
Accuracy analysis of 3D object reconstruction using RGB-D 
sensor

1. Introduction

The 3D reconstruction of objects is a popular task, with applications in the field of medicine,
architecture, games, agriculture, and film industry. The 3D reconstruction has many applications
in object recognition, object retrieval, scene understanding, object tracking, autonomous
navigation, human-computer interaction, telepresence, telesurgery, reverse engineering, virtual
maintenance and visualization [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The geometry of an object can
be reconstructed from laser range scans, a set of different photos, monocular cameras and
stereo cameras; each technology possesses disadvantages and limitations. RGB-D cameras
like Microsoft Kinect or ASUS Xtion Pro are sensing systems equipped with an RGB camera,
infrared projector, and infrared sensor. They can gather RGB information and the depth map
simultaneously.

The ICP (Iterative Closest Point) is one of the most commonly used methods for pairwise
alignment, where the rotation and translation to align two point clouds are determined. Many
variants on the base ICP algorithm were proposed because of the limitations in the ICP
algorithm: different cost functions [11] and others [12]; two-Pass ICP with color constraint to
improve the error minimization process [13]; 3D representation using a set of planes to perform
the registration [14]; point-to-plane matchings instead of point-to-point matchings in standard
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ICP algorithm [15]; a new registration algorithm based on the Matching Signed Distance Fields
[16].

In order to fill small holes and to eliminate noise, the median and binomial filters were used
[17, 18, 19, 20, 21, 22]. Moreover, the use of the color information in the point correspondence
process avoids false positives matches and, therefore, leads to a more reliable registration. Note
that by adjusting ICP and reconstruction parameters it is possible to improve the registration
and appearance of details that were invisible with just one scan due to the sensor limited
precision. Finally, it was shown that with help of low precision sensors as Kinect 3D smooth
surface of objects can be reconstructed [23].

A new low-cost approach to reconstruct real-time of a 3D object with Kinect sensor
uses a SLAM algorithm (Simultaneous Localization and Mapping) [24]. SLAM provides an
approximated solution of 3D reconstruction because the accuracy of the system often depends
on a heuristic algorithm for obtaining relevant reference points.

In order to improve the accuracy and robustness of the ICP algorithm, a regularization by
incorporating the spatial distances of SIFT feature pairs with dynamically adjusted weights
to balance errors is proposed in [12]. A new outlier rejection method based on a dynamic
thresholding and leverages the structure and sparse feature pairs from the texture of the RGB
images were also suggested [12]. A new method to robustly estimates the camera motion in a
dynamic environment based on RANSAC algorithm was proposed in the article [25].

We propose to utilize a graph-based SLAM algorithm [24] with loop closure detection using
dense color and depth images obtained from the RGB-D camera. We show that our system is
able to perform the SLAM for three-dimensional modeling in real-time.

The paper is organized as follows. Section 2 discusses related works. Section 3 describes
the proposed system for object 3D reconstruction using an RGB-D sensor. In Section 4 the
experimental results are discussed. Finally, Section 5 presents our conclusions.

2. Related work

An approach for realistic surface geometry reconstruction using high-frequency features of color
images from Kinect is given in [26]. In order to achieve a better accuracy in the global
alignment of scans, it was used a weighted ICP algorithm. An efficient 3D reconstruction
approach combining a depth information based 3D model with RGB information to refine the
reconstruction results when the camera fails to acquire the correct depth information is presented
in [27].

The efficiency problems and real-time processing are discussed in [28]; that is, highly resource
consuming of dense point cloud registration algorithm based on an ICP method and slow surfel
update procedure for sufficiently large data clouds. For resolving these problems a sparse ICP
algorithm a frustum culling procedure exploits the hierarchical map structure. A novel real-
time algorithm for simultaneously reconstructing the geometry using a single RGB-D camera is
suggested in [29]. Moreover, this method can provide global anchors by including sparse SIFT
features. It allows us to potentially achieve better results for loop-closing motions.

