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Abstract. The popularization of mobile devices in the last years has led to the 
development of an increasing number of services. However the technical limi-
tations of mobile devices call for services that require minimal interactions with 
the user and adapt their behaviors to the user’s expectations. Context-awareness 
has proven to facilitate personalization of services by enabling the adaptation of 
the service to the user’s situation. However, the adaptation is often carried out 
by using pre-defined rules that only apply to some contexts. In this paper, we 
present our approach that addresses this limitation in location-aware services by 
referring to the previous actions of the user. We have developed a metric to 
calculate the similarity between the current user’s location and the previous 
ones. Based on this metric, our approach provides a personalized service by de-
termining the service behavior expected by the user in the current location. A 
service, the Call Profiler service, details our approach. 

1   Introduction 

The proliferation of mobile devices has generated an increasing interest for ser-
vices accessed anytime and anywhere, making the use of services always more ubiq-
uitous and popular in people’s everyday life.  

This trend calls for services that are personalized, i.e. that are custom-designed to 
the user’s preferences and environment. The making of personalized services aims to 
increase their acceptance by users. On the one hand, personalized services can pro-
vide users with more accurate information. On the other hand, they respond to users 
after a minimal set of user interactions. This results in a more effective use of the 
user’s attention and concentration, e.g. by minimizing the number of key strokes 
typed by the user. 

An approach for personalizing services is based on context-awareness. Information 
about the user’s situation is gathered and used to determine how a system must prop-
erly react. This way, context-awareness facilitates the development of personalized 
services by custom-designing services to the user’s situation, automatically selecting 
services and devices settings. 

Context-aware systems that enable the adaptation of services to the user’s situa-
tions have been widely developed [1],[2], [3]. These systems collect sensor data from 
the user’s environment. The data are interpreted and are transformed in order to pro-



 

vide a human understandable description of the user’s situation. Finally this descrip-
tion is used to decide on the actions carried out by the services. 

However, most context-aware systems perform adaptation using rules, i.e. condi-
tional expressions where an expected service behavior is related to a particular user’s 
context (e.g. WHEN I wake up at 7 am, on a work day, at home, THEN play rock 
music). However, in contexts where rules no longer apply, no actions can be carried 
out until the current rules are modified or new rules are added. In order to perform 
adaptation, users of context-aware systems must then either manually select the action 
of the service or modify the existing rule to encompass the new context. 

This is, nevertheless, a severe limitation. It appears that the success and the prolif-
eration of context-aware services in daily life will depend on their acceptance by end-
users. The effort to use context-aware services should be significantly lesser than 
their benefits to users. These systems, while carrying out service adaptation, must 
cause minimal user distraction and not constantly request for information to be keyed 
in to select service behaviors. 

In this paper we present an approach that utilizes a case-based reasoning (CBR) 
method to address the limitation. The service adaptation to be performed is deter-
mined from the user’s previous utilizations of the respective service. We describe our 
approach for location-based services, i.e. services whose behaviors can be adapted 
based on the current user’s location. We use a similarity metric to compare the simi-
larity between the current location and the previous ones. The action to be performed 
by a service is then determined from the action of the most similar location. Our ap-
proach is further detailed through the example of the Call Profiler Service. 

The paper is structure as follow. In section 2 we discuss the issue of service per-
sonalization and we give a scenario featuring the Call Profiler Service. In section 3 
we detail the limitation of the adaptation process in the current implemented context-
aware systems. In section 4, our approach is described. The similarity metric is fur-
ther discussed in section 5. In section 6 the specific example of the Call Profiler Ser-
vice using our approach is described. Finally section 7 presents the further work and 
concludes the paper. 

2   Personalization of services 

Admittedly, personalization aims to increase the acceptance of services as it pro-
vides users with services that behave as they expect. At the same time the explicit 
interactions between the service and its user are minimized. 

A service can be seen as an object with a well-defined interface. In non-
personalized service, the user must explicitly input information to the service via e.g. 
the GUI or by voice or gesture commands. The resulting response of the service, i.e. 
the service behavior, is solely produced from these inputs and therefore conforms to 
the user’s expectations. When it comes to personalizing services no (or few) explicit 
user’s inputs are passed to the service. The response of the service is determined from 
data delivered by an underlying personalization system. Hence the interaction be-
tween the user and the service is implicit from the user viewpoint. To achieve this, a 
personalization process is structured around two tasks: user modeling and system 



 

adaptation. User modeling consists of gathering and storing information about the 
current user’s current goal, plans, background and knowledge. A user model serves as 
a description of the user and a prediction of how he will behave. System adaptation 
refers to the process that occurs as mathematical models or analytical techniques are 
applied to user model data in order to make decisions on the service behavior deliv-
ered to the user. 

