .Net and Flash.
• ContextFabric [22], described in [23], provides a store for context data, a

specification language for context, and protection mechanisms for privacy needs. It
is written in Java.

• OpenCMA by [24] is a project under development that has not released any files
yet.

9 Conclusion and Outlook

We have presented a model for CBR systems that adapt to context changing within a
single run of a CBR cycle. Our model extends/modifies the existing 4Re CBR cycle
of [3] and the CBR knowledge container model of [12] with a separate module for
adapting abstract actions to concrete actions and the respective adaptation knowledge.
The technical feasibility of the model has been demonstrated with modules of an
ambient intelligence system in the area of ambient assisted living for elderly people.

Our future research will focus on two directions: First, we will investigate
architectural patterns for distributing the CBR cycle in service-oriented architectures.
The basis for this investigation are the experiences gained in the distribution of
services in our application example. It is of particular interest to us to define concrete
interfaces for the exchange of information needed during the CBR cycle and to
examine under which circumstances a push or pull strategy for information about
context changes is better.

On the application level, we will extend the functionality of MonA and the
reminder service. For MonA, our plan is to perform constraint-based scheduling of
treatments. For the reminder service, we will further investigate the CBR-based
selection of reminding actions.

A Model for CBR Systems that Adapt to Rapidly Changing Context 13

References

1. Bartsch-Spörl, B., M. Lenz, and A. Hübner, Case-Based Reasoning-Survey and
Future Directions. XPS-99: Knowledge-Based Systems-Survey and Future
Directions. Proc. of the 5th German Biennial Conference on Knowledge-Based
Systems, Springer Verlag, 1999: p. 67-89.

2. Kolodner, J., Case-based reasoning. 1993, San Mateo: Morgan Kaufmann
Publishers, Inc.

3. Aamodt, A. and E. Plaza, Case-Based Reasoning: Foundational Issues.
Methodological Variations, and System Approaches, AICOM, 1994. 7(1): p. 39-
59.

4. Dey, A.K. and G.D. Abowd, Towards a Better Understanding of Context and
Context-Awareness. 1999.

5. Wikipedia, Context Awareness. 2006.
6. Dey, A. and G. Abowd, Towards a Better Understanding of Context and Context-

Awareness, GVU Technical Report GIT-GVU-99-22. College of Computing,
Georgia Institute of Technology,(1999).

7. Baldauf, M. and S. Dustdar, A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing, 2004.

8. Wikipedia, Ubiquitious Computing. 2006.
9. Strang, T. and C. Linnhoff-Popien, A Context Modeling Survey. Workshop on

Advanced Context Modelling, Reasoning and Management associated with the
Sixth International Conference on Ubiquitous Computing (UbiComp 2004), 2004.

10. IST_Advisory_Group, Ambient Intelligence: from vision to reality.
11. Wikipedia, Ambient Intelligence. 2006.
12. Richter, M.M. The knowledge contained in similarity measures. in First

International Conference on Case.Based Reasoning, ICCBR'95,. 1995. Sesimbra,
Portugal.

13. Nick, M., Experience Maintenance through Closed-Loop Feedback. PhD Theses
in Experimental Software Engineering. Vol. 16. 2005, Stuttgart: Fraunhofer IRB
Verlag.

14. Hammond, K., Case-based planning - viewing planning as a memory task. 1989,
San Diego, CA, USA: Academic Press Professional, Inc.

15. Pollack, M.E., Intelligent Technology for an Aging Population: The Use of AI to
Assist Elders with Cognitive Impairment. AIII, 2005.

16. Intille, S., Designing a home of the future. Pervasive Computing, IEEE, 2002.
1(2): p. 76-82.

17. Sung, M. and A. Pentland, LiveNet: Health and Lifestyle Networking through
Distributed Mobile Devices. Proceedings WAMES, 2004.

18. Consolvo, S., P. Roessler, and B. Shelton, The CareNet Display: Lessons Learned
from an In Home Evaluation of an Ambient Display. Proceedings of the 6th Int'l
Conference on Ubiquitous Computing: UbiComp, 2004. 4.

19. Anonymous, InHouse Homepage. 2006.
20. Dey, Context Toolkit Homepage. 2006.
21. Dey, A., G. Abowd, and D. Salber, A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 2001. 16(2, 3 & 4): p. 97-166.

14 Björn Decker and Markus Nick

22. Hong, J., Context Fabric Homepage.
23. Hong, J., The context fabric: an infrastructure for context-aware computing.

Conference on Human Factors in Computing Systems, 2002: p. 554-555.
24. Forslund, D., OpenCMA Homepage. 2006.