A patch-based illumination invariant visual odometry was proposed in [30], which works well
in the irregular illumination change. The planar patch selection process is employed and the
illumination change model is adopted in each extracted patch in order to consider the partial
light variations. Using the robust weighting function and the efficient second-order minimization
(ESM) image alignment method, the proposed cost function reflecting the illumination changes is
minimized. As a result, the proposed method can accurately estimate the motion of the camera
regardless of the partial lighting changes. A method for visualization of occluded objects using
multiple Kinect sensors at different locations is proposed in [31].

A novel robust 3D reconstruction system with an RGB-D camera was proposed in [32]. The
visual and geometry features and combined SFM technique to make registration more robust
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especially in depth map missing cases were used. In order to solve the drift problem, 3D
information is used to detect the loop closure and to perform global refinement.

Prior-based Multi-Candidates RANSAC (PMCSAC) algorithm was proposed [32] to make the
feature matching more robust and efficient in order to handle the repeated textures/structures.
Missing geometry due to depth missing can be effectively completed by combining multi-view
stereo and mesh deformation techniques [32].

For solving the problem of a wider range of object deformations merging a sequence of images
from a single range sensor into a unified 3D model, without requiring an initial template was
proposed in [33]. However, although complex scene topologies can be handled, a regular topology
is restricted to be constant throughout the sequence. So, if the coarse-scale reconstruction
does not correctly choose the topology, it cannot switch to a fine scale, and the computational
cost is also high. A novel approach to the template-driven capture of dense detailed non-rigid
deformations from video sequences to carry out simultaneously 2D dense registration and 3D
shape inference is presented in [34].

In work [35] a model-based scalable 3D scene reconstruction system based on a CAD
model was proposed. The accuracy of KinectFusion algorithm and analysis the noise effect
of reconstruction and localization errors based on a CAD model was tested in [36].

An iterative low-cost method for 3D body registration, dealing with unconstrained movements
and accuracy is suggested in [37]. A novel method for 3D object reconstruction from RGB-D
data that applies sub mapping to 3D bundle adjustment is presented in [38]. A 3D shape
descriptor for object recognition with RGB-D sensors is proposed in [39].

A novel volumetric multi-resolution mapping system for RGB-D images was proposed in
the paper [40]. Proposed approach generates a textured triangle mesh from a signed distance
function that it continuously updates as new RGB-D images arrive. For this, an octree uses
as the primary data structure which allows us to represent the scene at multiple scales, and it
allows us to grow the reconstruction volume dynamically.

A system for autonomous flight using RGB-D sensors was suggested [41]. It uses a
combination of visual odometry techniques and mapping and is able to conduct all sensing
and computation required for local position control.

A method to estimate both odometry and scene flow with RGB-D cameras is presented in
the paper [42]. The main advantage of the proposed approach is that it provides accurate results
with a very low runtime.

A new visual odometry system based on the alignment between consecutive frames by
minimization both on the photometric and geometric error was proposed [43], where the original
ICP algorithm for frame alignment and visual odometry computation was completely substituted
by the proposed method. The use of the inverse depth instead of the depth to parametrize the
geometric error is the main contribution of the proposed method.

A new RGB-D based method was proposed to improve the accuracy and robustness of visual
odometry [44], where the set of line segments generate from maximum-clique filtered point
correspondences.

In the paper [45], a robust RGB-D DVO algorithm BaMVO was proposed for use in a dynamic
environment, where consecutive depth images were warped using the preobtained ego-motions
to equalize the viewpoints. The background image was estimated using a nonparametric model
from the differences between consecutive pairs in the warped depth images. The energy function
between successive RGB-D images was represented by the form of the weighted least squares for
the calculation of DVO.

A novel 3D geometry enhanced superpixel algorithm for RGB-D data is presented in [46].
The depth map is converted into 3D geometrical information, and superpixels are iteratively
clustered according to a distance metric designed from the color information and 3D geometry.
By introducing the geometrical information, the proposed superpixel method overcomes the
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difficulty in distinguishing adjacent objects with similar colors.

3. The proposed system

This section provides the proposed system with a fusion of information from a moving RGB-D
sensor for object 3D reconstruction.

3D reconstruction with our system consists of the following steps:

(i) Registration a point cloud PCi using RGB and Depth data.

(ii) Detection and matching of global key points in RGB data of PCi and PCi−1 with SURF
algorithm.