As discussed in [4] future communication systems and services are required to 
adapt not only to the specific demand of individuals, but also to the individual’s situ-
ational and environmental conditions. Indeed, individuals have different preferences 
and settings in different situations. 

An approach for having systems adapt to the user’s situation is provided by con-
text-awareness. According to [2], a system is context-aware when it uses context to 
provide relevant information to the user. Context is any information that can be used 
to characterize the situation of an entity. An entity is a person, place, or object that is 
considered relevant to the interaction between a user and an application, including the 
user and applications themselves. The information can be an activity, a location, the 
time, etc. 

When adapting a service, we should distinguish between the gross and the detailed 
behaviors of a service [5]. A service is designed to provide one or a set of gross be-
haviors (playing music, enabling chat, displaying messages, etc). When it comes to 
adaptation, the gross behavior of a service should remain the same. For instance, a 
music player must remain a music player irregardless of the context. However the 
detailed behavior of the service can change with the context. The type of music 
played or the algorithm that is used to construct a play list may be adapted. Behavior 
changes result then in a parameterization or a selection rather than a change in the 
code of the function that is provided by the service. 

 
In the following we give a scenario that features a personalized service: the Call 

Profiler Service. The Call Profiler Service is a service that enables the user to manage 
incoming calls on his mobile device. The service provides two types of behaviors. It 
can notify the user of an incoming call via several modes, e.g. loud or low ring tones, 
vibration, etc. The service can also block incoming calls and divert them to mail-
boxes, e.g. a mailbox where callers are presented with a message asking them to call 
back later, or a mailbox offering them to leave a message. This service is context-
aware. Indeed, the service behavior is selected according to the user’s preference in 
his current context. 

 
Paul is a researcher and he is currently involved in many projects. Therefore he 

receives many phone calls every day from different people on his mobile device. Mo-
bile phones have facilitated people’s communication means, enabling people to be 
reached easily. But it has also a serious drawback: a phone call can interrupt and 
disturb the phone’s owner at any time. To avoid such an inconvenience, Paul has 
started using the Call Profiler Service. 

Paul has been using the Call Profiler for some weeks now and this afternoon he 
has an important meeting at the university. As he arrives in the morning, he decides 
to meet up with a colleague to give the final touches to the presentation he holds in 



 

the afternoon. He joins his colleague in his office and together the work on the pres-
entation. When someone tries to reach him few minutes later, the call is block and 
switched to Paul’s mailbox. Indeed, Paul does not wish to accept calls when he is in a 
colleague’s office. On the way back to his office, in the corridor of the department, he 
is notified about the blocked call. In the corridor, Paul wants to be reached again. 
During the day, the Call Profiler Service continues working. At noon he receives 
another call in the cafeteria, whereas the two callers that tried to reach him, while 
Paul is in the meeting room, received a message asking them to try again later. 
In the evening Paul goes out to town, and continues using the service. In the tram, he 
receives a call from a friend to fix an appointment. His phone has been switched to 
the vibration mode, since Paul usually does not want to disturb people around him 
when using public transportations. Later, while Paul is having a drink with friends in 
a pub, he is notified of two incoming calls by a louder ring tone.  
 

The scenario describes how a user can take advantage of a personalized service. In 
any place Paul is, the Call Profiler provides him with the behaviors he wants. When 
Paul is in the cafeteria, he requests the service to pass all incoming calls, whereas 
when he is in the meeting room, he expects calls to be blocked. Obviously the service 
could behave another way with another user. 

According to Paul’s location, one behavior offered by the service is selected. The 
selection is driven by Paul’s preferences in each location. 
In the following we discuss how current context-aware systems address such a sce-
nario. 

3  Current Context-aware systems 

Since [1], context awareness has attracted quite some attention for computing ap-
plications. Many context-aware frameworks have been developed to provide a mid-
dleware layer to adapt applications and services to the user’s current context. As 
pointed out in [6], issues addressed by these frameworks can be classified into three 
categories: gathering context; interpreting and managing context; and adapting the 
service behaviors. 