(iii) Remove outliers with RANSAC.

(iv) Count transformation matrix with ICP using the associate 3D points of the inliers.

(v) Apply hybrid approach that combines ICP odometry with the RGB-D odometry.

(vi) Adding results to a general model (dense 3D map).

The ICP odometry has a problem in tracking drifting or failure for the presence of smooth
surfaces [47]. Thus, we have implemented a hybrid approach that combines ICP odometry with
the RGB-D odometry, which aims to minimize the photometric error between consecutive RGB-
D frames [48]. The hybrid approach combines frame-to-model registration with the increased
stability provided by the use of both geometric and photometric cues [49].

The hybrid odometry approach estimates transformation Ti for each frame i by minimizing
the following function:

R(Ti) = RICP (Ti) + λRRGBD(Ti),

where RICP (Ti) is based on the point-to-plane error used in ICP algorithm:

RICP (Ti) =
∑

(p,q)∈K

‖(p− Tiq)
⊤np‖

2,

with np is the surface normal at p and K is a set of corresponding point pairs found by projective
data association. RRGBD(Ti) is the photometric error between frames i− 1 and i given as

RRGBD(Ti) =
∑

x

‖Ii(π(T
−1
i Ti−1π

−1(x,Di−1)))− Ii−1(x)‖
2,

where Dk is the depth image from frame k, x passes over all pixels in frame i−1, π is a projection
operator that projects a 3D point in the camera coordinate frame to the image data, π−1 is an
operator, that produces a 3D point in the camera coordinate frame that corresponds to a given
pixel, and Ik is the intensity of x pixel in color image from frame k. The coefficient λ balances
the two counted errors terms. It is calculated empirically and is identical for all reconstructions.

4. Experimental results

In this section, we present experimental results for evaluation of the performance of the proposed
system with a fusion of information from an RGB-D sensor for object 3D reconstruction.

The metric of evaluation is the root mean square error (RMSE) of measurements.

RMSE =
√

(E(ED −RD)2),

where ED is the estimated measurement by a device and RD is the real known measurement of
the object.

The object to be mapped is a small box (Kinect V2 adapter box). Fig. (1) shows a real-world
object and one frame from RGB-D device (Asus Xtion Pro).
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Figure 1. Real world object and one frame from the RGB-D sensor.

Figure 2. 3D model of the object.

Using the iterative ICP algorithm we obtain the corresponding 3D model of the object as
shown in Fig. 2.

Linear distances between 2 points in the point cloud are measurements shown in Fig. 3. The
geodesic distance between two points passing through surfaces and the surface area is also shown
in Fig. 3.

The average values over five measurements acquired by our system. Corresponding RMSE
values calculated for two sensors (Asus Xtion Pro and Kinect V2) are shown in Table 1.

The results show that Kinect V2 yields a more accurate 3D model of the object. The obtained
accuracy allows us to make all measurements on the 3D model as on a real object.

5. Conclusion

We proposed a system for reconstruction of the 3D model of a real-life object with a small error
in measurements. We have also developed a software to perform arbitrary measurements on
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Figure 3. Measurements of the box.

Table 1. Results of measurements
Real World AsusXtionPro RMSE Kinect V2 RMSE

Length 345 342.67 2.33 344 1.00
Width 76 71.84 4.16 75.6 0.40
Height 158 152.11 5.89 155.87 2.13
Diagonal 352 343.34 8.66 348.78 3.22
Geodetic 228 242.68 14.68 234.85 6.85
Area 12008 12862 854.00 12003 5.00

the 3D model of the object. Our system is sensitive to poor illumination. The obtained results
showed that it is possible to use multiple snapshots (sequence of frames) from low precision
sensors such as Kinect for accurate reconstruction of the 3D model of objects. The accuracy of
3D reconstructed models is confirmed by the measured distances: linear (distance between two
points), geodetic (distance over surfaces), and surface area.

In future, we improve the performance of the proposed algorithms to get more accurate 3D
models of objects. We also develop more complicated measurement methods such as a section
of an object, calculation of circle perimeter and section area, calculation of arbitrary geodetic
distances and curvature of the lines.
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