Context gathering approaches aim to collect raw context data from heterogeneous 
sensors and augment these data. Interpreting context consists of transforming raw 
sensor data into human understandable high-level contexts. High-level contexts are 
composed of data from different context data sources or of different context types 
(location, temperature, etc). Interpretation is carried out by using predefined rules as 
in [7], [8]. A slightly different approach is presented in [3], where context is modeled 
and interpreted based on ontologies. Following this approach context is represented 
as predicates written in OWL. Context interpretation is performed by a context rea-
soning engine that supports RDF-S and OWL reasoning and general rule based rea-
soning. 

Service behavior adaptation is performed by determining the adequate reactions to 
events and interpreted contexts. Mobile services adapt their behavior to the context by 
applying predefined rules. In [3] actions are triggered by a set of rules whenever the 



 

current context changes. Service developers write pre-defined First Order Logic rules 
and specify what method is invoked when a condition becomes true. All the rules are 
saved in a file and pre-loaded into the “context reasoner” component of the system. A 
similar approach is carried out in [8] where an inference engine component based on 
CLIPS which is able to select rules to fire is used. In [9], a customization (i.e. person-
alization) model is presented that enables the context-based adaptation of web appli-
cation services. Context is used to trigger the customization as soon as a context 
change occurs. To specify the customization, ECA (Event/ Condition/ Action) rules 
are used. A rule consists of event and a condition parts that together specify the con-
text the rule is applied to. The event part determines the change that triggers the rule 
(e.g. change of bandwidth). The condition part is evaluated as soon as the rule is 
triggered by an event. It determines whether an adaptation is required. For example, a 
condition would be that the bandwidth falls below a minimum. Eventually, the action 
part activates the adaptation of the service. 
Current context-aware frameworks use rules to adapt services. This does not allow 
performing actions when the user‘s context have not been envisioned beforehand 
Even though it may be easy to characterize and describe some of the user’s situations, 
for which a specific service behavior can be requested, it is arduous to exhaustively 
define all user’s contexts where the user expects a service behaviors. Then, in con-
texts where the rules (no longer) apply, no action can be carried out until the current 
rules are modified. Rules can be newly input by the user. But this is not acceptable, 
since the aim of context-awareness is to reduce the cognitive load on the user and 
preventing the user to type of series of key strokes when using the system. 

4  CBR for adapting location-based services 

In this paper we present an approach to overcome the limitations of current imple-
mentations of context-aware systems that perform rule-based adaptation of services. 

 
A rule is a simple scheme for expressing how the user’s context and an action, 

which would be carried out by the system are associated. Any other association (e.g. a 
cross reference in a database, etc) that would have been defined beforehand by the 
user or the service developer would impose exactly the same limitation. Performing 
such an association between a user’s context and a service action implies that most of 
the user’s contexts must be foreseen. However, this is an exercise that seems very 
difficult for human beings. Envisioning and describing all the possible contexts a user 
is going to experience can only been managed for a well specified scenario. Rather, 
human beings have a tendency to solve problems as they are confronted. To do so, 
they prefer to refer to their previous experiences and examples, and try to come out 
with an acceptable solution. 

We follow a similar approach to support the personalization of services. We pro-
pose to determine the way a service is adapted by comparing the current user’s con-
text (the problem) with his past experiences. When a past user’s current context is 
found to be similar to a previous one, the same adaptation scheme is applied. Indeed, 



 

it is most likely (but not mandatory though) that the user will behave analogously in 
similar contexts. 

Context, as defined [2] and as we envision it, is a manifold and complex concept. 
Many elements can come into picture if ones tries to characterize a user’s context, 
e.g. location, activity, nearby people, nearby objects, mood, environment characteris-
tics (temperature, lightening), humidity, etc. This makes context potentially very 
difficult to deal with. However, all context-aware services do not have to be adapted 
by taking into account all these elements for the context. Some context elements may 
be more relevant for adapting services than others. For example, the above scenario 
features the personalization of the Call Manger service, where the user’s location 
appears as a critical context element, allowing personalization to be carried out based 
on the user’s location only. Therefore, in the remainder of this paper, we discuss the 
adaptation of the Call Manager service based on this context element only.  

 
Comparing past user experiences is referred to in the literature as CBR – Case-

based reasoning - [10]. Case-based reasoning uses a memory of relevant past cases to 
interpret or solve a new problem case. In case-based reasoning a problem is solved 
based on similar solutions of past problems. Case-based reasoning utilizes the specific 
knowledge of previously experienced problem situations, referred to as cases. 

In our approach, a case refers to a user’s location, for which the user’s expectation 
is known. Location typically represents the site, i.e. the point in space, where the user 
of the application is located. As discussed in [11] there are different plausible and 
correct ways to answer the question: where is A. located?, and consequently different 
ways to characterize a location. In this paper we consider the following properties as 
relevant for characterizing a site: the absolute position (name space) (with respect to 
a coordinate system), its class or function (named class), ownership (subject static 
space), and the attention. These properties are further discussed in section 5. 

A distinction is also made between known and unknown locations. A known loca-
tion is defined as a location where the system knows what the user expects. Indeed, in 
this location, the user may already have used the service, or may have specified which 
service behavior he wants. As such the known locations constitute the user’s previous 
cases. Inversely, an unknown location is defined as a location for which the user’s 
expectation has not been expressed. 

 
Our work is driven by the assumption that in similar locations the user demands 

towards a service are likely to be identical. Thus, in order to determine the service 
behavior, we propose to analyze the similarities between an unknown location and 
other, known locations. By considering the similarities, we can then retrieve the loca-
tions that best matches. Consequently, we deduce the service behavior of the un-
known location from the service behavior of the known location 

In order to achieve the above goal, several processes have to be consecutively car-
ried out. Now we discuss how these processes can ease the adaptation of location-
aware services. They follow the processes of the CBR cycle described in [10]. 

• Identifying the various service behaviors. The first task consists of identifying the 
service behaviors that are offered by the service. To personalize the service, a selec-



 

tion has to be made between these behaviors according to the user’s location. The 
behaviors offered by a service are specified in the service description. 

• Identifying the current case (user’s location). The user’s location characterizes the 
current problem (case). Data are gathered from the user’s environment e.g. from sen-
sors to obtain a description of the user’s location. When different types of sensors are 
jointly used, for example to determine the user location both indoors and outdoors, 
the component also processes data to provide a uniform and system-manageable de-
scription of the user locations. Indeed location data must be represented the same 
way, in order to ensure that the similarities can be further calculated. 

• Retrieving the most similar case. To determine the expected service behavior in 
the current user’s location, a similarity metric is used. The metric is detailed in the 
next section. 

• Reusing the information and knowledge of that case to solve the problem. When 
the most similar location has been found, its differences with the current location are 
abstracted away. In similar locations the user demands towards a service are likely to 
be the same. Then the same service behavior is displayed to the user being in his 
current location. 

• Revising the proposed solution. After the service behavior has been displayed to 
the user, he has still the choice to interrupt and request for a behavior’s change. The 
interruption from the user is considered as a negative user feedback, while no inter-
ruption is considered as a positive user feedback. In the case of a negative feedback 
and depending on the service, the user may select a service behavior, or he may give 
a feedback to a newly proposed service behavior. 

• Retaining the case. After a positive user feedback, the new case is stored along 
with the previous ones. The new case consists of the user location and the service 
behavior the user has given a positive feedback to. Hence, an unknown location can 
then be added as a known location. 

5  Computing similarities 

Similarity is a cornerstone in case-based reasoning systems. It serves as a principle 
to select the past experiences and solve the problem of the new case [12]. 

They are two ways to obtain a measure of similarity between objects. First similar-
ity can be obtained from the objects. For example a marketing survey may ask re-
spondents to rate pairs of objects according to their similarity [13]. In the same way, 
the user could be asked for rated all the potential locations in his environment and this 
way rate the similar locations, i.e. locations for which they expect an application to 
behave similarly. Alternatively, measures of similarity may be obtained indirectly 
from a vector of measurements or characteristics describing each object. 

It is then important to define what we mean by similarity, so that we can calculate 
formal similarity measures. For this it is important to remember that our goal is to 
determine the behavior of a service in a location for which the user did not specify his 



 

expectation(s). Hence, a measure of similarity between two locations must not neces-
sarily depict how “physically similar” these two locations are. Rather a measure of 
similarity depicts how similar the expectations of the user towards the application are 
for the two locations. As a consequence, the similarity measure aims to determine 
how similar location’s characteristics that drive user’s expectations are. 

Often, location is regarded as a concept only characterized by the physical coordi-
nates with respect to a coordinate system. The physical coordinates are given by 
means of sensors (e.g. GPS for outdoor locations and Bluetooth for indoor locations). 
However, physical coordinates, though relevant for characterizing a location, are not 
the only characteristics we consider when defining a location. Indeed, when deciding 
on a service behavior, the user is influenced by his current location. However, here 
the location refers to the concept as perceived by the user. The position in space char-
acterized by some coordinates is important. But the user can also perceive the func-
tion of the location (i.e. he perceives he is in the meeting room and as such that he 
needs to switch off his mobile devices), as well as other characteristics. 

 

Figure 1 depicts the dimensions of locations we consider in this work.  
 
• Function. The function of the location refers to the purpose for which the location 
exists and is used. It corresponds to the question: “What is the location for?” As such, 
the function is described by the name of the location. For example, the site where I 
work is my office, while the site where I sleep is my bedroom. 

• Position. The position of the location indicates the geographical situation (place) 
of the location. It is characterized by the location’s coordinates defined in a coordi-
nate system that is associated to a location model. 

• Ownership. The ownership characterizes the individual that is used to occupying 
the location. For example, John’s office is “owned” by John since it is the office he 
has been assigned to. The ownership dimension can have a great influence on the 
choice of service behavior. Indeed, the user may act differently whether he is in his 

Figure 1: Location dimensions 



 

office, the office of one of his colleague, or the office of someone he has no social 
relationships with. 

• Attention. Finally, attention determines how much attention the user can give to a 
service in the location. This dimension is relevant for site where interactions with a 
service must be restricted, since it may endanger the user. 
 

These four dimensions are the only ones we consider in this work; even though, 
other dimensions arising from specific scenarios might also be perceived.  

Consequently a location can be represented as a vector whose features (Xi) are the 
values assigned to each dimensions. 
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It is important to note that the perception of a location may be specific to an indi-
vidual. It can therefore happen that values assigned by two persons to the dimensions 
of a same location differ. For example, a location can be perceived by someone as 
“office” whereas it is a “secretariat” for someone else. 

 
Having defined how a location is characterized, we now introduce how the similar-

ity between two locations is computed. 
Locations can be seen as points in a space directed by the dimensions (as repre-

sented in Figure 1). The similarity (or dissimilarity) is measured by the metric dis-
tance of the two locations. 
The distance expressing the similarity between two locations is calculated as the 
weighted city-block distance between their feature vectors, as follows: 
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Where simk is the similarity metric related to the kth feature of a location vector, 
and αk  the weight assigned to simk. 

These metrics are discussed below. 
 

• Similarity for the function dimension. The function of the location refers to the 
purpose for which the location exists and is used. Typical examples of features for 
this dimension are: office, corridor, kitchen, etc. The similarity between two of these 
values depends on how closely related and interchangeable the concepts are. Indeed, 
the similarity between the function: office and the function: secretariat is greater than 
the similarity between the function: office and the function: corridor. This similarity 
is strongly related to the semantic of the concepts. 

In computer science, an ontology serves to express the semantic of concepts and, 
hence, provides a representation of a domain. It specifies the concepts that are part of 
the domain and their relationships. Among the many ontologies covering various 
domains, one major work is WordNet [14]. WordNet provides a description of the 
semantic relations between words in the English language. Its design inspired psycho-



 

linguistic theories of human lexical memory makes WordNet relevant for our purpose 
of similarity computation. 

To compute similarities between concepts in WordNet, we use the similarity 
measure proposed in [15]: the similarity is based on the shortest path between two 
concepts and scales that value by the maximum path length found in the hierarchy in 
which they occur. 

 
• Similarity for the position dimension. For this similarity we first calculate the 
physical distance between the two locations. Computing this similarity is particularly 
relevant when locations are relatively close to each other. The increase of the distance 
beyond a certain value does not make locations be more different from each other. 
Therefore beyond a distance Δ, the similarity measure is set to 0. 

The similarity metric for the position dimension is then: 
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• Similarity for the attention and ownership dimensions. Similarities for the atten-
tion and ownership dimensions are computed in the same way. We take as an exam-
ple the ownership dimension. For any location loci the feature i

OwnershipX  is an ele-

ment of defined list {private, family, colleague, …}. 
The function f maps the list into a set of positive integers {a1, a2, … an }, where 

ji aa ≠  for ji ≠ . 

For example, the function f maps private to a1 (=1), family to a2 (=2),etc. 
Then the similarity metric is determined as follows: 
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Where )( i
OwnershipXf  is an integer assigned by f to the ownership feature of loca-

tion loci and lknlk
aa −

∈),(
max  is the greatest difference between two of the positive 

integers. 

6  The Call Profiler Service 

In the previous section we detail our approach for personalizing services and over-
coming the limitation of current context-aware systems in adapting services, as de-



 

tailed in section 3. The approach is further discussed with the example of the Call 
Profiler Service. 

As highlighted by the scenario in section II, the Call Profiler Service provides sev-
eral functionalities that enable the management of incoming calls for a mobile 
phone’s user. The Call Profiler can enable the blocking of incoming calls and can 
divert them to one of the user’s mailboxes, (e.g. professional vs. private mailboxes). 
Alternatively the service passes the call and notifies the user with a specific ring tone 
or with vibration. 

The personalization of the Call Profiler is enabled by a middleware system that 
implements our approach. In order to enable the determination of the service behavior 
and therefore to provide a personalized service, the system must identify the behav-
iors offered by the service. At the time of the first use, the service provides the system 
with a description of its capabilities, where the available service behaviors are de-
scribed. 

Existing approaches for service descriptions have already provided means for se-
mantically describing the capabilities of services [16]. However, a semantic descrip-
tion of the service behavior is not requested in our approach. Indeed, personalization 
is enabled by selecting the service behavior expected by the user in his current loca-
tion. The service behavior is determined from the most similar location. Therefore the 
system must only be able to identify it from the list of behaviors offered by the ser-
vice. A semantic description would be needed if relationships between various ser-
vice behaviors had to be inferred. 

 

Figure 2: Interactions with the Call Profiler Service  



 

Figure 2 illustrates the interactions of the system’s components that cooperatively 
determine the expected service behaviors in a location. The system is activated when 
a call reaches the user’s device. The Call Profiler, which has no clue on how to han-
dle the call, requests at the Comparator component the service behavior expected by 
the user. The Comparator first retrieves a description of the current user’s location 
from a Context Gatherer and Interpreter component, which constantly maintains an 
up-to-date description of the user’s location. Then, the Comparator retrieves known 
locations from the User Profile. Since, the User Profile potentially contains many 
known locations, only those that are willing to present some similarity with the cur-
rent location have to be retrieved (we do not detail the mechanism here). The Com-
parator calculates the degree of similarity of each identified known location with the 
current one by applying the similarity metric, described in section V. The most simi-
lar one (and potential identical one) is then used to determine the expected service 
behavior. Finally, the determined service behavior (e.g. block call, switch to mailbox 
#1) is expressed in an xml-based format and is passed to the Call Profiler. 

 
It is worth noting that the personalization, i.e. the determination of the expected 

service behavior, is not performed by the Call Profiler service per se. Rather, the 
service applies the service behavior that is determined by the underlying system. 

7  Conclusion and further work 

Personalization aims to provide users with services that match their preferences. 
User preferences often differ according to the current user’s situation. Context aware-
ness allows the development of personalized services that automatically adapt to the 
user’s situation. Therefore it reduces user’s attention when interacting with the ser-
vice. 

Current context-aware frameworks have limited capabilities when it comes to deal-
ing with unknown contexts, i.e. contexts where the user demand has not been explic-
itly expressed. These frameworks use rules that associate a context to an action to be 
performed by the service. However, in contexts where the rules (no longer) apply, no 
action can be carried out until the current rules are modified. 

In this paper, we present our approach that overcomes this limitation by using a 
case-based reasoning method. The approach is discussed through the example of the 
Call Profiler service. The expected service behavior in the current user’s location is 
determined from his past actions. The similarities between the user‘s current location 
and the locations where the user already used the service are computed. The most 
similar location is identified and the requested service behavior at this time is pro-
posed to the user. To compute similarities between locations, we propose a metric 
that takes into account various location’s dimensions (function, position, ownership 
and attention). 

 
In order to demonstrate our approach and address some technical questions we will 

next carry out experiments with the Call Profiler Service. First, the similarity metric 
must be validated against some real-life scenarios. These scenarios must also enable 



 

the investigation of the user interactions with the service, e.g. stating how many ex-
periences are needed for the system in order for the system to make the first determi-
nation (cold start problem) as well as the handling of user feedbacks. 
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